JP3950528B2 - Combustion catalyst - Google Patents

Combustion catalyst Download PDF

Info

Publication number
JP3950528B2
JP3950528B2 JP30367097A JP30367097A JP3950528B2 JP 3950528 B2 JP3950528 B2 JP 3950528B2 JP 30367097 A JP30367097 A JP 30367097A JP 30367097 A JP30367097 A JP 30367097A JP 3950528 B2 JP3950528 B2 JP 3950528B2
Authority
JP
Japan
Prior art keywords
catalyst
combustion
coating material
ignition
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30367097A
Other languages
Japanese (ja)
Other versions
JPH11114415A (en
Inventor
仁志 進藤
靖男 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP30367097A priority Critical patent/JP3950528B2/en
Publication of JPH11114415A publication Critical patent/JPH11114415A/en
Application granted granted Critical
Publication of JP3950528B2 publication Critical patent/JP3950528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は燃焼式ヒータ等に用いられる燃焼触媒に関する。
【0002】
【従来の技術】
燃焼触媒は触媒燃焼器に用いられるものであり、例えば熱源を目的として燃料と空気とを混合させて燃焼させるものが挙げられる。この場合、燃料量は発熱量による制約があるが空気量は任意であり、これを制御することにより触媒温度を一定に保つことが可能である。ここで熱源のみを目的として燃焼させるにしても、実用的には臭気等を抑える必要があり、触媒温度とTHC排出量双方が課題となる。また触媒温度を一定に保つために、予め燃焼時の最高温度で熱処理を加え、使用温度範囲で安定な触媒を作製するのが望ましい。
【0003】
一方、燃焼触媒に類似の触媒として排ガス浄化用触媒があるが、これはエンジン等から排出された排ガスを触媒の浄化性能を利用して希薄化することが目的であり、排ガスを十分に浄化し劣化しない触媒であれば浄化時の触媒温度は変動してもよく、触媒温度は課題とはならない。また排ガス浄化触媒では、実用時にエンジン等、周囲からの影響を受け触媒温度が変動するので、広い温度範囲で浄化性能が発揮されることが必要とされ、燃焼触媒のように予め熱処理を加えて安定化させることにあまりメリットはなく、むしろ熱処理を加えることによる触媒性能が低下するデメリットが大きい。
【0004】
よって燃焼触媒と排ガス浄化用触媒とは、目的の違いから作製法、使用法が通常、異なり、同じ触媒とは言えない。
【0005】
ところで燃焼触媒の燃焼温度は、同じサイズでより多量の熱量を得るには高い方がよい。また被毒物質である硫黄分が脱離する温度は600〜700°Cであることが知られており、硫黄分を含む軽油等の燃料では、燃焼触媒の温度分布を考慮すると触媒の最高温度が例えば1000°Cの高温燃焼が必要となる。しかし燃焼温度が高温になると、コーティング材である活性アルミナが安定な相に相転移し、比表面積低下によって触媒粒子の分散性が悪くなる。
【0006】
触媒粒子の分散性が悪くなると触媒性能が低下するおそれがある。
【0007】
このコーティング材の相転移による触媒性能低下は、燃焼触媒での認識ではなく。むしろ排ガス浄化用触媒での知見からの類推によるものである。すなわち特昭62−125856号公報において、排ガス浄化用触媒の高温部に、コーティング材として活性アルミナに代えて安定相のα−アルミナを用い触媒の劣化を防止するようにしたものが提案されているが、上記のごとく作製法、使用法において異なる燃焼触媒の劣化あるいは性能低下が排ガス浄化用触媒と同等に起こるかどうかさえ容易に類推できるものではない。
【0008】
【発明が解決しようとする課題】
ところで、上記特昭62−125856号公報記載の技術を燃焼触媒に適用しようとすると、提案されたα−アルミナの比表面積は活性アルミナの10分の1程度であり、高分散性を保つには単位面積当たりの触媒量を考えて触媒担持量を大幅に減らす必要が生じ、十分な浄化性能が得られず必ずしも満足できるものではない。もっとも燃焼触媒においては、比表面積が小さく安定な相のコーティング材としても、その作製が低温の熱処理を長時間実施するものであれば必ずしも浄化性能が満たされないとは限らないが、比表面積が小さく安定な相のコーティング材を短時間で容易に作製するにはさらに高温での熱処理が必要となり、そのときは粒成長が予想されるので浄化性能に対し、賢明な策とは言いがたい。
【0009】
そこで本発明は、燃焼触媒において浄化性能が十分でしかも寿命の長く、作製が容易な触媒を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1記載の発明では、燃料と空気の混合気が流通する担体の表面にコーティング材をコーティングし該コーティング材に活性物質を分散してなる触媒を、混合気流れの上流部と下流部とに並設した燃焼触媒において、上流部触媒のコーティング材をγ−アルミナで構成し、下流部触媒のコーティング材を、上記上流部触媒のコーティング材の相であるγ−アルミナとこれよりも比表面積の小さく安定な相であるα−アルミナとが混在するコーティング材とする。
【0011】
高温となる下流部触媒のコーティング材は比表面積の小さい安定な相が混在することで不安定物質の移動度を抑え、耐熱性が高くなり、高温下における相転移が防止される。これにより下流部触媒は高温に曝されても劣化が抑制され長寿命が得られる。
【0012】
また高温となり反応速度が速くなるため、触媒担持量を、上流部触媒ほど多くは必要としない下流部触媒は、より高温で作製する比表面積が小さく安定な相のコーティング材に比べ、比表面積の低下度合いを抑えることにより活性物質の分散性低下は抑えられ、浄化性能は十分である。
【0013】
発明では、上記上流部触媒のコーティング材をγ−アルミナで構成し、上記下流部触媒のコーティング材をγ−アルミナとα−アルミナとが混在してなるコーティング材とする。この時、下流部触媒のコーティング材は上流部触媒のコーティング材と同じγ−アルミナをコーティングした後、熱処理をすることによりα−アルミナを混在させることもでき、製作がさらに容易になり得る。
【0014】
請求項記載の発明では、上記上流部触媒の活性物質の担持量を上記下流部触媒の活性物質の担持量よりも多くする。
【0015】
着火時には下流部に比してやや高温でコーティング材の比表面積が大きく活性物質の分散性のよい上流部触媒が活性物質の担持量に応じて良好な低温活性を実現し、大きな燃焼能力が発揮されて速やかに定常燃焼へと移行できる。定常燃焼に移行すると下流部は上流部よりも高温になるから、下流部触媒は活性物質の担持量が上流部触媒よりも少なくても十分な燃焼能力を得ることができる。
【0016】
【発明の実施の形態】
図1に本発明の燃焼触媒を適用した燃焼式ヒータの概要を示す。燃焼触媒1は上流部触媒たる着火触媒2と下流部触媒たる主触媒3とで構成してあり、燃料および空気が流通する図略の筒状体内に並設される。そして燃料と空気の混合気が触媒入口1aから着火触媒2および主触媒3を順次、通過し、この間の触媒反応により高温の燃焼ガスを発生し触媒出口1bから排出するようになっている。排出される燃焼ガスの熱が、熱交換器を通して得られ、暖房等に用いられる。
【0017】
空気は吸気予熱器4により着火時には650°C程度に、定常燃焼時には200°Cに昇温する。燃料は燃料気化器5により450°Cに加熱されて気化し空気とともに混合気が形成される。
【0018】
着火触媒2の直上流部には触媒予熱ヒータ6が設けてあり、混合気の供給開始前に燃焼触媒1を活性温度まで上げるようになっている。
【0019】
着火触媒2、主触媒3の担体は、厚さ170μmのコージェライト壁により断面正方形のセルが形成された公知のモノリス担体の、セル密度が400セル/インチ2 のものを、φ80の円形に成形したものである。長さは着火触媒2が10mmで、主触媒3が30mmとしてある。担体の表面にコーティングするコーティグ材はアルミナで、コーティグ材には活性物質たるパラジウム(Pd )が分散してある。
【0020】
上記担体へのコーティング材のコーティング法について説明する。
【0021】
水とγ−アルミナとアルミナゾル(以上のアルミナ系は住友化学工業(株)より購入)とを重量比7:3:1で混合し、混合した液(総重量が着火触媒用で500g、主触媒用で1500g)を攪拌する。これに上記担体を浸して取り出し、担体に付着した液のうち余分な液を空気流で吹き飛ばし、100°Cの真空中で2h乾燥する。その後、600°Cで2h焼成する。この含浸から焼成までを計2回繰り返して着火触媒2のコーティングは完了する。
【0022】
主触媒3は、その後、1100°Cで100h熱処理を施し、完了する。
【0023】
次にPd の担持法について説明する。上記異なるコーティングを施した担体はエヌ・イーケムキャット(株)より購入したテトラアンミンパラジウム(II)塩化物水和物の水溶液に含浸して取り出し、担体に付着した余分な水溶液を吹き払って除去し、140°Cの真空中で2h乾燥する。含浸および乾燥は2回行う。その後、1100°Cで2h焼成する。
【0024】
上記水溶液(液量が着火触媒用で200ml、主触媒用で600ml)のテトラアンミンパラジウム(II)塩化物水和物濃度は、着火触媒2用が0.15mol/lで、主触媒3用が0.10mol/lである。これで着火触媒2は0.8wt%のPd が担持され、主触媒3は、着火触媒2よりも0.2wt%少ない0.6wt%のPd が担持される。
【0025】
図2は触媒担持後のX線回折のスペクトルデータで、着火触媒2用のコーティング材(以下、従来コーティング材という)ではα−アルミナが含まれていないのに対して、主触媒3用のコーティング材(以下、耐熱性コーティング材という)は安定相であるαアルミナが析出している。
【0026】
また実施例サンプルの、主触媒の熱処理時間を100hから1000hに延長した比較サンプルを作製し、この浄化性能を測定したところ、図3を得た。図は定常燃焼時のもので、浄化性能が著しく低下していることが分かる(後述する図5の実施例サンプルの測定結果参照)。
【0027】
表1は、コーティング材の、熱処理に伴う比表面積変化を示すもので、耐熱性コーティング材をコートしたサンプルでは、比表面積が1.2m2 /gであった。これに対し、従来コーティング材をコートしたサンプルでは6.2m2 /gであり、比較サンプルの、コーティング時の熱処理時間を1000hに延長したコーティング材をコートしたサンプルでは検出不可レベルであった。
【0028】
【表1】

Figure 0003950528
【0029】
これより実施例サンプルの主触媒は完全にα−アルミナに相転移したものではなく、相転移の途中の状態であるものと認められる。
【0030】
上記本発明の燃焼触媒1を、コーティング材の異なる2種の比較用のサンプルと比較した結果について説明する。比較用のサンプルの仕様を表2に示す。比較用のサンプルは一方が上記従来コーティグ材を着火触媒と主触媒の両方にコーティングしたもの(比較サンプル▲1▼)で、従来広く用いられている燃焼触媒の構成である。他方が上記耐熱性コーティグ材を着火触媒と主触媒の両方にコーティングしたもの(比較サンプル▲2▼)である。なおいずれの比較サンプルも、実施例サンプルと担体の形状等の仕様が同じで、かつ実施例サンプルと同量(wt%)のPd が担持されている。
【0031】
【表2】
Figure 0003950528
【0032】
比較方法は燃料として軽油を用いた場合の、着火時および定常燃焼時の浄化性能を、100h耐久初期および耐久後について調べることで行った。燃料供給量および空気供給量は、着火時が燃料:1.6cc/min、空気:70l/minとし、定常燃焼時が燃料:6.4cc/min、空気は、触媒最高温度が略950〜1150°Cの範囲で変化するように設定した。この温度は定常燃焼時に低温となる着火触媒において硫黄の脱離が十分に行い得る温度である。また燃料供給開始時の触媒温度は略250〜300°Cの範囲で設定した。定常燃焼時の浄化性能は同一最高温度におけるTHC排出量を比較用のパラメータとし、着火時の浄化性能は図4に示すように、燃料供給量と空気供給量とが上記着火時の設定になっている期間における最大HC排出量を比較用のパラメータとした。
【0033】
図5は実施例サンプル、比較サンプル▲1▼の定常燃焼時の浄化性能を示すもので、初期においては両サンプル間で差があまり認められない。耐久後は、比較サンプル▲1▼のTHC排出量が急増し著しい浄化性能の低下が認められるのに対して、実施例サンプルのTHC排出量は、増加するものの増加量は少ない。THC排出量を耐久初期から経時的にみると図6のように時間とともに暫時上昇してゆき、許容されるTHC排出量を越えると、燃焼触媒は使用限界すなわち寿命となるが、実施例サンプルはTHC排出量の増加速度が遅く比較サンプル▲1▼に比して寿命が長い。
【0034】
図7は、燃焼触媒の混合気流れ方向の温度分布を示すもので、これによりこの寿命の違いを説明する。温度分布は、燃焼触媒の中間位置からやや触媒出口側にかけてピークを有する山形の分布になり、着火触媒が配置される入口側がやや低温になる。最高温度が1000°Cを越えても着火触媒が配置される入口側は700°C程度である。したがって両サンプルの着火触媒は、準安定相であるγ−アルミナのみで構成されていても劣化を生じにくいが、高温となる主触媒はγ−アルミナのみで構成される比較サンプル▲1▼の方は耐熱性が悪く劣化を生ずる。これに対して、実施例サンプルでは比表面積の大きいγ−アルミナに比表面積の小さい安定相のα−アルミナが混在しているため表面変化が小さくて耐熱性が高く、高温下においてγ−アルミナの相転移が生じにくく触媒性能の劣化が抑制されるものと認められる。
【0035】
次に図8は本発明の実施例サンプル、比較サンプル▲1▼の着火時の浄化性能を示すものである。両サンプルの差はないといってよい。これは触媒予熱ヒータが燃焼触媒の上流側に設けられること等から、着火時には下流の主触媒はやや低温であり、HCの浄化への寄与は着火触媒が支配的となり、着火触媒の仕様が同じである両サンプル間で差が顕れないものと認められる。
【0036】
しかして実施例サンプルは、比較サンプル▲1▼すなわち従来広く用いられている燃焼触媒に比して遜色のない浄化性能を有し、しかも比較サンプル▲1▼よりも寿命が長い。
【0037】
次に実施例サンプルを比較サンプル▲2▼と比較した結果を図9、図10に示す。図9は実施例サンプル、比較サンプル▲2▼の定常燃焼時の浄化性能を示すもので、図より知られるように、定常燃焼時は、両サンプルの浄化性能が初期と耐久後のいずれにおいても差がない。これは定常燃焼時においては高温の主触媒がHCの浄化に支配的であり、両サンプルは主触媒が同じであるためと認められる。
【0038】
図10は実施例サンプル、比較サンプル▲2▼の着火時の浄化性能を示すもので、図より知られるように、着火時は、初期と耐久後のいずれにおいても実施例サンプルの方が比較サンプル▲2▼よりも浄化性能は高い。
【0039】
図11はこの着火時の浄化性能の違いを説明するもので、コーティング材が同じである場合の、浄化能力のPd 担持量依存性を示している。浄化能力はC3 6 の50%浄化温度をパラメータとしている。浄化能力はPd 担持量に応じて高くなるが、担持量が過度に多くなると粒径が大きくなって(図例では20nmから25nm)浄化能力も飽和する。これは担持密度増加によりPd 粒子同志の衝突確率が高くなりシンタリングが起こりやすくなるためである。すなわち浄化能力の限界は比表面積で規定される。
【0040】
上記のごとく着火時の浄化性能は着火触媒の浄化性能が支配的であるから、着火触媒に注目すると、着火触媒は実施例サンプルの方が比較サンプル▲2▼よりも比表面積が大きいから、特に触媒温度が低い着火時においては実施例サンプルの方が比較サンプル▲2▼よりも浄化性能が高くなるものと認められる。
【0041】
しかして実施例サンプルの方が比較サンプル▲2▼よりも触媒の寿命が劣ることなく着火時の触媒の浄化性能が優れている。
【0042】
以上のごとく本発明の燃焼触媒は単一の触媒構成としたものに比して浄化能力、寿命いずれにおいても優れたものであり、また劣化防止のために単純に触媒の高温部を高温で容易に作製できるαーアルミナで構成しただけでは得られない高い浄化性能を実現するものである。
【0043】
なお本実施形態中に示した燃焼触媒の、材質等の仕様(セラミック担体に限らず金属を用いたハニカムでもよい)、数値は記載のものに限定されるものではなく本発明の趣旨に反しない限り任意である。
【0044】
また着火触媒は主触媒よりも担持量を多くするのではなく、いわゆる助触媒を添加する構成でもよい。
【図面の簡単な説明】
【図1】本発明の燃焼触媒を適用した燃焼式ヒータの概略構成図である。
【図2】本発明の燃焼触媒の特性を説明するグラフである。
【図3】本発明の燃焼触媒の作動を説明する第1のグラフである。
【図4】本発明の燃焼触媒の作動を説明する第2のグラフである。
【図5】本発明の燃焼触媒の作動を説明する第3のグラフである。
【図6】本発明の燃焼触媒の作動を説明する第4のグラフである。
【図7】本発明の燃焼触媒の作動を説明する第5のグラフである。
【図8】本発明の燃焼触媒の作動を説明する第6のグラフである。
【図9】本発明の燃焼触媒の作動を説明する第7のグラフである。
【図10】本発明の燃焼触媒の作動を説明する第8のグラフである。
【図11】本発明の燃焼触媒の作動を説明する第9のグラフである。
【符号の説明】
1 燃焼触媒
2 着火触媒(上流部触媒)
3 主触媒(下流部触媒)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion catalyst used for a combustion heater or the like.
[0002]
[Prior art]
The combustion catalyst is used in a catalytic combustor, and examples thereof include a fuel and air that are mixed and burned for the purpose of a heat source. In this case, the amount of fuel is limited by the amount of heat generated, but the amount of air is arbitrary, and by controlling this, the catalyst temperature can be kept constant. Here, even if the combustion is performed only for the heat source, it is practically necessary to suppress the odor and the like, and both the catalyst temperature and the THC emission amount are problems. In order to keep the catalyst temperature constant, it is desirable to heat-treat in advance at the maximum temperature during combustion to produce a catalyst that is stable within the operating temperature range.
[0003]
On the other hand, there is an exhaust gas purifying catalyst similar to the combustion catalyst. The purpose of this is to dilute the exhaust gas discharged from the engine etc. using the purification performance of the catalyst. If the catalyst does not deteriorate, the catalyst temperature at the time of purification may vary, and the catalyst temperature is not a problem. In exhaust gas purification catalysts, the temperature of the catalyst fluctuates due to the influence of the surroundings of the engine, etc. in practical use. Therefore, it is necessary that the purification performance be exhibited in a wide temperature range. There is not much merit in stabilizing, but rather there is a great demerit that the catalyst performance is lowered by applying heat treatment.
[0004]
Therefore, the combustion catalyst and the exhaust gas purifying catalyst are usually different in production method and usage method due to different purposes, and cannot be said to be the same catalyst.
[0005]
By the way, the combustion temperature of the combustion catalyst is preferably higher in order to obtain a larger amount of heat with the same size. In addition, it is known that the temperature at which sulfur, which is a poisonous substance, is desorbed, is 600 to 700 ° C. In fuels such as light oil containing sulfur, the maximum temperature of the catalyst is considered in consideration of the temperature distribution of the combustion catalyst. However, for example, high-temperature combustion at 1000 ° C. is required. However, when the combustion temperature becomes high, the activated alumina as the coating material undergoes a phase transition to a stable phase, and the dispersibility of the catalyst particles deteriorates due to a decrease in specific surface area.
[0006]
If the dispersibility of the catalyst particles is deteriorated, the catalyst performance may be lowered.
[0007]
This decrease in catalyst performance due to the phase transition of the coating material is not recognized by the combustion catalyst. Rather, it is based on analogy from the knowledge of exhaust gas purification catalysts. That is, in JP-Open Sho 62-125856 discloses, in the high temperature portion of the exhaust gas-purifying catalyst, it is proposed that so as to prevent the deterioration of the catalyst in place of the activated alumina used in the stable phase α- alumina coating However, as described above, it cannot be easily inferred whether deterioration or performance deterioration of the combustion catalyst, which differs in the production method and the usage method, occurs in the same manner as the exhaust gas purification catalyst.
[0008]
[Problems to be solved by the invention]
Meanwhile, an attempt to apply the technology of the Japanese Open Sho 62-125856 JP combustion catalyst, the specific surface area of the proposed α- alumina is about one-tenth of the activated alumina, to maintain high dispersibility However, considering the amount of catalyst per unit area, it is necessary to greatly reduce the amount of catalyst supported, and sufficient purification performance cannot be obtained, which is not always satisfactory. However, in the combustion catalyst, even if the specific surface area has a small specific surface area, the purification performance is not necessarily satisfied as long as the preparation is carried out for a long time by low-temperature heat treatment, but the specific surface area is small. In order to easily produce a coating material having a stable phase in a short time, a heat treatment at a higher temperature is required. At that time, grain growth is expected, so it is difficult to say that it is a sensible measure for purification performance.
[0009]
Therefore, an object of the present invention is to provide a catalyst that has a sufficient purification performance, has a long life, and is easy to manufacture.
[0010]
[Means for Solving the Problems]
In the first aspect of the present invention, a catalyst comprising a coating material coated on the surface of a carrier through which a mixture of fuel and air circulates and an active substance dispersed in the coating material is provided with an upstream portion and a downstream portion of the mixture flow. in a combustion catalyst arranged in the coating material of the upstream portion catalyst composed of γ- alumina, a coating material of the downstream portion catalyst is the phase of the coating material of the upstream portion catalyst γ- alumina and a specific surface area than that The coating material is mixed with α-alumina which is a small and stable phase.
[0011]
The coating material for the downstream catalyst, which is at a high temperature, contains a stable phase with a small specific surface area, thereby suppressing the mobility of unstable substances, increasing the heat resistance, and preventing phase transition at high temperatures. Thereby, even if the downstream catalyst is exposed to a high temperature, the deterioration is suppressed and a long life is obtained.
[0012]
Also, since the reaction rate is increased due to the high temperature, the downstream catalyst, which does not require as much catalyst loading as the upstream catalyst, has a specific surface area smaller than that of a stable phase coating material produced at a higher temperature and having a smaller specific surface area. By suppressing the degree of decrease, the decrease in dispersibility of the active substance can be suppressed, and the purification performance is sufficient.
[0013]
In the present invention, the coating material for the upstream catalyst is made of γ-alumina, and the coating material for the downstream catalyst is a coating material in which γ-alumina and α-alumina are mixed. At this time, the coating material for the downstream catalyst is coated with the same γ-alumina as the coating material for the upstream catalyst, and then heat-treated to allow the α-alumina to be mixed, which can further facilitate the production.
[0014]
According to the second aspect of the present invention, the amount of the active substance supported on the upstream catalyst is made larger than the amount of the active substance supported on the downstream catalyst.
[0015]
When ignited, the upstream catalyst with a large specific surface area of the coating material and good dispersibility of the active material at a slightly higher temperature than the downstream part realizes good low-temperature activity according to the amount of active material loaded, and exhibits a large combustion capacity. And can quickly shift to steady combustion. Since the downstream part becomes hotter than the upstream part when shifting to the steady combustion, the downstream part catalyst can obtain a sufficient combustion capacity even if the amount of the active substance supported is smaller than that of the upstream part catalyst.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an outline of a combustion heater to which the combustion catalyst of the present invention is applied. The combustion catalyst 1 includes an ignition catalyst 2 as an upstream catalyst and a main catalyst 3 as a downstream catalyst, and is arranged in parallel in a cylindrical body (not shown) through which fuel and air flow. A mixture of fuel and air sequentially passes through the ignition catalyst 2 and the main catalyst 3 from the catalyst inlet 1a, and a high-temperature combustion gas is generated by the catalytic reaction therebetween and discharged from the catalyst outlet 1b. The heat of the exhausted combustion gas is obtained through a heat exchanger and used for heating and the like.
[0017]
Air is heated by the intake preheater 4 to about 650 ° C. during ignition and to 200 ° C. during steady combustion. The fuel is heated to 450 ° C. by the fuel vaporizer 5 and vaporized to form a mixture with the air.
[0018]
A catalyst preheating heater 6 is provided immediately upstream of the ignition catalyst 2, and the combustion catalyst 1 is raised to the activation temperature before the supply of the air-fuel mixture is started.
[0019]
The carrier of the ignition catalyst 2 and the main catalyst 3 is a known monolithic carrier in which cells having a square section are formed by a cordierite wall having a thickness of 170 μm, and a cell density of 400 cells / inch 2 is formed into a circle of φ80 It is a thing. The length of the ignition catalyst 2 is 10 mm, and the length of the main catalyst 3 is 30 mm. The coating material to be coated on the surface of the support is alumina, and palladium (Pd) as an active substance is dispersed in the coating material.
[0020]
A method for coating the carrier with the coating material will be described.
[0021]
Water, γ-alumina, and alumina sol (the above alumina system is purchased from Sumitomo Chemical Co., Ltd.) are mixed at a weight ratio of 7: 3: 1, and the mixed liquid (total weight is 500 g for ignition catalyst, main catalyst) 1500 g). The carrier is dipped in this, taken out, excess of the liquid adhering to the carrier is blown off with an air flow, and dried in a vacuum at 100 ° C. for 2 hours. Thereafter, it is baked at 600 ° C. for 2 hours. This impregnation to calcination is repeated twice in total to complete the coating of the ignition catalyst 2.
[0022]
The main catalyst 3 is then heat treated at 1100 ° C. for 100 h to complete.
[0023]
Next, a method for supporting Pd will be described. The carrier coated with the different coating is impregnated with an aqueous solution of tetraamminepalladium (II) chloride hydrate purchased from NP Chemcat Co., Ltd. and removed by blowing off the excess aqueous solution adhering to the carrier. Dry in a vacuum at 140 ° C. for 2 h. Impregnation and drying are performed twice. Thereafter, it is baked at 1100 ° C. for 2 hours.
[0024]
The tetraamminepalladium (II) chloride hydrate concentration in the above aqueous solution (the amount is 200 ml for the ignition catalyst and 600 ml for the main catalyst) is 0.15 mol / l for the ignition catalyst 2 and 0 for the main catalyst 3. .10 mol / l. Thus, 0.8 wt% of Pd is supported on the ignition catalyst 2, and 0.6 wt% of Pd is supported on the main catalyst 3, which is 0.2 wt% less than the ignition catalyst 2.
[0025]
FIG. 2 shows X-ray diffraction spectrum data after the catalyst is supported. The coating material for the ignition catalyst 2 (hereinafter referred to as the conventional coating material) does not contain α-alumina, whereas the coating for the main catalyst 3. The material (hereinafter referred to as heat resistant coating material) is precipitated with α-alumina which is a stable phase.
[0026]
Moreover, when the comparative sample which extended the heat processing time of the main catalyst from 100h to 1000h of the example sample was produced and this purification performance was measured, FIG. 3 was obtained. The figure shows that during steady combustion, it can be seen that the purification performance is significantly reduced (see the measurement results of the example sample in FIG. 5 described later).
[0027]
Table 1 shows the change in specific surface area of the coating material with heat treatment. The sample coated with the heat resistant coating material had a specific surface area of 1.2 m 2 / g. On the other hand, it was 6.2 m 2 / g in the sample coated with the conventional coating material, and it was an undetectable level in the sample coated with the coating material in which the heat treatment time during coating was extended to 1000 h.
[0028]
[Table 1]
Figure 0003950528
[0029]
From this, it is recognized that the main catalyst of the example sample is not completely phase-shifted to α-alumina, but is in a state in the middle of the phase transition.
[0030]
The results of comparing the combustion catalyst 1 of the present invention with two comparative samples having different coating materials will be described. Table 2 shows the specifications of the sample for comparison. One of the samples for comparison is one in which the above-mentioned conventional coating material is coated on both the ignition catalyst and the main catalyst (comparative sample (1)), and has a structure of a combustion catalyst that has been widely used in the past. The other is the one in which the above heat-resistant coating material is coated on both the ignition catalyst and the main catalyst (Comparative Sample (2)). Each of the comparative samples has the same specifications as the example sample and the shape of the carrier, and carries the same amount (wt%) of Pd as the example sample.
[0031]
[Table 2]
Figure 0003950528
[0032]
The comparison method was carried out by examining the purification performance at the time of ignition and steady combustion in the case of using light oil as the fuel, in the initial stage of 100 h durability and after the durability. The fuel supply amount and the air supply amount are: fuel: 1.6 cc / min and air: 70 l / min during ignition, fuel: 6.4 cc / min during steady combustion, and air has a maximum catalyst temperature of approximately 950 to 1150. It set so that it might change in the range of ° C. This temperature is a temperature at which sulfur can be sufficiently desorbed in an ignition catalyst that becomes a low temperature during steady combustion. The catalyst temperature at the start of fuel supply was set in a range of approximately 250 to 300 ° C. The purification performance during steady combustion uses the THC emission at the same maximum temperature as a parameter for comparison, and the purification performance during ignition has the fuel supply amount and the air supply amount set as described above during ignition as shown in FIG. The maximum HC emission amount during the period was used as a parameter for comparison.
[0033]
FIG. 5 shows the purification performance during steady combustion of the example sample and the comparative sample {circle around (1)}. In the initial stage, there is not much difference between the two samples. After the endurance, the THC emission amount of the comparative sample (1) rapidly increases and a significant reduction in purification performance is observed, whereas the THC emission amount of the example sample increases, but the increase amount is small. When the THC emission amount is seen over time from the initial durability, it gradually increases with time as shown in FIG. 6, and if the THC emission amount exceeds the allowable THC emission amount, the combustion catalyst becomes the use limit, that is, the service life. The increase rate of THC emission is slow and the life is longer than that of the comparative sample (1).
[0034]
FIG. 7 shows the temperature distribution of the combustion catalyst in the gas mixture flow direction, and this difference in life will be explained. The temperature distribution is a mountain-shaped distribution having a peak from the middle position of the combustion catalyst to the catalyst outlet side, and the inlet side where the ignition catalyst is disposed is slightly cooler. Even if the maximum temperature exceeds 1000 ° C, the inlet side where the ignition catalyst is disposed is about 700 ° C. Therefore, although the ignition catalyst of both samples is hardly deteriorated even if it is composed only of γ-alumina which is a metastable phase, the comparative sample (1) where the main catalyst at high temperature is composed only of γ-alumina. Has poor heat resistance and causes deterioration. On the other hand, in the example sample, a stable surface α-alumina having a small specific surface area is mixed with γ-alumina having a large specific surface area, so that the surface change is small and the heat resistance is high. It is recognized that phase transition hardly occurs and deterioration of catalyst performance is suppressed.
[0035]
Next, FIG. 8 shows the purification performance upon ignition of the sample of the present invention and the comparative sample (1). It can be said that there is no difference between the two samples. This is because the catalyst preheating heater is provided upstream of the combustion catalyst, etc., so the downstream main catalyst is slightly cooler at the time of ignition, and the contribution of HC purification to the HC purification is dominant, and the specifications of the ignition catalyst are the same. It is recognized that there is no difference between the two samples.
[0036]
Thus, the example sample has a purification performance comparable to that of the comparative sample {circle around (1)}, that is, the combustion catalyst widely used in the past, and has a longer life than the comparative sample {circle around (1)}.
[0037]
Next, the results of comparing the example sample with the comparative sample (2) are shown in FIGS. FIG. 9 shows the purification performance during steady combustion of the example sample and the comparative sample {circle around (2)}. As is known from the figure, during steady combustion, the purification performance of both samples is the initial and after endurance. There is no difference. This is because the high temperature main catalyst is dominant in the purification of HC during steady combustion, and both samples have the same main catalyst.
[0038]
FIG. 10 shows the purification performance at the time of ignition of the example sample and the comparative sample (2). As is known from the figure, the example sample is the comparative sample both at the initial stage and after the endurance at the time of ignition. The purification performance is higher than (2).
[0039]
FIG. 11 explains the difference in the purification performance at the time of ignition, and shows the dependency of the purification capacity on the amount of Pd supported when the coating material is the same. The purification capacity uses a C 3 H 6 50% purification temperature as a parameter. Although the purification capacity increases with the amount of Pd supported, the particle size increases (20 nm to 25 nm in the example) when the supported quantity increases excessively, and the purification capacity is saturated. This is because the collision density between the Pd particles increases due to the increase in the loading density, and sintering tends to occur. That is, the limit of the purification capacity is defined by the specific surface area.
[0040]
As described above, the purification performance at the time of ignition is dominated by the purification performance of the ignition catalyst. Therefore, paying attention to the ignition catalyst, the specific sample surface area of the ignition catalyst is larger than that of the comparative sample (2). It is recognized that the purification performance of the example sample is higher than that of the comparative sample (2) at the time of ignition when the catalyst temperature is low.
[0041]
Thus, the sample of the example is superior in the purification performance of the catalyst at the time of ignition without being inferior to the life of the catalyst as compared with the comparative sample (2).
[0042]
As described above, the combustion catalyst of the present invention is superior in both purification capacity and life compared to a single catalyst configuration, and the high temperature portion of the catalyst is simply easily heated at a high temperature to prevent deterioration. It achieves high purification performance that cannot be obtained simply by using α-alumina.
[0043]
It should be noted that the specifications of the combustion catalyst shown in the present embodiment, such as the material (not limited to the ceramic carrier, may be a honeycomb using metal), the numerical values are not limited to those described, and do not contradict the spirit of the present invention. As long as it is optional.
[0044]
Further, the ignition catalyst may be configured so as to add a so-called co-catalyst, rather than having a larger loading than the main catalyst.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a combustion heater to which a combustion catalyst of the present invention is applied.
FIG. 2 is a graph illustrating characteristics of the combustion catalyst of the present invention.
FIG. 3 is a first graph illustrating the operation of the combustion catalyst of the present invention.
FIG. 4 is a second graph illustrating the operation of the combustion catalyst of the present invention.
FIG. 5 is a third graph for explaining the operation of the combustion catalyst of the present invention.
FIG. 6 is a fourth graph illustrating the operation of the combustion catalyst of the present invention.
FIG. 7 is a fifth graph for explaining the operation of the combustion catalyst of the present invention.
FIG. 8 is a sixth graph explaining the operation of the combustion catalyst of the present invention.
FIG. 9 is a seventh graph explaining the operation of the combustion catalyst of the present invention.
FIG. 10 is an eighth graph illustrating the operation of the combustion catalyst of the present invention.
FIG. 11 is a ninth graph illustrating the operation of the combustion catalyst of the present invention.
[Explanation of symbols]
1 Combustion catalyst 2 Ignition catalyst (upstream catalyst)
3 Main catalyst (downstream catalyst)

Claims (2)

燃料と空気の混合気が流通する担体の表面にコーティング材をコーティングし該コーティング材に活性物質を分散してなる触媒を、混合気流れの上流部と下流部とに並設した燃焼触媒において、上流部触媒のコーティング材をγ−アルミナで構成し、下流部触媒のコーティング材を、上記上流部触媒のコーティング材の相であるγ−アルミナとこれよりも比表面積の小さく安定な相であるα−アルミナとが混在するコーティング材としたことを特徴とする燃焼触媒。A combustion catalyst in which a coating material is coated on the surface of a carrier through which a mixture of fuel and air circulates and an active substance is dispersed in the coating material, is arranged in parallel in an upstream portion and a downstream portion of the mixture flow. the coating material of the upstream portion catalyst composed of γ- alumina, a coating material of the downstream portion catalyst is a small stable phase of phase in some γ- alumina and which specific surface area than the coating material of the upstream portion catalyst α A combustion catalyst characterized in that it is a coating material mixed with alumina . 請求項1記載の燃焼触媒において、上記上流部触媒の活性物質の担持量を上記下流部触媒の活性物質の担持量よりも多くした燃焼触媒。2. The combustion catalyst according to claim 1, wherein the amount of active material supported by the upstream catalyst is greater than the amount of active material supported by the downstream catalyst.
JP30367097A 1997-10-16 1997-10-16 Combustion catalyst Expired - Fee Related JP3950528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30367097A JP3950528B2 (en) 1997-10-16 1997-10-16 Combustion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30367097A JP3950528B2 (en) 1997-10-16 1997-10-16 Combustion catalyst

Publications (2)

Publication Number Publication Date
JPH11114415A JPH11114415A (en) 1999-04-27
JP3950528B2 true JP3950528B2 (en) 2007-08-01

Family

ID=17923822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30367097A Expired - Fee Related JP3950528B2 (en) 1997-10-16 1997-10-16 Combustion catalyst

Country Status (1)

Country Link
JP (1) JP3950528B2 (en)

Also Published As

Publication number Publication date
JPH11114415A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP3965711B2 (en) Nitrogen oxide purification catalyst and purification method
JP6460817B2 (en) Exhaust gas purification catalyst
JP2001276627A (en) Catalyst for cleaning diesel engine exhaust gas, its manufacturing method and use
JP5982987B2 (en) Exhaust gas purification catalyst containing exhaust gas purification catalyst material
JP2005103410A (en) Exhaust gas cleaning catalyst
JP2009247968A (en) Manufacturing method of catalyst material, catalyst material manufactured by the method, and catalyst body
CN109475843A (en) Three area's diesel oxidation catalysts
JP2004057949A (en) Catalyst for removing particulate
JPS6384635A (en) Catalyst for purifying exhaust gas
JP3950528B2 (en) Combustion catalyst
JP2002191988A (en) Catalyst for cleaning exhaust gas
JP2001009279A (en) Catalyst for purification of exhaust gas, its production and method for purifying exhaust gas
JPH0512021B2 (en)
JPH02268830A (en) Catalyst for combustion of kerosene type fuel
CN116133736A (en) Exhaust gas purifying catalyst
JP6167834B2 (en) Exhaust gas purification catalyst
JP2001162166A (en) Catalyst for purification of discharged gas
JPH10309462A (en) Nmhc oxidation catalyst in combustion waste gas and removing method thereof
JP3384255B2 (en) Internal combustion engine exhaust gas purification method
JPH10151356A (en) Catalytic member for combustion
JPS63258648A (en) Catalyst for purifying exhaust gas
JP3992828B2 (en) Combustion catalyst
JPH0522261Y2 (en)
JP3503905B2 (en) Catalyst for combustion of methane-based fuel
JPH11169709A (en) Combustion catalyst and catalyst combusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees