JP3952080B2 - Indoor unit - Google Patents

Indoor unit Download PDF

Info

Publication number
JP3952080B2
JP3952080B2 JP2006207367A JP2006207367A JP3952080B2 JP 3952080 B2 JP3952080 B2 JP 3952080B2 JP 2006207367 A JP2006207367 A JP 2006207367A JP 2006207367 A JP2006207367 A JP 2006207367A JP 3952080 B2 JP3952080 B2 JP 3952080B2
Authority
JP
Japan
Prior art keywords
heat transfer
fins
rows
refrigerant
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006207367A
Other languages
Japanese (ja)
Other versions
JP2006322703A (en
Inventor
剛 遠藤
研作 小国
弘 安田
和幹 浦田
宏明 坪江
峰敏 出石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006207367A priority Critical patent/JP3952080B2/en
Publication of JP2006322703A publication Critical patent/JP2006322703A/en
Application granted granted Critical
Publication of JP3952080B2 publication Critical patent/JP3952080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は、冷凍サイクルに蒸発器あるいは凝縮器として用いられる熱交換器および室内
機並びに熱交換器の製作方法に関し、冷凍サイクルに非共沸混合冷媒を用いた熱交換器、
複数列のクロスフローフィンチューブタイプの熱交換器に好適である。
The present invention relates to a heat exchanger and an indoor unit used as an evaporator or a condenser in a refrigeration cycle, and a method for manufacturing the heat exchanger, a heat exchanger using a non-azeotropic refrigerant mixture in the refrigeration cycle,
It is suitable for a multi-row cross flow fin tube type heat exchanger.

従来、冷凍サイクルの蒸発器あるいは凝縮器として用いられる熱交換器の形態の一つに
、内部が冷媒の通路である伝熱管の外部に管軸方向に垂直なフィンを構成して空気と熱交
換する、いわゆるクロスフローフィンチューブタイプの熱交換器がある。この熱交換器は
伝熱管の配列が等間隔のピッチで構成されており、予め伝熱管の外径よりわずかに大きい
内径の穴が加工されたフィンを層状にならべて、U字形状に加工された伝熱管を貫通挿入
し、伝熱管内部より圧力をかけて拡管することで伝熱管外面とフィン穴内面を接触させ、
かん合するようにして組み立てられる。
Conventionally, one of the forms of heat exchangers used as evaporators or condensers in refrigeration cycles is to exchange heat with air by configuring fins perpendicular to the tube axis outside the heat transfer tube, which is the refrigerant passage inside. There is a so-called crossflow fin tube type heat exchanger. This heat exchanger has an arrangement of heat transfer tubes arranged at equally spaced pitches, and is processed into a U shape by layering the fins with holes whose inner diameter is slightly larger than the outer diameter of the heat transfer tubes in advance. The outer surface of the heat transfer tube and the inner surface of the fin hole are brought into contact with each other by expanding the tube by applying pressure from the inside of the heat transfer tube.
Assemble and assemble.

また、熱交換器は機器の大きさや伝熱性能の観点から、空気の流れ方向側に対しては伝
熱管の配列が2列以上を必要とする場合が多く、例えば特許文献1に示されるようなもの
が知られている。
In addition, from the viewpoint of the size of the equipment and heat transfer performance, the heat exchanger often requires two or more rows of heat transfer tubes on the air flow direction side. For example, as shown in Patent Document 1 What is known.

特開昭63−17364号公報JP-A-63-17364

上記従来技術は、伝熱管の配列を2列としているが、1列フィンの熱交換器として構成
され、2列以上に熱交換器を重ねるものではなく、組立が必ずしも容易とは言い難かった
In the above-described conventional technology, the heat transfer tubes are arranged in two rows. However, the heat transfer tubes are configured as one row fin heat exchangers, and the heat exchangers are not stacked in two or more rows, so that it is not always easy to assemble.

本発明の目的は、R22規制のため2種類以上の非塩素系フルオロカーボンを混合してなる冷媒を代替冷媒として用いる場合、熱交換器の大きさ、冷媒通路の適正化などを考慮して性能向上を図ることにある。
The purpose of the present invention is to improve performance in consideration of the size of the heat exchanger, the optimization of the refrigerant passage, etc., when a refrigerant made by mixing two or more types of non-chlorinated fluorocarbons is used as an alternative refrigerant for R22 regulation. Is to plan.

また、熱交換器の性能を向上し、必要な熱交換容量に対して自由度を広げると共に、組
立性が良く安価な熱交換器を提供することにある。
Another object of the present invention is to provide a heat exchanger that improves the performance of the heat exchanger, increases the degree of freedom with respect to the required heat exchange capacity, and has good assemblability and is inexpensive.

上記目的を達成するため、本発明は、冷凍サイクルの蒸発器または凝縮器に用いられ2列の伝熱管を配置して口の字形状に形成された熱交換器を有し、前記口の字形状の略中心に配置された遠心型送風機により中央から室内空気を吸い込み、放射方向に吹き出す4方向吹出天井埋込タイプの室内機において、前記冷凍サイクルの作動流体は2種類以上の非塩素系フルオロカーボンを混合してなる冷媒とし、2列の前記伝熱管のうち一方が接続された液冷媒側分配器と、他方が接続されたガス冷媒側分配器と、前記2列のそれぞれの伝熱管の外部に、伝熱管の軸方向に垂直にフィンを配置して、空気の流れる方向に対して上流側のフィンと、下流側のフィンの2列に構成すると共に、この2列のフィンを前記遠心型送風機の周囲を取り巻くように配置し、前記伝熱管による前記冷媒を分配する多段のパスのそれぞれは、それらの長さを前記熱交換器の長さの略1往復分の長さにすると共に、2列の前記フィンを通過する構成とし、空気の流れる方向に対して上流側の前記フィンに組み立てられた伝熱管を液冷媒側分配器に接続し、下流側の前記フィンに組み立てられた伝熱管をガス冷媒側分配器に接続し、前記2列のフィンの長さは略同一であり、前記2列の伝熱管の端面がJ字型の接続管により接続されていることを特徴とする。
In order to achieve the above object, the present invention comprises a heat exchanger used in an evaporator or a condenser of a refrigeration cycle, in which two rows of heat transfer tubes are arranged and formed in a square shape. In a four-direction blowout ceiling type indoor unit that sucks room air from the center by a centrifugal blower arranged at the approximate center of the shape and blows it in the radial direction, the working fluid of the refrigeration cycle is two or more types of non-chlorine fluorocarbons The liquid refrigerant side distributor to which one of the two rows of the heat transfer tubes is connected, the gas refrigerant side distributor to which the other is connected, and the outside of each of the two rows of heat transfer tubes In addition, the fins are arranged perpendicular to the axial direction of the heat transfer tube to form two rows of fins on the upstream side and fins on the downstream side with respect to the direction of air flow. Surround the area around the blower Each of the multi-stage paths that are arranged and distribute the refrigerant by the heat transfer tubes has a length equivalent to one reciprocal length of the heat exchanger and passes through the two rows of the fins. The heat transfer tube assembled to the fin on the upstream side in the air flow direction is connected to the liquid refrigerant side distributor, and the heat transfer tube assembled to the fin on the downstream side is connected to the gas refrigerant side distributor. The lengths of the two rows of fins connected are substantially the same, and the end faces of the two rows of heat transfer tubes are connected by a J-shaped connection tube.

また、上記のものにおいて、空気の流れる方向に対して上流側の前記フィンに組み立て
られた伝熱管を液冷媒側分配器に接続し、下流側の前記フィンに組み立てられた伝熱管を
ガス冷媒側分配器に接続したことが望ましい。
Further, in the above, the heat transfer tube assembled to the fin on the upstream side in the air flow direction is connected to the liquid refrigerant side distributor, and the heat transfer tube assembled to the fin on the downstream side is connected to the gas refrigerant side. It is desirable to connect to a distributor.

さらに、上記のものにおいて、前記伝熱管の曲げ加工後に両端部が同一となるように、
予め外周側の前記伝熱管が長くされたことが望ましい。
Furthermore, in the above, so that both ends are the same after bending of the heat transfer tube,
It is desirable that the heat transfer tube on the outer peripheral side is lengthened in advance.

さらに、上記のものにおいて、2列の前記伝熱管を冷媒が通過するように前記伝熱管の
同一段が接続されたパスを備えたことが望ましい。
Further, in the above, it is desirable that a path is provided in which the same stage of the heat transfer tubes is connected so that the refrigerant passes through the two rows of the heat transfer tubes.

本発明によれば、2種類以上の非塩素系フルオロカーボンを混合してなる冷媒を代替冷媒として用い、冷媒通路を適正化して性能向上を図ると共に、必要な熱交換容量に対して自由度を広げ、組立性が良く安価なものとすることができる。 According to the present invention, a refrigerant formed by mixing two or more types of non-chlorinated fluorocarbons is used as an alternative refrigerant, and the refrigerant passage is optimized to improve performance and increase the degree of freedom with respect to the required heat exchange capacity. As a result, the assemblability is good and the cost can be reduced.

本発明の実施の形態を図1ないし図7を参照して説明する。図1は、蒸気圧縮冷凍サイ
クルを用いた空気調和機における室内機の熱交換器の構造を示す斜視図、図2は一実施の
形態のパス配列を示す側面図、図3は実施の形態を示す上面図、図4は他の実施の形態を
示す上面図、図5は他の実施の形態を示す上面図、図6は一実施の形態における制作方法
を示し、主に接続管の部分の斜視図、図7は一実施の形態における制作方法を示し、フィ
ンの曲げ加工を示す側面図、図8は従来のパス配列を示す側面図である。
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a structure of a heat exchanger of an indoor unit in an air conditioner using a vapor compression refrigeration cycle, FIG. 2 is a side view showing a path arrangement of an embodiment, and FIG. 3 is an embodiment. FIG. 4 is a top view showing another embodiment, FIG. 5 is a top view showing another embodiment, and FIG. 6 shows a production method in one embodiment. FIG. 7 is a perspective view, FIG. 7 shows a production method according to an embodiment, a side view showing fin bending, and FIG. 8 is a side view showing a conventional pass arrangement.

本室内機は、一般に4方向吹出天井埋込タイプと呼ばれる形態のものであり、中央より
室内空気を吸い込み、遠心型送風機により空気を放射方向に吹き出し、遠心型送風機の周
囲を囲むように設置された熱交換器と熱交換した後、室内へ送られるようになっている。
図中の矢印は空気の流れ方向を示している。
This indoor unit is generally of a type called a four-direction blowout ceiling embedded type, and is installed so as to suck indoor air from the center, blow out the air in a radial direction by a centrifugal blower, and surround the periphery of the centrifugal blower After exchanging heat with the heat exchanger, it is sent to the room.
The arrows in the figure indicate the direction of air flow.

本図のものは、同一段数(4段)のフィンを2枚重ねて2列にした熱交換器であり、冷
媒の通路となる伝熱管の軸方向に垂直なフィンを設けて空気と熱交換する、いわゆるクロ
スフローフィンチューブタイプの形態である。
The figure shows a heat exchanger in which two fins with the same number of stages (four stages) are stacked to form two rows, and heat is exchanged with air by providing fins that are perpendicular to the axial direction of the heat transfer tubes that serve as refrigerant passages. This is a so-called cross flow fin tube type configuration.

4方向吹出天井埋込タイプでは、中心に遠心型送風機を配置してその周囲を取り巻くよ
うに熱交換器を設置する必要があり、天井裏に設置されるために高さ方向も極力低くする
ことが望ましい。そのため、熱交換器は比較的に長いものとなる。
よって、冷媒を分配するパスの長さは、その圧力損失を最小とするように最短パスとす
ることが良く、長さ方向の1往復分に相当するU字型の伝熱管1本毎に、1パスとするこ
とが良い。
In the four-direction blowout ceiling embedded type, it is necessary to install a centrifugal blower at the center and install a heat exchanger so as to surround it, and since it is installed behind the ceiling, the height direction should be as low as possible Is desirable. Therefore, the heat exchanger is relatively long.
Therefore, the length of the path for distributing the refrigerant is preferably the shortest path so as to minimize the pressure loss, and for each U-shaped heat transfer tube corresponding to one reciprocation in the length direction, One pass is preferred.

このようにフィンの長さを長くする必要のある場合は、伝熱管の長さも長くなる。冷媒
流動による圧力損失を小さくするためには、冷媒の通路を分配する各パスの長さがU字形
状に加工された伝熱管1本分で1パスを構成する必要がある。
Thus, when it is necessary to lengthen the length of a fin, the length of a heat exchanger tube also becomes long. In order to reduce the pressure loss due to the refrigerant flow, it is necessary to form one path with one heat transfer tube in which the length of each path for distributing the refrigerant passage is processed into a U shape.

本実施の形態では、図2に示すように、空気の流れに対して後列となるフィン1と前列
のフィン2に接続管5をつないでいる。これにより冷媒を分配する伝熱管による各パスと
もフィン1とフィン2を冷媒が通過することになるので、各パス間の熱交換量の格差が小
さくなり、各パスへの冷媒流量の分配も比較的容易に設定できるようになる。冷媒流量の
分配の調整は、例えば網細管の抵抗調節によって行なうことができる。
In the present embodiment, as shown in FIG. 2, connecting pipes 5 are connected to fins 1 in the rear row and fins 2 in the front row with respect to the air flow. As a result, the refrigerant passes through the fin 1 and the fin 2 in each path by the heat transfer tube for distributing the refrigerant, so that the difference in the amount of heat exchange between the paths is reduced, and the distribution of the refrigerant flow rate to each path is also compared. Can be set easily. The distribution of the refrigerant flow rate can be adjusted by adjusting the resistance of the mesh tube, for example.

これに対し、図8に示すような従来のパス配列では、フィンを2枚重ねるので、フィン
1とフィン2に一つのパスが別れてしまう。よって、空気の流れに対して上流側にあり熱
交換量が大きいフィン2と、下流にあるため空気温度と冷媒温度の差が小さくなってしま
うフィン1で、各パスにおいて冷媒流量の分配が難しくなる。
On the other hand, in the conventional path arrangement as shown in FIG. 8, since two fins are stacked, one path is divided between the fin 1 and the fin 2. Therefore, it is difficult to distribute the refrigerant flow rate in each pass with the fin 2 that is on the upstream side of the air flow and has a large heat exchange amount and the fin 1 that is on the downstream side and the difference between the air temperature and the refrigerant temperature becomes small. Become.

また、本実施の形態では、ガス冷媒分配器3を空気後流側の後列のフィン1に接続し、
液冷媒分配器4を前列のフィン2に接続し、暖房で用いた場合、空気の流れ方向に対して
対向流的な配置としている。これによりフィン1でも空気温度と冷媒温度の差を大きくで
きるので、凝縮性能の向上を図ることができる。
In the present embodiment, the gas refrigerant distributor 3 is connected to the fin 1 in the rear row on the air wake side,
When the liquid refrigerant distributor 4 is connected to the fins 2 in the front row and used for heating, the liquid refrigerant distributor 4 is arranged in a counterflow manner with respect to the air flow direction. Thereby, since the difference of air temperature and refrigerant | coolant temperature can be enlarged also in the fin 1, the improvement of condensation performance can be aimed at.

さらに、ガス冷媒分配器3と液冷媒分配器4を完全に分離しているので、フィンの製造
誤差による接続箇所の高さにずれを生じても良くなり、製造上の不具合が軽減される。
Furthermore, since the gas refrigerant distributor 3 and the liquid refrigerant distributor 4 are completely separated, the height of the connection portion due to the manufacturing error of the fins may be shifted, and manufacturing problems are reduced.

また、図8に示した従来例のように2段が一組になるので偶数倍の段数しか選択できな
かったが、本実施の形態では1段づつ選択することができるので、必要熱交換容量にたい
して、設計の自由度を拡大できる。
In addition, since the two stages form a set as in the conventional example shown in FIG. 8, only an even number of stages can be selected. However, in this embodiment, since one stage can be selected, the required heat exchange capacity On the other hand, the degree of freedom of design can be expanded.

さらに、段数の違いに対して、等ピッチで熱交換器高さやガス冷媒分配器の高さを変化
させれば良いので、標準化設計に対しても非常に有利となる。
Furthermore, since it is sufficient to change the height of the heat exchanger and the height of the gas refrigerant distributor at equal pitches with respect to the difference in the number of stages, it is very advantageous for standardized design.

図3に示される実施の形態は空気通路部に目一杯、むだなくフィンを配置するように、
後列のフィン1と前列のフィン2の長さを、フィン1が曲げ部の円周長差の分だけ長くな
るようにしている。
In the embodiment shown in FIG. 3, the fins are disposed in the air passage portion without any difficulty.
The lengths of the fins 1 in the rear row and the fins 2 in the front row are made longer by the difference in the circumferential length of the bent portion.

これに対し、図4および図5に示す実施の形態は、フィン1とフィン2の長さを同一と
して、同じフィンを用いている。図4の例は、接続管5側の端面を基準として曲げ加工を
したもので、円周長さの差の分だけフィン1が短くなる。また、図5ではガス冷媒分配器
3と液冷媒分配器4を基準に同じ長さの熱交換器を曲げるので、接続管5側の端面があわ
なくなるが、接続管5の形状をJ字型にして長さの差を補っている。
On the other hand, the embodiment shown in FIGS. 4 and 5 uses the same fins with the fins 1 and 2 having the same length. In the example of FIG. 4, the fin 1 is shortened by an amount corresponding to the difference in circumferential length, with the end surface on the connection pipe 5 side being bent. Further, in FIG. 5, the heat exchanger having the same length is bent with respect to the gas refrigerant distributor 3 and the liquid refrigerant distributor 4, so that the end surface on the side of the connecting pipe 5 does not appear, but the shape of the connecting pipe 5 is J-shaped. To compensate for the difference in length.

図4、図5のいずれもフィン1、2の長さを一種類とすることができるので、長さ変更
のため製造装置の段取りを変更するなどの時間が短縮でき、生産性が向上する。また、標
準化にも有利である。
4 and 5 can have only one type of the length of the fins 1 and 2, the time required for changing the setup of the manufacturing apparatus for the length change can be shortened, and the productivity is improved. It is also advantageous for standardization.

図6は本発明の熱交換器の製作方法手順を示し、2枚のフィンの各列のそれぞれに伝熱
管を挿入して拡管し、所望の形状に曲げ加工を施し、各列間の伝熱管を連結管で接続する
ことにより行われる。そして、その後、U字部分を切断する。
FIG. 6 shows a manufacturing method procedure of the heat exchanger according to the present invention, in which a heat transfer tube is inserted into each row of two fins and expanded, bent into a desired shape, and a heat transfer tube between the rows. Are connected by a connecting pipe. Then, the U-shaped part is cut.

つぎに、切断された端部の内径を拡管して接続管であるベンド管を斜めに前後の列に渡
して接続する。
Next, the inner diameter of the cut end portion is expanded, and a bend pipe as a connection pipe is obliquely transferred to and connected to the front and rear rows.

これにより、熱交換器の製造工程は拡管まで従来と同一にでき、製造誤差により接続箇
所の高さが多少ずれても良くなり、制作が容易となる。さらに、切断により切り落とした
U部の転用もできるので経済的である。
As a result, the manufacturing process of the heat exchanger can be made the same as before until the pipe expansion, and the height of the connection portion may be slightly shifted due to a manufacturing error, and the production becomes easy. Furthermore, since the U portion cut off by cutting can be used, it is economical.

以上の実施の形態は冷凍サイクルの作動流体を2種類以上の非塩素系フルオロカーボン
を混合してなる非共沸混合冷媒としたものに適用することができる。これによれば小形化
され、低価格であり、非共沸混合冷媒としたにも係わらず性能を損なうことがない。
The above embodiment can be applied to a refrigerant that is a non-azeotropic refrigerant mixture obtained by mixing two or more kinds of non-chlorinated fluorocarbons as the working fluid of the refrigeration cycle. According to this, the size is reduced, the price is low, and the performance is not impaired even though the refrigerant is a non-azeotropic refrigerant mixture.

空気調和機における室内機の熱交換器の構造を示す斜視図である。It is a perspective view which shows the structure of the heat exchanger of the indoor unit in an air conditioner. 一実施の形態のパス配列を示す側面図である。It is a side view which shows the path | pass arrangement | sequence of one Embodiment. 図1の一実施の形態を示す上面図である。It is a top view which shows one embodiment of FIG. 他の実施の形態を示す上面図である。It is a top view which shows other embodiment. 他の実施の形態を示す上面図である。It is a top view which shows other embodiment. 一実施の形態における制作方法を示し、主に接続管の部分の斜視図である。It is the perspective view of the part of a connecting pipe which shows the production method in one embodiment. 一実施の形態における制作方法を示し、フィンの曲げ加工を示す側面図である。It is a side view which shows the production method in one embodiment, and shows the bending process of a fin. 従来のパス配列を示す側面図である。It is a side view which shows the conventional path | pass arrangement | sequence.

符号の説明Explanation of symbols

1、2…フィン、3…ガス冷媒分配器、4…液冷媒分配器、5…接続管、6…遠心型送
風機。
DESCRIPTION OF SYMBOLS 1, 2 ... Fin, 3 ... Gas refrigerant distributor, 4 ... Liquid refrigerant distributor, 5 ... Connection pipe, 6 ... Centrifugal blower.

Claims (2)

冷凍サイクルの蒸発器または凝縮器に用いられ2列の伝熱管を配置して口の字形状に形成された熱交換器を有し、前記口の字形状の略中心に配置された遠心型送風機により中央から室内空気を吸い込み、放射方向に吹き出す4方向吹出天井埋込タイプの室内機において、
前記冷凍サイクルの作動流体は2種類以上の非塩素系フルオロカーボンを混合してなる冷媒とし、
2列の前記伝熱管のうち一方が接続された液冷媒側分配器と、他方が接続されたガス冷媒側分配器と、
前記2列のそれぞれの伝熱管の外部に、伝熱管の軸方向に垂直にフィンを配置して、空気の流れる方向に対して上流側のフィンと、下流側のフィンの2列に構成すると共に、この2列のフィンを前記遠心型送風機の周囲を取り巻くように配置
前記伝熱管による前記冷媒を分配する多段のパスのそれぞれは、それらの長さを前記熱交換器の長さの略1往復分の長さにすると共に、2列の前記フィンを通過する構成とし、
空気の流れる方向に対して上流側の前記フィンに組み立てられた伝熱管を液冷媒側分配器に接続し、下流側の前記フィンに組み立てられた伝熱管をガス冷媒側分配器に接続し、
前記2列のフィンの長さは略同一であり、前記2列の伝熱管の端面がJ字型の接続管により接続されている
ことを特徴とする室内機。
Centrifugal blower that is used in an evaporator or condenser of a refrigeration cycle, has a heat exchanger formed in a mouth shape by arranging two rows of heat transfer tubes, and is arranged at substantially the center of the mouth shape In the four-direction blowout embedded indoor unit that sucks room air from the center and blows it in the radial direction,
The working fluid of the refrigeration cycle is a refrigerant formed by mixing two or more types of non-chlorinated fluorocarbons,
A liquid refrigerant side distributor to which one of the two heat transfer tubes is connected; a gas refrigerant side distributor to which the other is connected;
The fins are arranged outside the heat transfer tubes in the two rows perpendicularly to the axial direction of the heat transfer tubes, and are configured in two rows of fins on the upstream side and fins on the downstream side with respect to the air flow direction. places the fins of the two rows so as to surround the periphery of the centrifugal fan,
Each multi path for distributing the refrigerant by the heat transfer tubes, their length as well as in a substantially length of one round trip length of the heat exchanger, and configured to pass through the fins of the two rows ,
Connect the heat transfer tube assembled to the fin on the upstream side with respect to the direction of air flow to the liquid refrigerant side distributor, connect the heat transfer tube assembled to the fin on the downstream side to the gas refrigerant side distributor,
The length of the two rows fins are substantially the same, the indoor unit characterized in that the end face of the heat transfer tube of the two rows are connected by J-shaped connecting pipe.
請求項1において、2列の前記伝熱管を冷媒が通過するように前記伝熱管の同一段が接続されたパスを備えたことを特徴とする室内機。
Oite to claim 1, an indoor unit, wherein the second column the heat transfer tubes of the same stage of the heat transfer tube so as to pass the refrigerant is provided with a connection path.
JP2006207367A 2006-07-31 2006-07-31 Indoor unit Expired - Lifetime JP3952080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207367A JP3952080B2 (en) 2006-07-31 2006-07-31 Indoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207367A JP3952080B2 (en) 2006-07-31 2006-07-31 Indoor unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004196198A Division JP3952047B2 (en) 2004-07-02 2004-07-02 Indoor unit and air conditioner

Publications (2)

Publication Number Publication Date
JP2006322703A JP2006322703A (en) 2006-11-30
JP3952080B2 true JP3952080B2 (en) 2007-08-01

Family

ID=37542512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207367A Expired - Lifetime JP3952080B2 (en) 2006-07-31 2006-07-31 Indoor unit

Country Status (1)

Country Link
JP (1) JP3952080B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307690B1 (en) * 2006-12-21 2007-12-11 Asml Netherlands B.V. Device manufacturing method, computer program product and lithographic apparatus
JP5811134B2 (en) * 2013-04-30 2015-11-11 ダイキン工業株式会社 Air conditioner indoor unit
JP2016038192A (en) * 2014-08-11 2016-03-22 東芝キヤリア株式会社 Parallel flow type heat exchanger and air conditioner
CN105276868A (en) * 2015-11-17 2016-01-27 珠海格力电器股份有限公司 Air conditioner heat exchanger and air conditioner
JP7050538B2 (en) * 2018-03-15 2022-04-08 三菱電機株式会社 Heat exchanger and air conditioner
JP6881550B2 (en) * 2019-11-06 2021-06-02 ダイキン工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP2006322703A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP6017047B2 (en) Heat exchanger, air conditioner, refrigeration cycle apparatus, and heat exchanger manufacturing method
EP2312254B1 (en) Heat exchanger and air conditioner having the heat exchanger
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
EP2930456B1 (en) Flat tube heat exchange apparatus, and outdoor unit for air conditioner provided with same
JP3952080B2 (en) Indoor unit
JP2008533415A (en) Co-current heat exchanger with crimped channel inlet
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2003262485A (en) Fin tube type heat exchanger, its manufacturing method, and refrigeration air conditioner
JP3952047B2 (en) Indoor unit and air conditioner
JP5627632B2 (en) Heat exchanger and heat pump device
JP2010078287A (en) Air conditioner
JP5545160B2 (en) Heat exchanger
JP5014372B2 (en) Finned tube heat exchanger and air-conditioning refrigeration system
WO2019021457A1 (en) Refrigerant distributor and heat pump device having said refrigerant distributor
JP3934631B2 (en) End plate for heat exchanger, heat exchanger provided with the same, and manufacturing method thereof
JP3239741B2 (en) Indoor unit
JP2009168317A (en) Heat exchanger and air conditioner
JP3774634B2 (en) Indoor unit
JP4984836B2 (en) Heat exchanger
EP3859265B1 (en) Heat exchanger and air conditioner
JPH02166394A (en) Heat exchanger with fin
WO2013088722A1 (en) Air conditioner
JP6765451B2 (en) How to make a heat exchanger
EP3546875B1 (en) Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger
KR20170042138A (en) Heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term