JP3950898B2 - White semiconductor light emitting device and method for producing the same - Google Patents

White semiconductor light emitting device and method for producing the same Download PDF

Info

Publication number
JP3950898B2
JP3950898B2 JP2005179660A JP2005179660A JP3950898B2 JP 3950898 B2 JP3950898 B2 JP 3950898B2 JP 2005179660 A JP2005179660 A JP 2005179660A JP 2005179660 A JP2005179660 A JP 2005179660A JP 3950898 B2 JP3950898 B2 JP 3950898B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
element chip
resin
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005179660A
Other languages
Japanese (ja)
Other versions
JP2006352038A (en
Inventor
大平 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2005179660A priority Critical patent/JP3950898B2/en
Priority to EP06766903A priority patent/EP1895600A1/en
Priority to PCT/JP2006/312239 priority patent/WO2006137359A1/en
Priority to TW095121944A priority patent/TW200739942A/en
Priority to US11/922,508 priority patent/US20090236622A1/en
Priority to KR1020077029651A priority patent/KR20080025687A/en
Publication of JP2006352038A publication Critical patent/JP2006352038A/en
Application granted granted Critical
Publication of JP3950898B2 publication Critical patent/JP3950898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Description

本発明は青色の光を発光する発光素子チップと、青色の光を赤色および緑色などに変換する発光色変換部材を用いて白色光を発光させる白色半導体発光素子およびその製法に関する。さらに詳しくは、緑色などに変換した光をさらに赤色などに変換することなどに起因して、余計な色変換部材を用いることなどが無く、効率よく白色に変換して、高輝度の白色光が得られる白色半導体発光素子およびその製法に関する。   The present invention relates to a light emitting element chip that emits blue light, a white semiconductor light emitting element that emits white light using a light emitting color conversion member that converts blue light into red, green, and the like, and a method for manufacturing the same. More specifically, there is no need to use an extra color conversion member due to the fact that the light converted into green or the like is further converted into red or the like. The present invention relates to a white semiconductor light emitting device and a method for producing the same.

従来、たとえば青色発光の発光素子チップ(LEDチップ)を用いた白色の半導体発光素子は、たとえば図5に示されるように、青色光を発光するLEDチップ33上に蛍光層34を付着させて覆い、その周囲を透明な樹脂36で被覆することにより形成されている(たとえば特許文献1参照)。図5において、31、32は一対のリードで、一方のリード31の凹部内にLEDチップ33がダイボンディングされ、他方の電極はワイヤ35により他方のリード32と接続されてランプ型の発光素子を構成している。しかし、このような白色発光素子では、蛍光層34中に赤色蛍光体34aと緑色蛍光体34bとが混在しているため、緑色に変換した光が赤色蛍光体34aに吸収されるとさらに赤色に変換され、混合する光の割合が一定せず、安定した発光色の白色が得られないと共に、蛍光層34に何度も吸収されると蛍光体の変換効率が100%ではないために光が減衰し、輝度が低下するという問題がある。   2. Description of the Related Art Conventionally, for example, a white semiconductor light emitting element using a blue light emitting element chip (LED chip) is covered by attaching a fluorescent layer 34 on an LED chip 33 that emits blue light, as shown in FIG. The periphery is covered with a transparent resin 36 (see, for example, Patent Document 1). In FIG. 5, reference numerals 31 and 32 denote a pair of leads. An LED chip 33 is die-bonded in a recess of one lead 31, and the other electrode is connected to the other lead 32 by a wire 35 to form a lamp-type light emitting element. It is composed. However, in such a white light emitting element, since the red phosphor 34a and the green phosphor 34b are mixed in the phosphor layer 34, when the light converted into green is absorbed by the red phosphor 34a, the red phosphor 34a further becomes red. The ratio of light that is converted and mixed is not constant, and a stable white light-emitting color cannot be obtained. If the fluorescent layer 34 is absorbed many times, the conversion efficiency of the phosphor is not 100%, and thus light is not emitted. There is a problem that the brightness is attenuated and the brightness is lowered.

このような問題を解決するため、たとえば図6に示されるように、紫外光の光源41上に、赤色蛍光体含有層42、緑色蛍光体含有層43、青色蛍光体含有層44を別々に積層したり、平面的に別々に並べたりすることにより、緑色や青色に変換した光がさらに赤色蛍光体42などにより変換されないようにする構造のものも知られている(たとえば特許文献2参照)。
特開2004−327518号公報 特開2004−071357号公報
In order to solve such a problem, for example, as shown in FIG. 6, a red phosphor-containing layer 42, a green phosphor-containing layer 43, and a blue phosphor-containing layer 44 are separately laminated on an ultraviolet light source 41. In addition, a structure in which light that has been converted into green or blue is prevented from being further converted by the red phosphor 42 or the like by arranging them separately in a plane is also known (see, for example, Patent Document 2).
JP 2004-327518 A JP 2004-071357 A

前述のように、白色の発光素子を得るには、青色発光のLEDに緑色および赤色に変換する蛍光体を塗布するか、紫外光発光のLEDに赤色、緑色、青色に変換する蛍光体を塗布することにより、赤、緑、青、の3原色の色の光を生成し、混合して白色光にする方法がとられている。この場合、赤や緑の蛍光物質を混合したものを用いると、緑色に変換した光が再度赤色に変換されるなど光の減衰が多くなると共に、各色への変換量が一定しないという問題がある。また、それぞれの蛍光層を別々に設けても、LEDから離れて蛍光層が設けられると、蛍光層の量が多くなって損失が増えるだけではなく、LEDと蛍光層との間での反射などにより光が減衰し、外部量子効率が低下するという問題がある。   As described above, in order to obtain a white light emitting element, a phosphor that converts green and red is applied to a blue light emitting LED, or a phosphor that converts red, green, and blue is applied to an LED that emits ultraviolet light. By doing so, a method of generating light of three primary colors of red, green, and blue and mixing them into white light is adopted. In this case, when using a mixture of red and green fluorescent substances, there is a problem that the amount of conversion to each color is not constant and the attenuation of light increases, for example, the light converted to green is converted to red again. . Moreover, even if each fluorescent layer is provided separately, if the fluorescent layer is provided away from the LED, not only the amount of the fluorescent layer increases and the loss increases, but also the reflection between the LED and the fluorescent layer, etc. As a result, the light is attenuated and the external quantum efficiency is lowered.

本発明はこのような問題を解決するためになされたもので、発光色変換部材を含む樹脂を直接LEDチップに、それぞれの発光色変換部材が混合しないように付着させることにより、外部量子効率を高くすることができる白色半導体発光素子およびその製法を提供することを目的とする。   The present invention has been made to solve such a problem, and the external quantum efficiency is improved by directly attaching a resin containing a luminescent color conversion member to an LED chip so that the respective luminescent color conversion members are not mixed. It is an object of the present invention to provide a white semiconductor light emitting device that can be made high and a method for manufacturing the same.

前述のように、たとえば青色の光を発光する発光素子と発光色変換部材を含有する樹脂とにより白色光の発光素子とするには、LEDチップの周囲に直接発光色変換部材を含有する樹脂を、それぞれの発光色変換部材を混合させないで付着させることが、外部量子効率を向上させるのに最も好ましいことを見出したが、LEDチップの大きさは、0.3mm立方程度の非常に小さなチップであるため、たとえば緑色変換部材を含む樹脂と、赤色変換部材を含む樹脂とを別々に所望の量でそれぞれ付着させることは非常に困難である。そこで、本発明者が鋭意検討を重ねた結果、発光色変換部材を混合した樹脂を転写ピンに付着させて発光素子チップの一辺に転写することにより、赤色変換部材を混合した樹脂と緑色変換部材を混合した樹脂とを混合させること無く、しかも転写ピンの太さを制御することにより塗布する樹脂量を正確に制御することができて、小さな発光素子チップに両者をほぼ独立して直接塗布することができ、非常に外部量子効率の高い白色半導体発光素子が得られることを見出した。   As described above, for example, in order to obtain a white light emitting element by using a light emitting element that emits blue light and a resin containing a light emitting color conversion member, a resin containing a light emitting color conversion member directly around the LED chip is used. It has been found that attaching the respective light emitting color conversion members without mixing them is most preferable for improving the external quantum efficiency, but the size of the LED chip is a very small chip of about 0.3 mm cubic. Therefore, for example, it is very difficult to separately attach a resin including a green color conversion member and a resin including a red color conversion member in a desired amount. Therefore, as a result of extensive studies by the present inventors, a resin mixed with a red color conversion member and a green color conversion member are mixed by attaching a resin mixed with a light emission color conversion member to a transfer pin and transferring it to one side of the light emitting element chip. The amount of resin to be applied can be accurately controlled without mixing the resin mixed with the resin, and by directly controlling the thickness of the transfer pin, both of them can be directly and independently applied to a small light emitting device chip. It has been found that a white semiconductor light emitting device having a very high external quantum efficiency can be obtained.

本発明による白色半導体発光素子は、両端部に一対の電極膜が形成される絶縁性基板と、該絶縁性基板上にマウントされる青色の光を発光する発光素子チップと、該発光素子チップの一対の電極を前記絶縁性基板の一対の電極膜とそれぞれ電気的に接続する接続手段と、前記発光素子チップが発光する青色の光を赤色に変換する赤色変換部材が混入された樹脂が、前記発光素子チップと密着して該発光素子チップのほぼ半分を被覆するように設けられる第1の樹脂層と、前記発光素子チップにより発光する青色の光を緑色に変換する緑色変換部材が混入された樹脂が、前記発光素子チップと密着して該発光素子チップの残りのほぼ半分を被覆するように設けられる第2の樹脂層とを有し、前記接続手段の少なくとも一方は、前記発光素子チップの一方の電極と前記一対の電極膜の1つとを接続するワイヤからなり、該ワイヤが延びる方向で前記発光素子チップの表面と垂直な面をほぼ分割面として前記第1および第2の樹脂層が形成されている。この構造にすることにより、第1および第2の樹脂層を形成する際にワイヤに接触してワイヤ切断を起こすという事故などを防止することができる。 A white semiconductor light-emitting device according to the present invention includes an insulating substrate having a pair of electrode films formed at both ends, a light-emitting device chip that emits blue light mounted on the insulating substrate, and the light-emitting device chip. A resin in which a connecting means for electrically connecting a pair of electrodes to a pair of electrode films of the insulating substrate and a red conversion member that converts blue light emitted from the light emitting element chip into red is mixed, A first resin layer provided so as to be in close contact with the light emitting element chip so as to cover almost half of the light emitting element chip, and a green conversion member that converts blue light emitted by the light emitting element chip into green are mixed. resin, the light emitting element in close contact with the tip have a second resin layer provided so as to cover the remaining approximately half of the light emitting device chip, at least one of said connecting means, said light-emitting element chips The first and second resin layers are formed of a wire connecting one of the electrodes and one of the pair of electrode films, and a plane perpendicular to the surface of the light emitting element chip in the extending direction of the wire is substantially divided. Is formed . By adopting this structure, it is possible to prevent an accident that the wire is cut by contact with the wire when the first and second resin layers are formed.

本発明による白色半導体発光素子の他の形態は、先端部に湾曲状の凹部が形成される第1のリードと、該第1のリードと並設される第2のリードと、前記第1のリードの凹部内にマウントされる青色の光を発光する発光素子チップと、該発光素子チップの一対の電極と前記第1および第2のリートを電気的に接続する接続手段と、前記発光素子チップが発光する青色の光を赤色に変換する赤色変換部材が混入された樹脂が、前記発光素子チップと密着して該発光素子チップのほぼ半分を被覆するように設けられる第1の樹脂層と、前記発光素子チップにより発光する青色の光を緑色に変換する緑色変換部材が混入された樹脂が、前記発光素子チップと密着して該発光素子チップの残りのほぼ半分を被覆するように設けられる第2の樹脂層とを有し、前記接続手段の少なくとも一方は、前記発光素子チップの一方の電極と前記第1または第2のリードとを接続するワイヤからなり、該ワイヤが延びる方向で前記発光素子チップの表面と垂直な面をほぼ分割面として前記第1および第2の樹脂層が形成されている。この構造においても、第1および第2の樹脂層を形成する際にワイヤに接触してワイヤ切断を起こすという事故などを防止することができる。 In another embodiment of the white semiconductor light emitting device according to the present invention, a first lead in which a curved concave portion is formed at a tip portion, a second lead juxtaposed with the first lead, and the first lead A light emitting element chip for emitting blue light mounted in a recess of a lead; a connection means for electrically connecting a pair of electrodes of the light emitting element chip to the first and second REITs; and the light emitting element chip A first resin layer provided so that a resin mixed with a red conversion member that converts blue light emitted from the red light into red is in close contact with the light emitting element chip and covers almost half of the light emitting element chip; A resin mixed with a green conversion member that converts blue light emitted from the light emitting element chip into green is provided in close contact with the light emitting element chip so as to cover the remaining half of the light emitting element chip. 2 resin layers And, at least one of said connecting means comprises a wire for connecting the light emitting element one electrode and the first or second lead of the chip, perpendicular to the surface of the light emitting device chip in a direction in which the wire extends The first and second resin layers are formed with the surface as a substantially divided surface . Also in this structure, it is possible to prevent an accident that the wire is cut by contact with the wire when the first and second resin layers are formed.

本発明による白色半導体発光素子の製法は、青色の光を発光する発光素子チップをほぼ立方体もしくは直方体形状に形成し、前記発光素子チップが発光する青色の光を赤色に変換する赤色変換部材が混入された樹脂を付着させた転写ピンを前記発光素子チップの表面の一辺または1つの角部に接触させることにより、前記発光素子チップのほぼ半分を被覆するように該樹脂を転写して第1の樹脂層を形成し、前記発光素子チップにより発光する青色の光を緑色に変換する緑色変換部材が混入された樹脂を付着させた転写ピンを前記発光素子チップの表面の前記一辺または1つの角部と対向する辺または角部に接触させることにより、前記発光素子チップの残りのほぼ半分を被覆するように該樹脂を転写して第2の樹脂層を形成する白色半導体発光素子の製法であって、前記発光素子チップの少なくとも1つの電極と、該発光素子チップがマウントされる基板に設けられる電極膜、または該発光素子チップの近傍に設けられるリードとの間を、ワイヤをボンディングすることにより接続し、該ワイヤの張られる方向で形成される面を挟んだ両側から前記転写ピンを前記発光素子チップに接触させることにより前記第1および第2の樹脂層を形成することを特徴とする。この製法によれば、転写ピンのワイヤへの接触を防止することができる。 The method of manufacturing a white semiconductor light emitting device according to the present invention is such that a light emitting device chip that emits blue light is formed in a substantially cubic or rectangular parallelepiped shape, and a red conversion member that converts blue light emitted from the light emitting device chip into red is mixed. The transfer pin with the resin attached is brought into contact with one side or one corner of the surface of the light emitting element chip, whereby the resin is transferred so as to cover almost half of the light emitting element chip. One side or one corner of the surface of the light emitting element chip is formed with a transfer pin on which a resin layer is formed and a green conversion member that converts blue light emitted from the light emitting element chip into green is adhered. A white semiconductor that forms a second resin layer by transferring the resin so as to cover almost the other half of the light emitting element chip by contacting the side or the corner facing the substrate A method for producing an optical element, wherein at least one electrode of the light emitting element chip and an electrode film provided on a substrate on which the light emitting element chip is mounted, or a lead provided in the vicinity of the light emitting element chip, The first and second resin layers are formed by connecting wires by bonding, and bringing the transfer pin into contact with the light emitting element chip from both sides sandwiching the surface formed in the direction in which the wire is stretched. It is characterized by that. According to this manufacturing method, the contact of the transfer pin with the wire can be prevented.

本発明によれば、発光素子チップの周囲に直接発光色変換部材を含有する樹脂が付着されているため、非常に僅かな発光色変換部材で、発光素子チップで発光する青色光を赤色および緑色に変換することができる。しかも、赤色変換部材を含有する樹脂と緑色変換部材を含有する樹脂とが、発光素子チップのほぼ半分づつに分離して設けられているため、一旦緑色に変換した発光色を再度赤色に変換するということが無く、非常に安定した発光色への変換をすることができる。なお、両樹脂の境界部では一部重なり合うことになるが、赤色変換部材を含有する樹脂を先に塗布することにより、発光素子チップから放射される青色光が赤色に変換してその赤色光が緑色変換部材を透過しても、緑色変換部材は、その材料のバンドギャップエネルギーより小さいエネルギーの光、すなわち緑色よりも波長の長い光を吸収することなくそのまま透過させるため、赤色に変換した光が再度変換されることはない。その結果、青色光を発光する発光素子チップからの光の一部が赤色、緑色に変換され、いずれでも変換されずにそのまま放射される青色光と混合して白色となり、発光色変換部材を最小限にしているため、光の減衰が少なく、非常に外部量子効率が優れ、安定した色で艶色性のある白色半導体発光素子となる。   According to the present invention, since the resin containing the light emitting color conversion member is directly attached around the light emitting element chip, the blue light emitted from the light emitting element chip is converted into red and green with a very small amount of light emitting color conversion member. Can be converted to In addition, since the resin containing the red conversion member and the resin containing the green conversion member are provided separated into almost half of the light emitting element chip, the light emission color once converted into green is converted again into red. Therefore, it is possible to convert to a very stable emission color. In addition, although it overlaps partially in the boundary part of both resin, by apply | coating the resin containing a red conversion member previously, the blue light radiated | emitted from a light emitting element chip | tip will be converted into red, and the red light will be changed. Even though the green color conversion member is transmitted, the green color conversion member transmits the light having energy smaller than the band gap energy of the material, that is, light having a wavelength longer than that of the green color without absorbing it. It will not be converted again. As a result, part of the light from the light emitting element chip that emits blue light is converted into red and green, and mixed with blue light that is radiated as it is without being converted to white, and the light emitting color conversion member is minimized. Therefore, a white semiconductor light emitting device having a small color, a very low external quantum efficiency, a stable color, and a glossy color is obtained.

また、本発明の製法によれば、転写法により発光素子チップの一辺または1つの角部に転写ピンを直接接触させて樹脂を塗布しているため、転写ピンの太さを制御することにより、塗布量および塗布場所を非常に正確に制御することができる。その結果、必要最小限の樹脂を正確に塗布することができ、無駄な光の吸収損が減り、非常に外部量子効率の高い白色発光素子が得られる。なお、発光素子チップの表面にワイヤがある場合でも、そのワイヤを挟んだ両側から転写ピンを発光素子チップに近づけることにより、転写ピンをワイヤに接触させること無く樹脂を塗布することができ、ワイヤに対する信頼性も向上させることができる。   Further, according to the manufacturing method of the present invention, the transfer pin is directly brought into contact with one side or one corner of the light-emitting element chip by the transfer method, and the resin is applied. Therefore, by controlling the thickness of the transfer pin, The application amount and application location can be controlled very accurately. As a result, a necessary minimum amount of resin can be accurately applied, a useless light absorption loss is reduced, and a white light-emitting element with very high external quantum efficiency can be obtained. Even when there is a wire on the surface of the light emitting element chip, the resin can be applied without bringing the transfer pin into contact with the wire by bringing the transfer pin close to the light emitting element chip from both sides of the wire. The reliability with respect to can also be improved.

つぎに、図面を参照しながら本発明の白色半導体発光素子について説明をする。本発明による白色半導体発光素子は、図1(f)に平面説明図、図1(e)にそのB-B断面説明図が示されるように、両端部に一対の電極膜11、12が形成される絶縁性基板1上に、青色の光を発光する発光素子チップ(以下、LEDチップともいう)2がマウントされ、LEDチップ2の一対の電極は接続手段3により、一対の電極膜(第1および第2の電極膜)11、12とそれぞれ電気的に接続されている。LEDチップ2には、LEDチップ2が発光する青色の光を赤色に変換する赤色変換部材4aが混入された樹脂が、LEDチップ2と密着してLEDチップ2のほぼ半分の周囲のみを被覆するように設けられて第1の樹脂層4が形成され、さらに、LEDチップ2により発光する青色の光を緑色に変換する緑色変換部材5aが混入された樹脂が、LEDチップ2と密着してLEDチップ2の残りのほぼ半分の周囲のみを被覆するように設けられて第2の樹脂層5が形成されている。   Next, the white semiconductor light emitting device of the present invention will be described with reference to the drawings. In the white semiconductor light emitting device according to the present invention, a pair of electrode films 11 and 12 are formed at both ends as shown in a plan explanatory view in FIG. 1 (f) and a BB cross-sectional explanatory view in FIG. 1 (e). A light-emitting element chip (hereinafter also referred to as an LED chip) 2 that emits blue light is mounted on an insulating substrate 1 that is to be connected, and a pair of electrodes of the LED chip 2 are connected to a pair of electrode films (first 1 and second electrode films) 11 and 12, respectively. In the LED chip 2, a resin mixed with a red conversion member 4 a that converts blue light emitted from the LED chip 2 into red is in close contact with the LED chip 2 and covers only about half of the periphery of the LED chip 2. The resin in which the first resin layer 4 is formed and the green conversion member 5a for converting the blue light emitted from the LED chip 2 into green is mixed with the LED chip 2 and the LED is adhered. A second resin layer 5 is formed so as to cover only the periphery of the remaining half of the chip 2.

第1の樹脂層4は、たとえばエポキシ樹脂やシリコーン樹脂のような通常の透光性樹脂に、赤色よりも波長の短い光を吸収して赤色に変化する赤色変換部材4aを混入したものが、たとえば転写法により塗布されることにより形成される。発光色変換部材は、この物質より大きいバンドギャップエネルギーを有する光、すなわちこの物質のバンドギャップエネルギーに相当する波長よりも短い波長の光を吸収して、この物質のバンドギャップに相当する光を発光するもので、赤色変換部材4aとしては、たとえばユウロピウムで付活された酸化イットリウムやその複合酸化物、ユウロピウムで付活された窒化物や硫化物の物蛍光体などを用いることができる。このように、発光色変換部材のバンドギャップエネルギーに相当する波長よりも短い波長の光を吸収するため、本発明では、後述する第2の樹脂層と異なる場所に設けてはいるものの、境界部で重なる部分があるため、この第1の樹脂層4に光の3原色である赤、緑、青のうち最も波長の長い赤色に変換する赤色変換部材4aを混入した樹脂を用いて、先にLEDチップ2に塗布されている。その結果、第2の樹脂層5と重なる部分があっても、LEDチップ2で発光する青色の光の一部が吸収されて赤色の光に変換し、その赤色の光が第2の樹脂層5で吸収されないようにされている。   The first resin layer 4 is a mixture of a normal translucent resin such as an epoxy resin or a silicone resin mixed with a red conversion member 4a that absorbs light having a wavelength shorter than red and changes to red. For example, it is formed by applying by a transfer method. The light emitting color conversion member absorbs light having a band gap energy larger than that of the substance, that is, light having a wavelength shorter than the wavelength corresponding to the band gap energy of the substance, and emits light corresponding to the band gap of the substance. Therefore, as the red conversion member 4a, for example, yttrium oxide activated by europium or a composite oxide thereof, a nitride or sulfide phosphor activated by europium, or the like can be used. As described above, in order to absorb light having a wavelength shorter than the wavelength corresponding to the band gap energy of the luminescent color conversion member, in the present invention, the boundary portion is provided in a place different from the second resin layer described later. In this first resin layer 4, a resin mixed with a red conversion member 4 a that converts red, green, and blue, which are the three primary colors of light, into red having the longest wavelength is used. It is applied to the LED chip 2. As a result, even if there is a portion overlapping the second resin layer 5, a part of the blue light emitted from the LED chip 2 is absorbed and converted to red light, and the red light is converted into the second resin layer. 5 so as not to be absorbed.

第2の樹脂層5は、同様にエポキシ樹脂やシリコーン樹脂などの透光性樹脂に緑色変換部材5aを混入したものが用いられる。緑色変換部材5aとしては、たとえば2価のマンガンおよびユーロピウムで付活されたアルカリ土類アルミン酸塩蛍光体や、3価のセリウムで付活された希土類ケイ酸塩蛍光体などを用いることができる。この第1および第2の樹脂層4、5は、後述するように、転写法により塗布すると、非常に小さいLEDチップ2に対しても、非常に正確な量でLEDチップ2に塗り分けることができる。   Similarly, the second resin layer 5 is formed by mixing the green conversion member 5a with a translucent resin such as an epoxy resin or a silicone resin. As the green color conversion member 5a, for example, an alkaline earth aluminate phosphor activated by divalent manganese and europium, a rare earth silicate phosphor activated by trivalent cerium, or the like can be used. . As will be described later, when the first and second resin layers 4 and 5 are applied by a transfer method, even the very small LED chip 2 can be applied to the LED chip 2 in a very accurate amount. it can.

絶縁性基板1は、通常のチップ型発光素子の基板と同様のものを用いることができるが、たとえばアルミナ、BTレジンなどからなり、0.1〜0.5mm程度の厚さのものを用いることができる。図1(f)に示される発光素子としての大きさは、縦×横×高さが0.6〜1mm×1.5〜4mm×0.3〜1mm程度に形成されるが、製造段階では、10×5cm程度の大きい基板に縦横に並列して複数個分同時に製造される。この大きな基板表面に、AgやAuなどからなる一対の電極膜11、12が複数個分まとめて印刷などにより形成され、基板1の裏面にも裏面電極膜11a、12aが形成され、各素子に分割された後に側面に設けられる側面電極11b、12bにより表面の電極膜11、12と裏面電極11a、12aとが接続されている。   The insulating substrate 1 can be the same as the substrate of a normal chip-type light emitting element. For example, the insulating substrate 1 is made of alumina, BT resin, etc., and has a thickness of about 0.1 to 0.5 mm. Can do. The size of the light-emitting element shown in FIG. 1 (f) is such that the length × width × height is about 0.6 to 1 mm × 1.5 to 4 mm × 0.3 to 1 mm. A plurality of substrates are manufactured simultaneously in parallel in the vertical and horizontal directions on a large substrate of about 10 × 5 cm. A plurality of pairs of electrode films 11 and 12 made of Ag, Au, or the like are collectively formed on the surface of this large substrate by printing or the like, and back electrode films 11a and 12a are formed on the back surface of the substrate 1 to each element. The surface electrode films 11 and 12 and the back surface electrodes 11a and 12a are connected to each other by side electrodes 11b and 12b provided on the side surfaces after the division.

図1に示される例では、青色発光のLEDチップ2が用いられており、たとえば図2に一例の断面構成例が示されるように、窒化物半導体を用いたLEDとして形成されている。しかし、この例に限定されず、酸化亜鉛系(ZnO系)化合物などを用いることもできる。このLEDチップ1は、たとえば縦×横×高さが0.3mm×0.3mm×0.15mm程度の大きさに形成される。ここに窒化物半導体とは、III 族元素のGaとV族元素のNとの化合物またはIII 族元素のGaの一部または全部がAl、Inなどの他のIII 族元素と置換したものおよび/またはV族元素のNの一部がP、Asなどの他のV族元素と置換した化合物(窒化物)からなる半導体をいう。また、酸化亜鉛系化合物とは、Znを含む酸化物を意味し、具体例としては、ZnOの他、IIA族元素とZn、IIB族元素とZn、またはIIA族元素およびIIB族元素とZnのそれぞれの酸化物を含むものを意味する。   In the example shown in FIG. 1, a blue light emitting LED chip 2 is used. For example, as shown in FIG. 2 as an example of a sectional configuration, the LED chip 2 is formed as an LED using a nitride semiconductor. However, the present invention is not limited to this example, and a zinc oxide (ZnO) compound or the like can also be used. The LED chip 1 is formed in a size of, for example, length × width × height of about 0.3 mm × 0.3 mm × 0.15 mm. Here, the nitride semiconductor means a compound in which a group III element Ga and a group V element N or a part or all of a group III element Ga is substituted with other group III elements such as Al and In, and / or Alternatively, it refers to a semiconductor made of a compound (nitride) in which a part of N of the group V element is substituted with another group V element such as P or As. The zinc oxide-based compound means an oxide containing Zn. Specific examples include ZnO, IIA group element and Zn, IIB group element and Zn, or IIA group element and IIB group element and Zn. It means what contains each oxide.

窒化物半導体を用いたLEDは、図2に示されるように、たとえばn形SiC基板21上に、たとえばAlGaN系化合物(Alの混晶比が0の場合も含み、種々のものを含むことを意味する、以下同じ)からなる低温バッファ層22が0.005〜0.1μm程度設けられている。そして、このバッファ層22上に、たとえばn形GaN層などにより形成されるn形層23が1〜5μm程度、たとえば1〜3nm程度のIn0.13Ga0.87Nからなるウェル層と10〜20nmのGaNからなるバリア層とが3〜8ペア積層される多重量子井戸(MQW)構造の活性層24が0.05〜0.3μm程度、たとえばp形GaN層などにより形成されるp形層25が0.2〜1μm程度の厚さに順次積層されされることにより半導体積層部29が形成されている。そして、p形層25の表面に、たとえばZnOからなる透光性導電層26が0.1〜10μm程度設けられ、その上の一部に、Ti/Au、Pd/Auなどの積層構造により、全体として0.1〜1μm程度の厚さのp側電極27が、SiC基板1の裏面にTi-Al合金またはTi/Auの積層構造などで、全体として0.1〜1μm程度の厚さのn側電極28がそれぞれ設けられることにより形成されている。 As shown in FIG. 2, an LED using a nitride semiconductor includes, for example, an AlGaN-based compound (including a case where an Al mixed crystal ratio is 0, including various ones) on an n-type SiC substrate 21. The low temperature buffer layer 22 made of 0.005 to 0.1 [mu] m is provided. Then, an n-type layer 23 formed of, for example, an n-type GaN layer on the buffer layer 22 has a well layer made of In 0.13 Ga 0.87 N of about 1 to 5 μm, for example, about 1 to 3 nm, and GaN of 10 to 20 nm. An active layer 24 having a multi-quantum well (MQW) structure in which 3 to 8 pairs of barrier layers made of the material are stacked is about 0.05 to 0.3 μm, for example, a p-type layer 25 formed by a p-type GaN layer or the like is 0 The semiconductor laminated portion 29 is formed by sequentially laminating to a thickness of about 2 to 1 μm. Then, on the surface of the p-type layer 25, a light-transmitting conductive layer 26 made of, for example, ZnO is provided in a thickness of about 0.1 to 10 μm, and a part of the light-transmitting conductive layer 26 is formed of a laminated structure such as Ti / Au, Pd / Au The p-side electrode 27 having a thickness of about 0.1 to 1 μm as a whole is a laminated structure of Ti—Al alloy or Ti / Au on the back surface of the SiC substrate 1 and has a thickness of about 0.1 to 1 μm as a whole. Each of the n-side electrodes 28 is provided.

前述の例では、基板としてSiC基板を用いたが、この材料に限らず、GaNやGaAsなど他の半導体基板を用いることもできるし、サファイア基板を用いることもできる。SiCなどの半導体基板であれば、図2に示されるように、一方の電極を基板の裏面に設けることができるが、サファイアのような絶縁性の基板の場合には、積層された半導体層の一部をエッチングで除去して下層の導電形層(図2の構成ではn形層23)を露出させて、その露出部分に電極が形成される。なお、半導体基板を用いる場合、前述の例ではn形基板を用いて下層にn形層を形成しているが、基板および下層をp形層にすることも可能である。また、バッファ層22も前述のAlGaN系化合物には限定されず、他の窒化物層を用いることもできる。基板が絶縁基板である場合には、前述の絶縁性基板1に設けられる一対の電極膜11、12との接続手段は、両方ともワイヤボンディングによりなされる。しかし、絶縁基板が用いられる場合のように、表面側に両電極が形成される場合でも、図4を参照して後述するように、ワイヤボンディングによらないで、直接接着剤により接続することもできる。   In the above-described example, the SiC substrate is used as the substrate. However, the present invention is not limited to this material, and other semiconductor substrates such as GaN and GaAs can be used, and a sapphire substrate can also be used. In the case of a semiconductor substrate such as SiC, one electrode can be provided on the back surface of the substrate as shown in FIG. 2, but in the case of an insulating substrate such as sapphire, A part is removed by etching to expose the lower conductive type layer (n-type layer 23 in the configuration of FIG. 2), and an electrode is formed on the exposed portion. In the case of using a semiconductor substrate, in the above example, an n-type substrate is used to form an n-type layer in the lower layer. However, the substrate and the lower layer may be p-type layers. Further, the buffer layer 22 is not limited to the aforementioned AlGaN-based compound, and other nitride layers can be used. When the substrate is an insulating substrate, the connection means for the pair of electrode films 11 and 12 provided on the insulating substrate 1 is both made by wire bonding. However, even when both electrodes are formed on the surface side, as in the case where an insulating substrate is used, as described later with reference to FIG. it can.

さらに、n形層23およびp形層25は、前述のGaN層に限らず、AlGaN系化合物などでもよく、また、それぞれが単層ではなく、活性層側にAlGaN系化合物のようなバンドギャップが大きくキャリアを閉じ込めやすい材料と、活性層と反対側にキャリア濃度を大きくしやすいGaN層などとの複層で形成することもできる。また、活性層24は、所望の発光波長に応じて、その材料は選択され、また、MQW構造に限らず、SQWまたはバルク層で形成されてもよい。さらに、透光性導電層26もZnOに限定されるものではなく、ITOまたはNiとAuとの2〜100nm程度の薄い合金層でもよく、光を透過させながら、電流をチップ全体に拡散することができるものであればよい。Ni-Au層の場合、金属層であることから厚くすると透光性でなくなるため、薄く形成されるが、ZnOやITOの場合は光を透過させるため、厚くても構わない。   Further, the n-type layer 23 and the p-type layer 25 are not limited to the GaN layer described above, and may be an AlGaN-based compound or the like, and each is not a single layer and has a band gap such as an AlGaN-based compound on the active layer side. It can also be formed of multiple layers of a material that easily traps carriers and a GaN layer that easily increases carrier concentration on the side opposite to the active layer. The material of the active layer 24 is selected according to a desired emission wavelength, and is not limited to the MQW structure, and may be formed of an SQW or a bulk layer. Further, the translucent conductive layer 26 is not limited to ZnO, but may be a thin alloy layer of about 2 to 100 nm of ITO or Ni and Au, and diffuses current throughout the chip while transmitting light. Anything that can do. In the case of the Ni—Au layer, since it is a metal layer, if it is made thick, it becomes non-translucent, so it is formed thin. However, in the case of ZnO or ITO, it may be thick because it transmits light.

このLEDチップ2が、たとえば第1の電極膜11上に導電性接着剤31(接続手段3)を介してダイボンディングされることにより、LEDチップ2の基板側の電極(n側電極28)が第1の電極膜11と電気的に接続され、上部電極(p側電極27)が金線などのワイヤ32(接続手段3)により第2の電極膜12と電気的に接続されている。LEDチップ2が絶縁基板上に窒化物半導体層を積層して形成される場合には、両電極ともワイヤにより電気的に接続されるか、図4に示されるように、フェースダウンでダイボンディングされる。LEDチップ2の周囲を被覆するように、前述の第1の樹脂層4および第2の樹脂層5が塗布法により形成されている。この第1および第2の樹脂層4、5は、後述するように転写法を用いて塗布するのが、非常に小さいLEDチップ2に精度よく塗布することができる。   The LED chip 2 is die-bonded onto the first electrode film 11 via the conductive adhesive 31 (connecting means 3), for example, so that the electrode on the substrate side of the LED chip 2 (n-side electrode 28) is formed. The first electrode film 11 is electrically connected, and the upper electrode (p-side electrode 27) is electrically connected to the second electrode film 12 by a wire 32 (connection means 3) such as a gold wire. When the LED chip 2 is formed by laminating a nitride semiconductor layer on an insulating substrate, both electrodes are electrically connected by wires or die-bonded face-down as shown in FIG. The The first resin layer 4 and the second resin layer 5 described above are formed by a coating method so as to cover the periphery of the LED chip 2. The first and second resin layers 4 and 5 can be applied to the very small LED chip 2 with high accuracy by applying the transfer method as described later.

つぎに、この白色発光素子の製法を図1の工程説明図を参照しながら説明する。なお、図1(a)〜(c)は、図1(f)のA-A断面、図1(d)〜(e)は、図1(f)のB-B断面をそれぞれ示す。まず、図1(a)に示されるように、絶縁性基板1上に一対の電極膜11、12を形成する。前述のように複数個一度に製造するための大きな絶縁性基板1を用い、その表面にAgペーストなどの導電性ペーストをスクリーン印刷することなどにより、一対の電極膜11、12を形成すると共に、絶縁性基板1の裏面で、一対の電極膜11、12に対応する部分の端部側に裏面電極11a、12aを形成する。   Next, a method for manufacturing the white light emitting element will be described with reference to the process explanatory diagram of FIG. 1A to 1C show the AA cross section of FIG. 1F, and FIGS. 1D to 1E show the BB cross section of FIG. 1F, respectively. First, as shown in FIG. 1A, a pair of electrode films 11 and 12 are formed on an insulating substrate 1. As described above, a pair of electrode films 11 and 12 are formed by screen printing a conductive paste such as an Ag paste on the surface using a large insulating substrate 1 for manufacturing a plurality of pieces at once. On the back surface of the insulating substrate 1, the back surface electrodes 11 a and 12 a are formed on the end portions of the portions corresponding to the pair of electrode films 11 and 12.

つぎに、図1(b)に示されるように、一対の電極膜11、12の一方または絶縁性基板1の表面に青色または紫外の光を発光するLEDチップ2をマウントし、LEDチップ2の一対の電極(p側電極およびn側電極)を一対の電極膜11、12と電気的にそれぞれ接続する。図1に示される例では、LEDチップ2のn側電極が第1の電極膜11と導電性接着剤31(接続手段3)により接続され、p側電極(上部電極)がワイヤ32(接続手段3)をボンディングすることにより第2の電極膜12と電気的に接続されている。   Next, as shown in FIG. 1 (b), an LED chip 2 that emits blue or ultraviolet light is mounted on one surface of the pair of electrode films 11 and 12 or the surface of the insulating substrate 1. A pair of electrodes (p-side electrode and n-side electrode) are electrically connected to the pair of electrode films 11 and 12, respectively. In the example shown in FIG. 1, the n-side electrode of the LED chip 2 is connected to the first electrode film 11 by the conductive adhesive 31 (connecting means 3), and the p-side electrode (upper electrode) is connected to the wire 32 (connecting means). 3) is electrically connected to the second electrode film 12 by bonding.

その後、図1(c)に示されるように、たとえば液晶ポリマー系樹脂により形成した反射ケース6を各素子の周囲に貼り付ける。この反射ケース6は、LEDチップ2から放射される光を上面側にまとめて放射されるように横方向に向かってきた光を上面側に反射させるもので、反射しやすい白色樹脂などにより形成されている。上面側への発光に限定しないで、横方向にも光を放射する場合には、この反射ケース6は設ける必要はない。   Thereafter, as shown in FIG. 1C, a reflective case 6 formed of, for example, a liquid crystal polymer resin is attached around each element. The reflection case 6 reflects the light directed in the lateral direction to the upper surface side so that the light emitted from the LED chip 2 is collectively emitted to the upper surface side, and is formed of a white resin or the like that is easy to reflect. ing. If the light is emitted in the lateral direction without being limited to the light emission to the upper surface side, the reflection case 6 need not be provided.

その後、図1(d)に示されるように、LEDチップ2で発光する青色または紫外の光を赤色に変換する赤色変換部材4aを混入した樹脂を、たとえば転写法により塗布する。すなわち、たとえば先端の面積を0.008mm2程度にした、チタン合金などからなる針状の転写ピン7の先端部に前述の赤色変換部材を混入した樹脂4を付着させ、その先端部をLEDチップ2の一辺または1つの角部に接触させることにより、転写ピン7の先端に付着した樹脂4をLEDチップ2に移すものである。この方法を用いることにより、転写ピン7の先端の面積に応じて付着する樹脂4の量は一定となるため、LEDチップ2に塗布する樹脂量を一定量にすることができる。その結果、小さなLEDチップ2でも、その半分ぐらいを被覆するように塗布することができる。塗布方法としては、転写法でなくても、たとえばディスペンサなどを用いて所定量の樹脂を射出することもできるが、塗布する樹脂の量が0.0003mm3程度であるため、正確にLEDチップ2を被覆するように塗布するには、転写法で行うことが好ましい。 Thereafter, as shown in FIG. 1D, a resin mixed with a red conversion member 4a that converts blue or ultraviolet light emitted from the LED chip 2 into red is applied by, for example, a transfer method. That is, for example, the resin 4 mixed with the red conversion member described above is attached to the tip of a needle-like transfer pin 7 made of a titanium alloy or the like having a tip area of about 0.008 mm 2 , and the tip is attached to an LED chip. The resin 4 attached to the tip of the transfer pin 7 is transferred to the LED chip 2 by bringing it into contact with one side or one corner of the two. By using this method, the amount of the resin 4 that adheres according to the area of the tip of the transfer pin 7 becomes constant, so that the amount of resin applied to the LED chip 2 can be made constant. As a result, even a small LED chip 2 can be applied so as to cover about half of it. As a coating method, a predetermined amount of resin can be injected using, for example, a dispenser instead of the transfer method. However, since the amount of resin to be coated is about 0.0003 mm 3 , the LED chip 2 is accurately applied. The coating is preferably performed by a transfer method.

この場合、LEDチップ2の上面の電極にワイヤ32が張られている場合には、転写ピンがワイヤ32と接触しないようにするため、ワイヤ32の張られる方向(ワイヤ32が延びる方向)で形成される面を挟んだ両側の一方から転写ピンを近づけて、LEDチップ2の一辺(ワイヤがLEDチップ2の一辺と平行方向に延びる場合)または1つの角部(ワイヤがLEDチップ2の角部側に張られている場合)に接触させることにより、転写ピン7をワイヤ32に接触させること無く、正確にLEDチップ2に樹脂を転写することができる。   In this case, when the wire 32 is stretched on the electrode on the upper surface of the LED chip 2, it is formed in the direction in which the wire 32 is stretched (direction in which the wire 32 extends) in order to prevent the transfer pin from contacting the wire 32. The transfer pin is approached from one of both sides of the surface to be sandwiched, and one side of the LED chip 2 (when the wire extends in a direction parallel to one side of the LED chip 2) or one corner (the wire is a corner of the LED chip 2) (When it is stretched to the side), the resin can be accurately transferred to the LED chip 2 without bringing the transfer pin 7 into contact with the wire 32.

ついで、緑色変換部材を混入した樹脂を用いて同様の方法でLEDチップ2の残り半分側に樹脂を転写して、LEDチップ2に密着した第2の樹脂層5を形成する。この場合、LEDチップ2の中心部では、第1の樹脂層4とオーバラップする部分があるが、オーバラップしても構わない。赤色変換部材を混入した第1の樹脂層4が先に塗布されていれば発光色を変換した光を再変換することは無いからである。この第2の樹脂層5を形成するための樹脂の塗布は、第1の樹脂層4が乾いた後に行う必要はなく、実際には大きな絶縁性基板1に縦横に形成された発光素子部分を連続的に交互に樹脂の塗布を行うことができる。   Next, the resin is transferred to the other half side of the LED chip 2 by using the resin mixed with the green color conversion member, and the second resin layer 5 in close contact with the LED chip 2 is formed. In this case, there is a portion that overlaps the first resin layer 4 in the center of the LED chip 2, but it may overlap. This is because if the first resin layer 4 mixed with the red color conversion member is applied first, the light having the converted emission color is not reconverted. It is not necessary to apply the resin for forming the second resin layer 5 after the first resin layer 4 is dried. Actually, the light emitting element portion formed vertically and horizontally on the large insulating substrate 1 is used. Resin can be applied alternately and continuously.

その後、大きな絶縁性基板1から各素子に切断分離して、一対の電極膜11、12と裏面電極11a、11bとを連結するように、Agペーストのような導電性ペーストを絶縁性基板1の側面に塗布して乾燥させて側面電極(図示せず)を形成することにより、チップ型の白色半導体発光素子が得られる。この側面電極は、絶縁性基板にスルーホールを形成しておき、予め接続しておくこともできる。また電極膜などは導電性ペーストによらないで、真空蒸着、メッキなどにより形成することもできる。なお、第1および第2の樹脂層4、5を形成した後に、透光性樹脂によりさらに全体を被覆することができる。ワイヤ32が第1および第2の樹脂層4、5で完全に被覆されない場合に、その保護のため有効である。   Thereafter, a conductive paste such as an Ag paste is applied to the insulating substrate 1 so as to cut and separate each element from the large insulating substrate 1 and connect the pair of electrode films 11 and 12 and the back electrodes 11a and 11b. A chip-type white semiconductor light-emitting element is obtained by applying a side surface and drying to form a side electrode (not shown). The side electrode can be connected in advance by forming a through hole in the insulating substrate. Further, the electrode film or the like can be formed by vacuum deposition, plating, or the like without using the conductive paste. In addition, after forming the 1st and 2nd resin layers 4 and 5, the whole can be further coat | covered with translucent resin. This is effective for protection when the wire 32 is not completely covered with the first and second resin layers 4 and 5.

図3は、チップ型発光素子ではなく、ランプ型発光素子の例で、(a)は(b)の直角方向の断面説明図である。すなわち、一対のリード8a、8bの一方のリード8aの先端に凹部8cが形成され、その凹部8c内にLEDチップ2がダイボンディングされ、一方の電極は導電性接着剤31により第1のリード8aと接続され、他方の電極はワイヤ32により第2のリード8bと電気的に接続されている。このワイヤボンディングがされた後に、前述と同様に、転写法により第1の樹脂層4を形成し、その後に第2の樹脂層5を形成し、リード8a、8bの上部全体を透光性の樹脂によりモールドしてモールド樹脂部9が形成されることにより、ランプ型の白色半導体発光素子が得られる。なお、図1に示される例と同じ部分には同じ符号を付してその説明を省略する。   FIG. 3 is an example of a lamp-type light-emitting element, not a chip-type light-emitting element, and FIG. That is, a recess 8c is formed at the tip of one lead 8a of the pair of leads 8a and 8b, the LED chip 2 is die-bonded in the recess 8c, and one electrode is connected to the first lead 8a by the conductive adhesive 31. The other electrode is electrically connected to the second lead 8b by a wire 32. After the wire bonding, the first resin layer 4 is formed by the transfer method as described above, and then the second resin layer 5 is formed, and the entire upper part of the leads 8a and 8b is made transparent. By molding with resin to form the mold resin portion 9, a lamp-type white semiconductor light emitting element can be obtained. In addition, the same code | symbol is attached | subjected to the same part as the example shown by FIG. 1, and the description is abbreviate | omitted.

図4は、図1に示される構造の変形例を示す断面説明図である。すなわち、この例は、たとえばLEDチップ2が絶縁基板上に半導体層が成長され、一対の電極が表面側に形成される(絶縁基板ではなく半導体基板でも一対の電極を表面側に形成することができる)場合の例で、LEDチップ2の一対の電極27、28が絶縁性基板1の表面に形成された一対の電極膜11、12に直接図示しない導電性接着剤によりダイボンディングされたもので、その他は、前述の図1に示される例と同じで、同じ部分には同じ符号を付しての説明を省略する。この例では、ワイヤボンディングがなされていないため、第1の樹脂層4や第2の樹脂層5を塗布して形成する場合でも、ワイヤとの接触を気にすることなく、容易に転写ピンによる塗布をすることができる。   FIG. 4 is an explanatory cross-sectional view showing a modification of the structure shown in FIG. That is, in this example, for example, the LED chip 2 has a semiconductor layer grown on an insulating substrate, and a pair of electrodes are formed on the surface side (a pair of electrodes can be formed on the surface side even in a semiconductor substrate instead of an insulating substrate). In this example, the pair of electrodes 27 and 28 of the LED chip 2 are die-bonded directly to the pair of electrode films 11 and 12 formed on the surface of the insulating substrate 1 with a conductive adhesive (not shown). The others are the same as those in the example shown in FIG. In this example, since wire bonding is not performed, even when the first resin layer 4 or the second resin layer 5 is applied and formed, the transfer pin can be easily used without worrying about contact with the wire. Can be applied.

本発明によれば、青色光を発光するLEDチップの周囲をほぼ半分づつ直接被覆するように赤色変換部材を混合した第1の樹脂層と緑色変換部材を混合した第2の樹脂層とが設けられているため、LEDチップで発光した光を無駄なく赤色と緑色に変換し、相互に分離されているため、緑色に変換した光をさらに赤色に変換することも無く、変換した赤色および緑色の光と変換されない青色の光とが混合されることにより白色光とすることができる。しかも、転写法により樹脂の塗布を行うことにより、転写ピンの先端面積の大きさにより塗布する量を制御することができるため、小さなLEDチップでも非常に僅かな樹脂量を正確に2分して塗布することができる。その結果、光を無駄にすることなく、しかも所望の色の光を正確な量で混色することができるため、艶色性の優れた白色光を安定して放射することができると共に、外部量子効率の非常に優れた白色半導体発光素子を得ることができる。   According to the present invention, the first resin layer mixed with the red conversion member and the second resin layer mixed with the green conversion member are provided so as to directly cover the periphery of the LED chip that emits blue light almost half by half. Therefore, the light emitted from the LED chip is converted into red and green without waste, and is separated from each other, so that the converted light of green and red is not converted into red. White light can be obtained by mixing light and blue light that is not converted. Moreover, by applying the resin by the transfer method, the amount of application can be controlled by the size of the tip area of the transfer pin, so even a small LED chip can accurately divide a very small amount of resin into two. Can be applied. As a result, the light of the desired color can be mixed in an accurate amount without wasting light, so that it is possible to stably emit white light with excellent glossiness and external quantum. A white semiconductor light emitting device with very high efficiency can be obtained.

本発明による白色半導体発光素子の一実施形態の製造工程を示す断面説明図である。It is sectional explanatory drawing which shows the manufacturing process of one Embodiment of the white semiconductor light-emitting device by this invention. 図1に示される発光素子のLEDチップの一例を示す断面説明図である。It is a cross-sectional explanatory view showing an example of the LED chip of the light emitting element shown in FIG. 本発明の白色半導体発光素子の他の実施形態を示す断面説明図である。It is sectional explanatory drawing which shows other embodiment of the white semiconductor light-emitting device of this invention. 図1の変形例を示す断面説明図である。It is a cross-sectional explanatory view showing a modification of FIG. 従来の白色発光素子の一例を示す図である。It is a figure which shows an example of the conventional white light emitting element. 従来の白色光を得る他の構成例を示す説明図である。It is explanatory drawing which shows the other structural example which obtains the conventional white light.

符号の説明Explanation of symbols

1 絶縁性基板
2 LEDチップ
3 接続手段
4 第1の樹脂層
4a 赤色変換部材
5 第2の樹脂層
5a 緑色変換部材
11 第1の電極膜
12 第2の電極膜
DESCRIPTION OF SYMBOLS 1 Insulating board | substrate 2 LED chip 3 Connection means 4 1st resin layer 4a Red conversion member 5 2nd resin layer 5a Green conversion member 11 1st electrode film 12 2nd electrode film

Claims (3)

両端部に一対の電極膜が形成される絶縁性基板と、該絶縁性基板上にマウントされる青色の光を発光する発光素子チップと、該発光素子チップの一対の電極を前記絶縁性基板の一対の電極膜とそれぞれ電気的に接続する接続手段と、前記発光素子チップが発光する青色の光を赤色に変換する赤色変換部材が混入された樹脂が、前記発光素子チップと密着して該発光素子チップのほぼ半分を被覆するように設けられる第1の樹脂層と、前記発光素子チップにより発光する青色の光を緑色に変換する緑色変換部材が混入された樹脂が、前記発光素子チップと密着して該発光素子チップの残りのほぼ半分を被覆するように設けられる第2の樹脂層とを有し、前記接続手段の少なくとも一方は、前記発光素子チップの一方の電極と前記一対の電極膜の1つとを接続するワイヤからなり、該ワイヤが延びる方向で前記発光素子チップの表面と垂直な面をほぼ分割面として前記第1および第2の樹脂層が形成されてなる白色半導体発光素子。   An insulating substrate having a pair of electrode films formed at both ends, a light emitting element chip that emits blue light mounted on the insulating substrate, and a pair of electrodes of the light emitting element chip are connected to the insulating substrate. A resin in which a connecting means for electrically connecting to each of the pair of electrode films and a red conversion member that converts blue light emitted from the light emitting element chip into red is in close contact with the light emitting element chip to emit the light. A resin in which a first resin layer provided so as to cover almost half of the element chip and a green conversion member that converts blue light emitted from the light emitting element chip into green is in close contact with the light emitting element chip A second resin layer provided so as to cover the remaining half of the light emitting element chip, and at least one of the connecting means includes one electrode of the light emitting element chip and the pair of electrode films of Bract The consists wires connecting, the wire of the first and second layer of resin is formed and becomes white semiconductor light-emitting device of the surface perpendicular to the plane of the light emitting device chip as substantially dividing plane in a direction extending the. 先端部に湾曲状の凹部が形成される第1のリードと、該第1のリードと並設される第2のリードと、前記第1のリードの凹部内にマウントされる青色の光を発光する発光素子チップと、該発光素子チップの一対の電極と前記第1および第2のリートを電気的に接続する接続手段と、前記発光素子チップが発光する青色の光を赤色に変換する赤色変換部材が混入された樹脂が、前記発光素子チップと密着して該発光素子チップのほぼ半分を被覆するように設けられる第1の樹脂層と、前記発光素子チップにより発光する青色の光を緑色に変換する緑色変換部材が混入された樹脂が、前記発光素子チップと密着して該発光素子チップの残りのほぼ半分を被覆するように設けられる第2の樹脂層とを有し、前記接続手段の少なくとも一方は、前記発光素子チップの一方の電極と前記第1または第2のリードとを接続するワイヤからなり、該ワイヤが延びる方向で前記発光素子チップの表面と垂直な面をほぼ分割面として前記第1および第2の樹脂層が形成されてなる白色半導体発光素子。   A first lead having a curved recess at the tip, a second lead arranged in parallel with the first lead, and blue light mounted in the recess of the first lead A light-emitting element chip, a connection means for electrically connecting the pair of electrodes of the light-emitting element chip and the first and second REITs, and red conversion for converting blue light emitted by the light-emitting element chip into red The resin mixed with the first resin layer provided so that the resin mixed with the light emitting element chip is in close contact with the light emitting element chip, and the blue light emitted by the light emitting element chip is changed to green A resin mixed with a green conversion member to be converted has a second resin layer provided so as to be in close contact with the light emitting element chip and cover the remaining half of the light emitting element chip; At least one of the The first and second electrodes are composed of wires connecting one electrode of the element chip and the first or second lead, and the plane perpendicular to the surface of the light emitting element chip in the direction in which the wire extends is substantially divided. A white semiconductor light emitting element formed by forming a resin layer. 青色の光を発光する発光素子チップをほぼ立方体もしくは直方体形状に形成し、前記発光素子チップが発光する青色の光を赤色に変換する赤色変換部材が混入された樹脂を付着させた転写ピンを前記発光素子チップの表面の一辺または1つの角部に接触させることにより、前記発光素子チップのほぼ半分を被覆するように該樹脂を転写して第1の樹脂層を形成し、前記発光素子チップにより発光する青色の光を緑色に変換する緑色変換部材が混入された樹脂を付着させた転写ピンを前記発光素子チップの表面の前記一辺または1つの角部と対向する辺または角部に接触させることにより、前記発光素子チップの残りのほぼ半分を被覆するように該樹脂を転写して第2の樹脂層を形成する白色半導体発光素子の製法であって、前記発光素子チップの少なくとも1つの電極と、該発光素子チップがマウントされる基板に設けられる電極膜、または該発光素子チップの近傍に設けられるリードとの間を、ワイヤをボンディングすることにより接続し、該ワイヤの張られる方向で形成される面を挟んだ両側から前記転写ピンを前記発光素子チップに接触させることにより前記第1および第2の樹脂層を形成することを特徴とする白色半導体発光素子の製法。 A light emitting element chip that emits blue light is formed in a substantially cubic or rectangular parallelepiped shape, and a transfer pin having a resin mixed with a red conversion member that converts blue light emitted from the light emitting element chip into red is attached to the transfer pin. By making contact with one side or one corner of the surface of the light emitting element chip, the resin is transferred so as to cover almost half of the light emitting element chip to form a first resin layer. A transfer pin having a resin mixed with a green conversion member that converts blue light to be emitted into green is brought into contact with a side or corner opposite to the one side or one corner of the surface of the light emitting element chip; Thus, a method of manufacturing a white semiconductor light emitting device, in which the resin is transferred so as to cover the remaining half of the light emitting device chip to form a second resin layer, wherein the light emitting device chip is formed. The at least one electrode, the electrode film provided on the substrate the light emitting device chip is mounted or between the leads is provided in the vicinity of the light emitting device chip, and connected by bonding wires, the said wires A method for producing a white semiconductor light-emitting element, wherein the first and second resin layers are formed by bringing the transfer pin into contact with the light-emitting element chip from both sides across a surface formed in a stretched direction .
JP2005179660A 2005-06-20 2005-06-20 White semiconductor light emitting device and method for producing the same Expired - Fee Related JP3950898B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005179660A JP3950898B2 (en) 2005-06-20 2005-06-20 White semiconductor light emitting device and method for producing the same
EP06766903A EP1895600A1 (en) 2005-06-20 2006-06-19 White semiconductor light emitting element and manufacturing method thereof
PCT/JP2006/312239 WO2006137359A1 (en) 2005-06-20 2006-06-19 White semiconductor light emitting element and manufacturing method thereof
TW095121944A TW200739942A (en) 2005-06-20 2006-06-19 White semiconductor light emitting element and manufacturing method thereof
US11/922,508 US20090236622A1 (en) 2005-06-20 2006-06-19 White Semiconductor Light Emitting Device and Method for Manufacturing the Same
KR1020077029651A KR20080025687A (en) 2005-06-20 2006-06-19 White semiconductor light emitting element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179660A JP3950898B2 (en) 2005-06-20 2005-06-20 White semiconductor light emitting device and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006352038A JP2006352038A (en) 2006-12-28
JP3950898B2 true JP3950898B2 (en) 2007-08-01

Family

ID=37647526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179660A Expired - Fee Related JP3950898B2 (en) 2005-06-20 2005-06-20 White semiconductor light emitting device and method for producing the same

Country Status (1)

Country Link
JP (1) JP3950898B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326830B2 (en) * 2013-02-28 2018-05-23 日亜化学工業株式会社 Light emitting device and lighting device including the same
JP2017220530A (en) * 2016-06-06 2017-12-14 シチズン電子株式会社 Manufacturing method of light-emitting device

Also Published As

Publication number Publication date
JP2006352038A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US10903397B2 (en) Light emitting device package
US10043955B2 (en) Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
US10777715B2 (en) Semiconductor light emitting device
JP5634003B2 (en) Light emitting device
KR20080025687A (en) White semiconductor light emitting element and manufacturing method thereof
JP4447806B2 (en) Light emitting device
JP5689225B2 (en) Light emitting device
JP4254266B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP4773755B2 (en) Chip-type semiconductor light emitting device
WO2007102534A1 (en) Chip type semiconductor light emitting element
US10629783B2 (en) Light emitting device
JP2011243977A (en) Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
JPH07288341A (en) Led display
JP2013038151A (en) Light emitting element and light emitting device
JP2001217461A (en) Compound light-emitting device
JP2006352036A (en) White semiconductor light-emitting device
JP4004514B2 (en) White semiconductor light emitting device
JP3950898B2 (en) White semiconductor light emitting device and method for producing the same
JP7299537B2 (en) light emitting device
JP7011196B2 (en) Luminescent device
JP2023105255A (en) Light-emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees