JP3949487B2 - Method for quantifying oil content in soil - Google Patents

Method for quantifying oil content in soil Download PDF

Info

Publication number
JP3949487B2
JP3949487B2 JP2002094708A JP2002094708A JP3949487B2 JP 3949487 B2 JP3949487 B2 JP 3949487B2 JP 2002094708 A JP2002094708 A JP 2002094708A JP 2002094708 A JP2002094708 A JP 2002094708A JP 3949487 B2 JP3949487 B2 JP 3949487B2
Authority
JP
Japan
Prior art keywords
soil
oil
concentration
calibration curve
absorption spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002094708A
Other languages
Japanese (ja)
Other versions
JP2003294617A (en
Inventor
雅美 久保田
あゆみ 高橋
孝夫 松本
和宏 鷲津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP2002094708A priority Critical patent/JP3949487B2/en
Publication of JP2003294617A publication Critical patent/JP2003294617A/en
Application granted granted Critical
Publication of JP3949487B2 publication Critical patent/JP3949487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土壌中に存在する油分を定量する方法に関する。
【0002】
【従来の技術】
日本において排水中の油分濃度を定量する分析方法は、JIS K0102等に公定法として存在するが、土壌中の油分の簡易的な定量方法に関する規定は存在していない。
【0003】
従来、一般的に土壌中の油分の定量方法はノルマルヘキサン抽出による方法が用いられてきた。土壌または汚泥に硫酸マグネシウムを混合・粉砕し、円筒ろ紙に入れ、ノルマルヘキサンを用いてソックスレー抽出法により抽出し、溶媒除去後の抽出物の重量から油分濃度を求める方法である。しかしこの方法は抽出に4時間以上を要し、また試料量が少ないこと、抽出液のヘキサンを加熱乾燥させ重量測定により結果を得るため、汚染油種によって繰返し誤差は大きい。また、ノルマンヘキサンを80℃で加熱乾燥させる際に沸点140℃程度未満の軽質の油分は同時に揮発してしまい正確な油分量が得られない。したがってこの方法は正確かつ迅速な定量方法ではない。
【0004】
一方、産業廃棄物に含まれる油分の検定方法として、試料に純水を加え、振とう抽出後、抽出液のみを分離し塩酸酸性にした後、四塩化炭素を一定量加え、振とう抽出し、四塩化炭素層を分離して波長3.5マイルロメートル付近の吸光度を測定して油分濃度を求める方法がある。しかしこの方法は工程が多いため迅速な分析方法ではなく、しかも四塩化炭素はオゾン層破壊物質であるため、環境に悪影響を及ぼすなどの理由で、現在はあまり一般的には用いられていない方法である(廃棄物の処理及び清掃に関する法律施行第6第1項第4号に規定する海洋投入処分を行うことができる産業廃棄物に含まれる油分の検定方法:昭和51年2月27日環境庁告示第3号 改正 平7環告86号)。
【0005】
【発明が解決しようとする課題】
本発明の目的は、簡便かつ迅速に土壌中の油分を定量する方法を提供する点にある。
【0006】
【課題を解決するための手段】
本発明の第1は、(1)土壌中に存在する油分を溶媒を用いて抽出し、(2)抽出溶媒中に存在する土壌を分離した後、(3)赤外分光光度計を用いて波数2800〜3050cm−1の範囲で抽出溶媒の赤外吸収スペクトルを測定し、得られた赤外吸収スペクトルから土壌中の油分濃度を求める方法であって、あらかじめ測定しようとする油を用い縦軸に抽出溶媒中の油分濃度を横軸に前記波数2800〜3050cm −1 の範囲の赤外吸収スペクトルが占める面積値を求めて作った検量線に基づき、前記測定により得られた赤外吸収スペクトルの面積値から、その対応した濃度を読み取ることを特徴とする土壌中の油分を定量する方法に関する。
【0007】
本発明における前記油分としては、液状又は固体状の植物油、石油系炭化水素、石炭系炭化水素、合成油の単独或いはこれらの混合物、さらにはこれらが人為的或いは自然界において酸化分解、重合、生物により分解された物質、中間代謝物で使用する抽出溶媒に溶解する物質などを挙げることができる。
【0008】
本発明における土壌としては、何の制限もないが、例えば砂質土壌、粘度質土壌、シルト質土壌などを挙げることができる。
【0009】
本発明で使用される溶剤としては、テトラクロロエチレン、S316(ポリクロロフルオロカーボン)などが使用できる。なお、必要に応じて四塩化炭素も使用可能である。
【0010】
本発明において、土壌から油分を抽出する手段に特別の制限はないが、例えば振とう抽出法、高温高圧溶媒抽出法あるいは超臨界抽出法などを使用することができる。
【0011】
本発明において、抽出溶媒中に存在する土壌を分離する手段としては、とくに制限はなく、重力を利用した自然沈降法でもよいが、処理時間を短縮するという観点から言えば遠心分離法を採用することが好ましい。
【0012】
上記の処理により、土壌を沈殿させたら、抽出溶媒の上澄み液を採取して、赤外分光光度計にかけることができる。
【0013】
前記の検量線は、基本的には測定しようとしている土壌から油分を抽出し、その油分を段階的に希釈して調整した濃度標準液を用いて作成する。
土壌中の汚染油分量が少なく、油分抽出して検量線を作成することが不可能なとき、汚染油分が分かっている場合は、その油分相当の物質を用いて検量線を作成する。たとえば軽油が汚染油分と分かっているときはJIS K2240(特1号、1号、2号、3号、もしくは特3号)を用いて検量線を作成する。ガソリン、灯油、重油、潤滑油に関しても同様にJIS規格に応じた油分を用いて検量線を作成する。
汚染油分がわからない際は、適当な条件でのガスクロマトグラフィを行い、その分析チャートにより汚染油分を推測し、たとえばその油分が軽油相当であるとするときは、JIS K2204軽油(特1号、1号、2号、3号、もしくは特3号)を用いて検量線を作成する。
【0014】
実測定は、土壌から適当な溶媒たとえばテトラクロロエチレンを用いて油分を抽出し、赤外分光光度計により波数2800〜3050cm−1の範囲の吸収スペクトルを測定し、あらかじめ作成しておいた前記検量線を用いて測定しようとする土壌中の油分を算出する。
【0015】
吸光度測定範囲が波数2800〜3050cm−1としたのは、C−H結合の伸縮振動の吸収帯がこの範囲であるからであり、この範囲での吸光度またはこの範囲で画かれる吸収スペクトルの占める面積値がC−H結合の数つまり炭化水素化合物の濃度すなわち油分濃度に比例するので、この範囲を選定することが重要である。
【0016】
【実施例】
以下に実施例および比較例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。
【0017】
実施例
(1)検量線の作成方法
予め室温乾燥(25℃、12時間)しておいた汚染油分の異なる土壌A、B、Cをそれぞれ10gづつ計り採り、そこにテトラクロロエチレン10mlをそれぞれ加え、密栓し、振とう抽出を10分、遠心分離を10分、それぞれ行った。室温で空気を吹き込みながら120分放置し、テトラクロロエチレンを完全に揮発させた汚染油分を得た。これを10mg計り採り、テトラクロロエチレンにより10mlに定容して1,000mg/Lの濃度標準液とした。この1,000mg/Lの濃度標準液を段階的にテトラクロロエチレンにより希釈して、400、200、100mg/Lの濃度標準液を調製した。これをIR用10mmセルに入れ、赤外分光光度計を用いて波長2,800〜3,050cm−1での範囲において測定し、吸収スペクトルの面積を求めた。この結果から各濃度標準液の濃度と得られた各面積値により検量線を作成した。
【0018】
土壌A、B、Cの検量線を下記に記すとともに図1〜3に示す。
検量線式(検量線Y=aX式の傾きaが下記式の係数7.03、5.10、6.67である)は以下の通りである。
土壌A:油分Aの濃度(mg/L)=7.03×面積値
土壌B:油分Bの濃度(mg/L)=5.10×面積値
土壌C:油分Cの濃度(mg/L)=6.67×面積値
【0019】
(2)実験方法
予め室温乾燥(25℃、12時間)しておいた汚染油分の異なる土壌A、B、C各2gを遠心沈殿管に計り取り、テトラクロロエチレン30mlを入れて密栓し、振とう抽出を10分、遠心分離を10分、それぞれ行った。表層のテトラクロロエチレン抽出液をIR用10mmセルに入れ、赤外分光光度計を用いて波数2,800〜3,050cm−1での範囲の領域で測定し、吸収スペクトルの面積から、予め作成しておいた検量線より土壌1kgあたりの油量mgを求めた。
検量線はテトラクロロエチレン1L中の油分の濃度(mg/L)であるため、土壌1kgあたりの油量に換算した結果を下記に記す。
換算:土壌1kgあたりの油量=検量線油分濃度(mg/L)
×30/1000×1000/2
【0020】
【表1】

Figure 0003949487
A:C重油(JIS K2205 3種1号相当)による汚染土壌
B:軽油(JIS K2204相当)による汚染土壌
C:実汚染土壌
変動係数=標準偏差/平均値×100
【0021】
比較例
予め室温乾燥(25℃、12時間)しておいた汚染油分の異なる土壌A、B、Cの各2gを計り採り、塩酸を加えてpH2以下とした後、硫酸マグネシウム一水和物を25g加え、良く撹拌し薄く広げて20分放置し凝固させた。これを磁製乳鉢に入れて粉砕し円筒ろ紙に入れた。使用したビーカーおよび乳鉢はヘキサンを付けたろ紙でぬぐい、これも円筒ろ紙に入れた。円筒ろ紙にガラスビーズを詰めソックスレー抽出器に収め、ヘキサンを蒸留フラスコの約半分量入れ、毎時20回の循環速度で4時間抽出した。抽出後、蒸留フラスコを取り外し、80±5℃の水浴中で加温しながら空気を吹き込んで、液量が2mlになるまでヘキサンを揮散させた。蒸留フラスコの残留液をあらかじめ重量を測っておいた蒸発容器に入れ、蒸留フラスコを少量のヘキサンで3回洗い、この洗液も蒸発容器に入れた。蒸発容器を80℃に保った加熱板の上に置いてヘキサンを揮散させた。蒸発容器の外側を清浄な布で拭き、80±5℃の乾燥器中で30分間加熱乾燥して、デシケーターに移し、30分間放冷した後質量をはかり、抽出された油分量を求めた。その結果を表2に示す。
【0022】
【表2】
Figure 0003949487
A:C重油(JIS K2205 3種1号相当)による汚染土壌
B:軽油(JIS K2204相当)による汚染土壌
C:実汚染土壌
【0023】
【発明の効果】
本発明により、簡便かつ迅速に土壌中の油分を定量する新規な方法を提供できた。
【図面の簡単な説明】
【図1】検量線の作成方法に従って作った土壌Aの検量線を示す。
【図2】検量線の作成方法に従って作った土壌Bの検量線を示す。
【図3】検量線の作成方法に従って作った土壌Cの検量線を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for quantifying oil present in soil.
[0002]
[Prior art]
In Japan, an analysis method for quantifying oil concentration in wastewater exists as an official method in JIS K0102, etc., but there is no provision regarding a simple method for quantifying oil content in soil.
[0003]
Conventionally, a method based on normal hexane extraction has generally been used as a method for quantifying oil content in soil. In this method, magnesium sulfate is mixed and pulverized in soil or sludge, placed in a cylindrical filter paper, extracted by normal Soxhlet extraction using normal hexane, and the oil concentration is determined from the weight of the extract after removal of the solvent. However, this method requires 4 hours or more for extraction, and the sample amount is small. The hexane of the extract is heated and dried to obtain a result by weight measurement, so that the repetition error is large depending on the contaminated oil type. Moreover, when norman hexane is heated and dried at 80 ° C., a light oil having a boiling point of less than about 140 ° C. is volatilized at the same time, and an accurate amount of oil cannot be obtained. Therefore, this method is not an accurate and rapid quantitative method.
[0004]
On the other hand, as a method for testing the oil content in industrial waste, pure water is added to the sample, and after extraction by shaking, only the extract is separated and acidified with hydrochloric acid, and then a certain amount of carbon tetrachloride is added and shake extracted. There is a method of obtaining the oil concentration by separating the carbon tetrachloride layer and measuring the absorbance at a wavelength of around 3.5 miles. However, this method is not a rapid analysis method due to many processes, and because carbon tetrachloride is an ozone-depleting substance, it is a method that is not generally used at present due to adverse effects on the environment. (Testing method for oil contained in industrial waste that can be disposed of in the ocean as stipulated in Law Enforcement No.6, Paragraph 1, Item 4 of the Waste Management and Cleaning Act: February 27, 1976, Environment Agency Notification No. 3 Revision No. 7 Circular Notification 86).
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for quantifying oil content in soil easily and quickly.
[0006]
[Means for Solving the Problems]
In the first aspect of the present invention, (1) oils present in the soil are extracted using a solvent, (2) the soil present in the extraction solvent is separated, and (3) an infrared spectrophotometer is used. A method for measuring an infrared absorption spectrum of an extraction solvent in a wave number range of 2800 to 3050 cm −1 , and obtaining an oil concentration in soil from the obtained infrared absorption spectrum, wherein the vertical axis is determined using oil to be measured in advance. Of the infrared absorption spectrum obtained by the above measurement based on a calibration curve prepared by calculating the area value occupied by the infrared absorption spectrum in the range of wave numbers 2800-3050 cm -1 on the horizontal axis of the oil concentration in the extraction solvent. The present invention relates to a method for quantifying oil content in soil, which is characterized by reading a corresponding concentration from an area value .
[0007]
Examples of the oil component in the present invention include liquid or solid vegetable oils, petroleum hydrocarbons, coal hydrocarbons, synthetic oils alone or a mixture thereof, and these may be artificially or naturally oxidatively decomposed, polymerized, or biologically. Examples include decomposed substances, substances dissolved in extraction solvents used for intermediate metabolites, and the like.
[0008]
The soil in the present invention is not limited, and examples thereof include sandy soil, viscous soil, silty soil, and the like.
[0009]
As the solvent used in the present invention, tetrachloroethylene, S316 (polychlorofluorocarbon) or the like can be used. Carbon tetrachloride can also be used as necessary.
[0010]
In the present invention, the means for extracting oil from the soil is not particularly limited, and for example, a shaking extraction method, a high temperature / high pressure solvent extraction method, a supercritical extraction method, or the like can be used.
[0011]
In the present invention, the means for separating the soil present in the extraction solvent is not particularly limited, and may be a natural sedimentation method using gravity, but a centrifugal separation method is employed from the viewpoint of shortening the treatment time. It is preferable.
[0012]
When the soil is precipitated by the above treatment, the supernatant of the extraction solvent can be collected and applied to an infrared spectrophotometer.
[0013]
The calibration curve is basically created using a concentration standard solution obtained by extracting oil from the soil to be measured and diluting the oil in stages.
When the amount of contaminated oil in the soil is small and it is impossible to create a calibration curve by extracting the oil, if the contaminated oil is known, a calibration curve is created using a substance corresponding to that oil. For example, when light oil is known to be a contaminated oil, a calibration curve is created using JIS K2240 (No. 1, No. 1, No. 2, No. 3, or No. 3). Similarly, for gasoline, kerosene, heavy oil, and lubricating oil, a calibration curve is created using oil components according to JIS standards.
When the contaminated oil content is not known, gas chromatography under appropriate conditions is performed, and the contaminated oil content is estimated from the analysis chart. For example, when the oil content is equivalent to light oil, JIS K2204 gas oil (Special No. 1, No. 1) A calibration curve is prepared using No. 2, No. 3, or No. 3).
[0014]
In actual measurement, oil is extracted from soil using an appropriate solvent such as tetrachloroethylene, an absorption spectrum in the range of wave numbers 2800 to 3050 cm −1 is measured with an infrared spectrophotometer, and the calibration curve prepared in advance is measured. Use to calculate the oil content in the soil to be measured.
[0015]
The reason why the absorbance measurement range was set to a wave number of 2800 to 3050 cm −1 is that the absorption band of stretching vibration of C—H bond is in this range, and the area occupied by the absorbance in this range or the absorption spectrum drawn in this range. It is important to select this range because the value is proportional to the number of C—H bonds, ie the concentration of the hydrocarbon compound, ie the oil concentration.
[0016]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited thereto.
[0017]
Example (1) Method for preparing calibration curve 10 g each of soils A, B, and C with different contaminated oils previously dried at room temperature (25 ° C., 12 hours), 10 ml each of tetrachlorethylene added thereto, and sealed Then, shaking extraction was performed for 10 minutes and centrifugation was performed for 10 minutes. The mixture was allowed to stand for 120 minutes while blowing air at room temperature to obtain a contaminated oil component in which tetrachlorethylene was completely volatilized. 10 mg of this was weighed and made up to a volume of 10 ml with tetrachloroethylene to obtain a concentration standard solution of 1,000 mg / L. The 1,000 mg / L standard solution was diluted stepwise with tetrachloroethylene to prepare 400, 200, and 100 mg / L standard solutions. This was put into a 10 mm cell for IR and measured in a wavelength range of 2,800 to 3,050 cm −1 using an infrared spectrophotometer to determine the area of the absorption spectrum. From this result, a calibration curve was created from the concentration of each concentration standard solution and each area value obtained.
[0018]
Calibration curves for soils A, B, and C are shown below and shown in FIGS.
The calibration curve equation (the slope a of the calibration curve Y = aX equation is the coefficients 7.03, 5.10, 6.67 of the following equation) is as follows.
Soil A: Concentration of Oil A (mg / L) = 7.03 × Area Value Soil B: Concentration of Oil B (mg / L) = 5.10 × Area Value Soil C: Concentration of Oil C (mg / L) = 6.67 x area value
(2) Experimental method 2 g each of soil A, B, and C with different contaminated oil previously dried at room temperature (25 ° C., 12 hours) were weighed into a centrifugal sedimentation tube, sealed with 30 ml of tetrachlorethylene, and extracted by shaking. For 10 minutes and centrifugation for 10 minutes. The tetrachloroethylene extract of the surface layer is put into a 10 mm cell for IR, measured using an infrared spectrophotometer in a range of wave numbers of 2,800 to 3,050 cm −1 , and prepared in advance from the area of the absorption spectrum. The amount of oil per kg of soil was determined from the calibration curve.
Since the calibration curve is the concentration of oil in 1 liter of tetrachlorethylene (mg / L), the results converted to the amount of oil per 1 kg of soil are shown below.
Conversion: Oil amount per kg of soil = calibration curve oil concentration (mg / L)
× 30/1000 × 1000/2
[0020]
[Table 1]
Figure 0003949487
A: Contaminated soil with C heavy oil (equivalent to JIS K2205 Type 3 No. 1) B: Contaminated soil with light oil (equivalent to JIS K2204) C: Actually contaminated soil variation coefficient = standard deviation / average value × 100
[0021]
Comparative Example 2 g of each of soils A, B, and C, which had been dried at room temperature (25 ° C., 12 hours) in advance, was weighed, and hydrochloric acid was added to adjust the pH to 2 or less. Then, magnesium sulfate monohydrate was added. 25 g was added, stirred well, spread thinly and allowed to stand for 20 minutes to solidify. This was put in a porcelain mortar and crushed and placed in a cylindrical filter paper. The used beaker and mortar were wiped with filter paper with hexane, and this was also put in cylindrical filter paper. Glass beads were packed in a cylindrical filter paper and placed in a Soxhlet extractor. About half of the hexane was added to the distillation flask and extracted for 4 hours at a circulation rate of 20 times per hour. After the extraction, the distillation flask was removed, and air was blown in while heating in a water bath at 80 ± 5 ° C. to evaporate hexane until the liquid volume became 2 ml. The residual liquid of the distillation flask was placed in a previously weighed evaporation container, and the distillation flask was washed three times with a small amount of hexane, and this washing liquid was also placed in the evaporation container. The evaporation vessel was placed on a heating plate maintained at 80 ° C. to volatilize hexane. The outside of the evaporation container was wiped with a clean cloth, dried by heating in a dryer at 80 ± 5 ° C. for 30 minutes, transferred to a desiccator, allowed to cool for 30 minutes, weighed, and the amount of oil extracted was determined. The results are shown in Table 2.
[0022]
[Table 2]
Figure 0003949487
A: Contaminated soil with C heavy oil (equivalent to JIS K2205 Type 3 No. 1) B: Contaminated soil with light oil (equivalent to JIS K2204) C: Actually contaminated soil
【The invention's effect】
According to the present invention, a novel method for quantifying oil content in soil easily and quickly can be provided.
[Brief description of the drawings]
FIG. 1 shows a calibration curve of soil A prepared according to a calibration curve generation method.
FIG. 2 shows a calibration curve for soil B prepared according to the calibration curve creation method.
FIG. 3 shows a calibration curve of soil C prepared according to a calibration curve creation method.

Claims (1)

(1)土壌中に存在する油分を溶媒を用いて抽出し、(2)抽出溶媒中に存在する土壌を分離した後、(3)赤外分光光度計を用いて波数2800〜3050cm−1の範囲で抽出溶媒の赤外吸収スペクトルを測定し、得られた赤外吸収スペクトルから土壌中の油分濃度を求める方法であって、あらかじめ測定しようとする油を用い縦軸に抽出溶媒中の油分濃度を横軸に前記波数2800〜3050cm −1 の範囲の赤外吸収スペクトルが占める面積値を求めて作った検量線に基づき、前記測定により得られた赤外吸収スペクトルの面積値から、その対応した濃度を読み取ることを特徴とする土壌中の油分を定量する方法。 (1) Extracting oil present in the soil using a solvent, (2) separating the soil present in the extraction solvent, and (3) using an infrared spectrophotometer with a wave number of 2800-3050 cm −1 . This is a method for measuring the infrared absorption spectrum of the extraction solvent in a range and obtaining the oil concentration in the soil from the obtained infrared absorption spectrum, and using the oil to be measured in advance, the oil concentration in the extraction solvent on the vertical axis Based on the calibration curve made by obtaining the area value occupied by the infrared absorption spectrum in the range of wave numbers 2800 to 3050 cm -1 on the horizontal axis , the corresponding value was obtained from the area value of the infrared absorption spectrum obtained by the measurement. A method for quantifying oil content in soil characterized by reading the concentration.
JP2002094708A 2002-03-29 2002-03-29 Method for quantifying oil content in soil Expired - Fee Related JP3949487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002094708A JP3949487B2 (en) 2002-03-29 2002-03-29 Method for quantifying oil content in soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002094708A JP3949487B2 (en) 2002-03-29 2002-03-29 Method for quantifying oil content in soil

Publications (2)

Publication Number Publication Date
JP2003294617A JP2003294617A (en) 2003-10-15
JP3949487B2 true JP3949487B2 (en) 2007-07-25

Family

ID=29238576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002094708A Expired - Fee Related JP3949487B2 (en) 2002-03-29 2002-03-29 Method for quantifying oil content in soil

Country Status (1)

Country Link
JP (1) JP3949487B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038511A (en) * 2004-07-23 2006-02-09 Tokyo Univ Of Agriculture & Technology Soil analyzing method and soil analyzer
AT503665B1 (en) * 2007-01-31 2007-12-15 Jordan Philipp Mag Determination of the concentration of hydrocarbons in samples e.g. water, comprises extracting the hydrocarbons from the sample with a solvent, and quantitatively measuring the hydrocarbons by infrared or near-infrared absorption
JP4850740B2 (en) * 2007-02-08 2012-01-11 新日本製鐵株式会社 Method for measuring saponification and acid values of oil
JP4928656B2 (en) * 2007-06-07 2012-05-09 昭和シェル石油株式会社 Method for measuring the content of the component contained in soil
CN113008827A (en) * 2019-12-19 2021-06-22 中国石油天然气股份有限公司 Method for measuring oil content of drilling solid waste

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315667B2 (en) * 1974-05-15 1978-05-26
JPS5211092A (en) * 1975-07-17 1977-01-27 Nippon Steel Corp Measuring instrument of oil content in water
JPS5516284A (en) * 1978-07-22 1980-02-04 Kyoto Giken:Kk Oil densitometer
JPS57148251A (en) * 1981-03-10 1982-09-13 Takeda Chem Ind Ltd Simple measuring method for soil absorptive efficiency
JPH0368864A (en) * 1989-08-07 1991-03-25 Hitachi Ltd Method and device for pretreatment of specimen for chemical analysis and chemical analysis apparatus using the device
JPH04355348A (en) * 1991-05-31 1992-12-09 Shimadzu Corp Method of analyzing residual component in liquefied gas
JP3011825B2 (en) * 1992-08-07 2000-02-21 新日本製鐵株式会社 Oil saponification value / acid value and fatty acid iron measurement method
US5360972A (en) * 1993-08-17 1994-11-01 Western Atlas International, Inc. Method for improving chemometric estimations of properties of materials
ZA953238B (en) * 1994-04-25 1996-01-03 Shell Int Research Contamination test
JPH0862205A (en) * 1994-08-22 1996-03-08 Nippon Steel Corp Simple measurement method for oil content in earth and sand containing oil
JPH0989766A (en) * 1995-09-20 1997-04-04 Sanyo Electric Co Ltd Detection method for concentration of residual oil portion in object to be inspected
JPH11248624A (en) * 1998-03-05 1999-09-17 Nisshin Steel Co Ltd Method for specifying mixed oil leakage path
JP2000214055A (en) * 1999-01-28 2000-08-04 Kawasaki Steel Corp Method and apparatus for extraction

Also Published As

Publication number Publication date
JP2003294617A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
Do et al. Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf
Awwad et al. Removal of heavy metal ions from ground and surface water samples using carbons derived from date pits
Kasperiski et al. Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions
Amuda et al. Adsorption of methylene blue from aqueous solution using steam-activated carbon produced from Lantana camara stem
Gupta et al. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material
Yafa et al. A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry
Naghipour et al. Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree
McGill et al. Determination of oil content of oil contaminated soil
Kadiri et al. Adsorption properties of coriander seeds: Spectroscopic kinetic thermodynamic and computational approaches
Danish et al. Adsorption of Pb (II) ions from aqueous solutions by date bead carbon activated with ZnCl2
Khatoon et al. Adsorptive remediation of Pb (II) from aqueous media using Schleichera oleosa bark
JPH06500346A (en) How to recover oil from waste oil sludge
Chang et al. Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics
JP4700372B2 (en) Method for accurately analyzing oil content in soil
JP3949487B2 (en) Method for quantifying oil content in soil
Sunardi et al. Pengembangan metode analisis parameter minyak dan lemak pada contoh uji air
RU2367516C2 (en) Carbon-containing pumice, preparation method and application thereof
JP2010085239A (en) Method of measuring amount of nonvolatile oil contained in oil polluted soil
Dupeyron et al. Extraction of polycyclic aromatic hydrocarbons from soils: A comparison between focused microwave assisted extraction, supercritical fluid extraction, subcritical solvent extraction, sonication and Soxhlet techniques
Itodo et al. On the characterization, use and wastewater detoxification potential of pyrolysed Moringa oleifera pods and shells part: A sorbent preparation and characterization
CN103962114A (en) Preparation method of conducting polymer coating silica gel and application of conducting polymer coating silica gel to solid phase extraction
CN108295813A (en) Montmorillonite/carbon ball compound adsorbent and preparation method thereof and its application and detection device
Gao et al. Enrichment and transfer of polycyclic aromatic hydrocarbons (PAHs) through dust aerosol generation from soil to the air
Maiga et al. Preparation of SPE hybrid mesoporous silica sorbents for the analysis and removal of organic pollutants in water
Huang et al. Seasonal characteristics of phosphorus sorption by sediments from plain lakes with different trophic statuses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees