JP3948435B2 - Secondary battery protection IC and battery pack and electronic device using the same - Google Patents

Secondary battery protection IC and battery pack and electronic device using the same Download PDF

Info

Publication number
JP3948435B2
JP3948435B2 JP2003170814A JP2003170814A JP3948435B2 JP 3948435 B2 JP3948435 B2 JP 3948435B2 JP 2003170814 A JP2003170814 A JP 2003170814A JP 2003170814 A JP2003170814 A JP 2003170814A JP 3948435 B2 JP3948435 B2 JP 3948435B2
Authority
JP
Japan
Prior art keywords
circuit
secondary battery
terminal
overcharge
battery protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003170814A
Other languages
Japanese (ja)
Other versions
JP2005012852A (en
Inventor
周史 山本
明彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003170814A priority Critical patent/JP3948435B2/en
Publication of JP2005012852A publication Critical patent/JP2005012852A/en
Application granted granted Critical
Publication of JP3948435B2 publication Critical patent/JP3948435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話やノートパソコン、PDA(Personal Digital Assistance)等の各種電子機器に用いるバッテリパックのリチュウム(Li)イオン/リチュウム(Li)ポリマ2次電池等の2次電池を過充電、過放電、過電流から保護する技術に係わり、特に、過充電、過放電、過電流の検出確認テストを効率化が可能な2次電池保護用ICとそれを用いたバッテリパックおよび電子機器に関するものである。
【0002】
【従来の技術】
携帯電話やノートパソコン、PDA(Personal Digital Assistance)等の各種電子機器に用いるバッテリパックの2次電池を過充電や過放電、過電流から保護するための従来技術としては、例えば特許文献1に記載の技術がある。
【0003】
この従来技術では、図3に示すように、内部発振器と分周カウンタからなるタイマー回路とラッチ回路(LT2)を設けて、過充電、過放電、過電流の検出時に遅延時間を持たせることで、特に、2次電池(リチュウム(Li)イオン電池)の持つ内部インピーダンスにより一時的に電池電圧(VCC)が終止電圧以下となり放電電圧そのものが終止電圧以下になったと誤って判定されることを防止することができる。
【0004】
従来の技術では、過充電、過放電、過電流の検出時の遅延時間は、すべて内部発振回路とカウンタで決定することができる。従って、遅延時間を決定するための外付けコンデンサは必要ないので保護回路基板の部品点数を少なくすることができる。
【0005】
このような内部発振回路とカウンタを設けた保護回路基板のテストを行う際、過放電と過電流の検出時の遅延時間は、一般的に20mS(ミリ秒)程度なので、テスト時間にはそれほど大きな影響はないが、過充電の検出時の遅延時間は通常数秒程度に設定されている。従って、過充電の検出動作のテストを行う場合、必ず数秒以上の時間が必要となる。
【0006】
特に、正確な過充電検出電圧値を測定(テスト)する場合は、電圧をステップさせるたびに、数秒以上の待ち時間が必要となるため、仮に25ステップで検出電圧を測定できたとして、待ち時間を2秒とすると、過充電検出電圧値の測定に要する時間は50秒となり、これは量産を行えるレベルではない。
【0007】
【特許文献1】
特開平9−182283号公報
【0008】
【発明が解決しようとする課題】
解決しようとする問題点は、従来の技術では、2次電池の保護回路における過充電検出のための遅延時間が数秒程度に設定されており、過充電の検出動作のテストに時間がかかってしまう点である。
【0009】
本発明の目的は、これら従来技術の課題を解決し、2次電池を過充電、過放電、過電流から保護する回路のテストを効率化し、当該保護回路を用いたバッテリパックおよび当該バッテリパックを用いた携帯電話やノートパソコン、PDA等の各種電子機器の製造工程の効率化を図ることである。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明では、2次電池保護用ICの過充電検出動作のテスト時に、発振回路の周波数を高くすることで、過充電検出のための遅延時間が短縮し、テストに要する時間を短縮することを特徴とする。特に、発振回路の周波数を高くするために、発振周波数を決めている定電流の値を増加させる。そして、この定電流の値を増加させるために、過充電検出出力端子(Cout)とグランド端子(Vss)および充電器マイナス電位入力端子(V−)のそれぞれの値を入力とし、過充電検出出力端子(Cout)が充電制御用FETをオン状態にするレベル(充電制御用FETがNチャネルの場合はハイレベル)、充電器マイナス電位入力端子(V−)がグランド端子(Vss)より低いレベルに設定された場合に、増加用の定電流回路を追加接続する構成とする。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、図面により詳細に説明する。
【0012】
図1は、本発明に係わる2次電池保護用ICとそれを用いたバッテリパックの構成例を示すブロック図であり、図2は、図1における2次電池保護用ICに設けられた発振回路とその周波数を変更するためのテスト用制御回路の構成例を示すブロック図である。
【0013】
図1において、1は本発明に係わる2次電池保護用IC(図中「保護装置」と記載)、2はコンパレータ2a,2bからなる過充電検出回路、3はコンパレータ3a,3bからなる過放電検出回路、4は過電流検出回路、5は短絡検出回路、6は異常充電器検出回路、6aはNチャネルFET、7は発振回路、8はカウンタ回路、9a,9bはロジック回路、10はレベルシフト、11はバッテリパック、12はプラス側端子、13はマイナス側端子、14は充電器、15はリチュウム(Li)イオン/リチュウム(Li)ポリマ2次電池等の2次電池セルを示し、Cはコンデンサ、Rは抵抗、Vddは2次電池保護用IC1の基盤電位端子、Vssは2次電池保護用IC1のグランド端子、Doutは過放電検出出力端子、Coutは過充電検出出力端子、V−は充電器マイナス電位入力端子である。
【0014】
本例の2次電池保護用IC1を用いたバッテリパック11は、例えば、携帯電話やノートパソコン、PDA等の各種電子機器に用いられるものである。
【0015】
図1に示すように、本例のバッテリパック11に設けられた2次電池保護用IC1は、おおまかには過充電検出回路2と過放電検出回路3と過電流検出回路4と短絡検出回路5と異常充電器検出回路6と発振回路7とカウンタ回路8から構成され、2次電池セル15の過充電、過放電および過電流等を検出して、2次電池セル15を過充電、過放電および過電流から保護する。
【0016】
例えば、過充電検出回路2、または過放電検出回路3、あるいは短絡検出回路5により異過充電または過放電または短絡を検出すると、発振回路7が動作しはじめ、カウンタ回路8が動き出す。
【0017】
そして、それぞれの検出時に設定されている遅延時間をカウントすると、ロジック回路9a、9bおよびレベルシフト10を通して、過充電の場合はCout端子の出力がローレベルになり、充電制御用FETがオフ、過放電、短絡の場合はDout端子の出力がローレベルになり、放電制御用FETがオフとなる。
【0018】
また、異常充電器検出回路6は、異常な充電器14等が接続されて大電圧がバッテリパック11に印加された時に、過電流検出回路4と短絡検出回路5の入力に、V−端子の電位がかからないようにFETスイッチ6aを切ることによって、トランジスタのVthの経時変化による過電流検出電圧値と短絡検出電圧値のシフトが起こらないようにするための回路である。
【0019】
このような構成の2次電池保護用IC1において、通常、過放電検出時の遅延時間は20mS(ミリ秒)程度、過電流検出時の遅延時間は10mS程度、短絡検出時の遅延時間は1mS程度であるが、過充電検出時の遅延時間は1S(秒)以上である。
【0020】
本例の2次電池保護用IC1では、発振回路7内に、図2に示すように、テスト用制御回路20を設けており、2次電池保護用IC1のテストを行うときに、Cout端子をハイレベル(過充電を検出していない状態)、V−端子をVss端子より低いレベルに固定することによって、発振回路7の周波数を高くし、遅延時間を短くすることでテスト時間を短縮する。
【0021】
すなわち、図2に示す発振回路7は、定電流インバータとコンデンサを使ったリングオシレータであり、通常の発振周波数は、定電流26,28の定電流値とコンデンサ29,30の値とインバータ31,32のスレッショルドで決まり、過充電検出時の遅延時間が1S(秒)以上となる。
【0022】
しかし、本例では、テスト用制御回路20において、Cout端子(過充電検出出力端子)とVss端子(グランド端子)およびV−端子(充電器マイナス電位入力端子)のそれぞれの値を入力とし、過充電検出出力端子(Cout)がハイレベル、充電器マイナス電位入力端子(V−)がグランド端子(Vss)より低いレベルに設定されると、スイッチ回路としてのPチャネルトランジスタ23,24がオンして、電流増加回路としての定電流25,27の電流値が加算され、発振回路7の周波数が高くなる。
【0023】
本例のテスト用制御回路20は、充電器マイナス電位入力端子(V−)の値ヒステリシス特性を持たせてグランド端子(Vss)からのローレベル入力を反転してハイレベル出力するヒステリシスインバータ33と、このヒステリシスインバータのハイレベル出力を入力してローレベルに反転出力するインバータ34と、このインバータ34のローレベル出力と過充電検出出力端子(Cout)のハイレベル信号を入力してローレベル出力するNAND回路35と、このNAND回路35のローレベル出力によりオンするPチャネルトランジスタ23,24と、このPチャネルトランジスタ23,24のオン動作により発振回路7の周波数を決めている定電流値を増加させる電流増加回路としての定電流25,27と有する構成となっている。
【0024】
Cout端子は通常ハイレベルであり、テスト用制御回路20のヒステリシスインバータ33の入力に通常のVss端子のローレベルが入力されると、ヒステリシスインバータ33の出力はハイレベル、インバータ34の出力はローレベルとなり、NAND回路35の入力はCout端子のハイレベルとインバータ34のローレベル出力となり、その出力はハイレベルとなる。
【0025】
このように、NAND回路35の出力がハイレベルとなると、Pチャネルトランジスタ23,24のゲート電圧がハイレベルであるため、Pチャネルトランジスタ23,24はオフとなる。従って、この場合の発振回路7の発振周波数は、定電流26,28とコンデンサ29,30の値で決定される。
【0026】
しかし、2次電池保護用ICの過充電検出動作のテストを行う際に、Cout端子をハイレベルのままで、V−端子をVss端子より低いレベルに下げると、ヒステリシスインバータ33にハイレベルが入力されることとなり、ヒステリシスインバータ33の出力はローレベル、インバータ34の出力はハイレベルとなり、NAND回路35の入力はCout端子のハイレベルとインバータ34のハイレベル出力となり、その出力はローレベルとなる。
【0027】
このように、NAND回路35の出力がローレベルとなると、Pチャネルトランジスタ23,24のゲート電圧がローレベルであるため、Pチャネルトランジスタ23,24はオンとなり、発振回路7の発振周波数を決めている定電流の値は、定電流26+定電流25、定電流28+定電流27となり、発振周波数が高くなる。
【0028】
その結果、過充電検出時の遅延時間を短くすることができる。例えば、定電流26と定電流25、定電流28と定電流27の比を1:9にすると、遅延時間を1/10にすることができる。この場合は、2次電池保護用IC1のテスト時間を、1/10に短縮することができる。
【0029】
以上、図1と図2を用いて説明したように、本例では、2次電池保護用IC1の過充電検出動作のテスト時に、発振回路7の周波数を高くすることで、過充電検出のための遅延時間を短縮し、テストに要する時間を短縮することができる。特に、本例では、テスト時における発振回路の周波数を高くするために、発振周波数を決めている定電流の値を増加させる。
【0030】
そして、この定電流の値を増加させるために、本例では、定電流25,27を追加接続するためのPチャネルトランジスタ23,24と、このPチャネルトランジスタ23,24を、Cout端子(過充電検出出力端子)のハイレベル設定値と、Vss端子(グランド端子)より低いレベルのV−端子(充電器マイナス電位入力端子)の設定値とに基づきオン制御するための、ヒステリシスインバータ33とインバータ34およびNAND素子35からなるテスト用制御回路20を設けた構成としている。
【0031】
特に、本例ではテスト用制御回路20は、Cout端子(過充電検出出力端子)のハイレベル設定値とVss端子(グランド端子)より低いレベルのV−端子(充電器マイナス電位入力端子)設定値で、発振回路7の周波数を高くしており、通常の2次電池保護用IC1に設けられている端子だけで良く、テスト用の特別な端子を設ける必要はない。
【0032】
さらに、本例ではテスト用制御回路20は、ヒステリシスインバータ33とインバータ34およびNAND素子35で構成しており、回路規模を小さく抑えることができ、本例の2次電池保護用IC1を設けたバッテリパック11、および、そのバッテリパック11を用いる携帯電話やノートパソコン、PDA等の各種電子機器のサイズを小さく抑えることができる。
【0033】
尚、本発明は、図1と図2を用いて説明した例に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能である。例えば、本例では、テスト用制御回路20を、発振回路7内に設けた構成としているが、このテスト用制御回路20を、発振回路7の外に設けた構成としても良い。
【0034】
また、本例のテスト用制御回路20では、定電流25,27を増加接続するためのスイッチ手段として、Pチャネルトランジスタ23,24を設けて定電流25,27を増加接続しているが、Nチャネルトランジスタ等、他のスイッチング素子を用いることでも良い。
【0035】
【発明の効果】
本発明によれば、2次電池を過充電、過放電、過電流から保護する回路のテストを効率化し、当該保護回路を用いたバッテリパックおよび当該バッテリパックを用いた携帯電話やノートパソコン、PDA等の各種電子機器の製造工程の効率化を図ることが可能である。
【0036】
また、本発明では、Cout端子(過充電検出出力端子)のハイレベル設定値とVss端子(グランド端子)より低いレベルのV−端子(充電器マイナス電位入力端子)設定値で、発振回路の周波数を高くして、過充電検出動作のテストを行っており、2次電池保護用ICに一般的に設けられている端子を用いることができ、テスト用の特別な端子を設ける必要はない。
【0037】
さらに、本発明では、発振回路の周波数を高くするための回路として、ヒステリシスインバータとインバータおよびNAND回路を用いており、回路規模を小さく抑えることが可能である。
【図面の簡単な説明】
【図1】本発明に係わる2次電池保護用ICとそれを用いたバッテリパックの構成例を示すブロック図である。
【図2】図1における2次電池保護用ICに設けられた発振回路とその周波数を変更するためのテスト用制御回路の構成例を示すブロック図である。
【図3】従来の2次電池保護用ICの構成例を示すブロック図である。
【符号の説明】
1:2次電池保護用IC(「保護装置」)、2:過充電検出回路、2a,2b:コンパレータ、3:過放電検出回路、3a,3b:コンパレータ、4:過電流検出回路、5:短絡検出回路、6:異常充電器検出回路、6a:NチャネルFET、7:発振回路、8:カウンタ回路、9a,9b:ロジック回路、10:レベルシフト、11:バッテリパック、12:プラス側端子、13:マイナス側端子、14:充電器、15:2次電池セル、20:テスト用制御回路、23,24:Pチャネルトランジスタ(スイッチ回路)、25,27:定電流(電流増加回路)、26,28:定電流、29,30:コンデンサ、31,32:インバータ、33:ヒステリシスインバータ、34:インバータ、35:NAND回路、C:コンデンサ、R:抵抗、Vdd:基盤電位端子、Vss:グランド端子、Dout:過放電検出出力端子、Cout:過充電検出出力端子、V−:充電器マイナス電位入力端子。
[0001]
BACKGROUND OF THE INVENTION
The present invention overcharges and overcharges a secondary battery such as a lithium (Li) ion / lithium (Li) polymer secondary battery of a battery pack used in various electronic devices such as a mobile phone, a notebook computer, and a PDA (Personal Digital Assistance). The present invention relates to technology for protecting against discharge and overcurrent, and particularly relates to a secondary battery protection IC capable of improving the efficiency of overcharge, overdischarge and overcurrent detection confirmation tests, and battery packs and electronic devices using the same. is there.
[0002]
[Prior art]
For example, Patent Document 1 discloses a conventional technique for protecting secondary batteries of battery packs used in various electronic devices such as mobile phones, notebook computers, and PDAs (Personal Digital Assistance) from overcharge, overdischarge, and overcurrent. There is a technology.
[0003]
In this prior art, as shown in FIG. 3, a timer circuit including an internal oscillator and a frequency dividing counter and a latch circuit (LT2) are provided so that a delay time is provided when overcharge, overdischarge, and overcurrent are detected. In particular, the internal impedance of the secondary battery (lithium (Li) ion battery) prevents the battery voltage (VCC) from being temporarily determined to be lower than the end voltage and erroneously determined that the discharge voltage itself is lower than the end voltage. can do.
[0004]
In the conventional technique, the delay time when detecting overcharge, overdischarge, and overcurrent can all be determined by the internal oscillation circuit and the counter. Therefore, an external capacitor for determining the delay time is not necessary, and the number of parts of the protection circuit board can be reduced.
[0005]
When testing a protection circuit board provided with such an internal oscillation circuit and a counter, the delay time when overdischarge and overcurrent are detected is generally about 20 mS (milliseconds), so the test time is very long. Although there is no effect, the delay time when detecting overcharge is usually set to about a few seconds. Therefore, when testing the overcharge detection operation, a time of several seconds or more is necessary.
[0006]
In particular, when measuring (testing) an accurate overcharge detection voltage value, a waiting time of several seconds or more is required every time the voltage is stepped. Therefore, assuming that the detection voltage can be measured in 25 steps, the waiting time Is 2 seconds, the time required to measure the overcharge detection voltage value is 50 seconds, which is not at a level where mass production is possible.
[0007]
[Patent Document 1]
JP-A-9-182283
[Problems to be solved by the invention]
The problem to be solved is that in the conventional technology, the delay time for overcharge detection in the protection circuit of the secondary battery is set to about several seconds, and it takes time to test the overcharge detection operation. Is a point.
[0009]
The object of the present invention is to solve these problems of the prior art, improve the efficiency of a test of a circuit for protecting a secondary battery from overcharge, overdischarge, and overcurrent, and to provide a battery pack using the protection circuit and the battery pack. The purpose is to increase the efficiency of the manufacturing process of various electronic devices such as mobile phones, notebook computers, and PDAs used.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, when testing the overcharge detection operation of the secondary battery protection IC, the delay time for overcharge detection is shortened by increasing the frequency of the oscillation circuit. It is characterized by shortening the time required. In particular, in order to increase the frequency of the oscillation circuit, the value of the constant current that determines the oscillation frequency is increased. In order to increase the value of the constant current, the values of the overcharge detection output terminal (Cout), the ground terminal (Vss), and the charger minus potential input terminal (V−) are input, and the overcharge detection output The terminal (Cout) is at a level at which the charge control FET is turned on (high level when the charge control FET is N-channel) , and the charger minus potential input terminal (V−) is at a level lower than the ground terminal (Vss). When set, an additional constant current circuit is additionally connected.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 is a block diagram showing a configuration example of a secondary battery protection IC and a battery pack using the same according to the present invention, and FIG. 2 shows an oscillation circuit provided in the secondary battery protection IC in FIG. 2 is a block diagram showing a configuration example of a test control circuit for changing the frequency thereof.
[0013]
In FIG. 1, 1 is a secondary battery protection IC according to the present invention (denoted as “protection device” in the figure), 2 is an overcharge detection circuit comprising comparators 2a and 2b, and 3 is an overdischarge comprising comparators 3a and 3b. Detection circuit, 4 is an overcurrent detection circuit, 5 is a short circuit detection circuit, 6 is an abnormal charger detection circuit, 6a is an N-channel FET, 7 is an oscillation circuit, 8 is a counter circuit, 9a and 9b are logic circuits, and 10 is a level. Shift, 11 is a battery pack, 12 is a positive terminal, 13 is a negative terminal, 14 is a charger, 15 is a secondary battery cell such as a lithium (Li) ion / lithium (Li) polymer secondary battery, C Is a capacitor, R is a resistor, Vdd is a base potential terminal of the secondary battery protection IC1, Vss is a ground terminal of the secondary battery protection IC1, Dout is an overdischarge detection output terminal, and Cout is overcharged. Detection output terminal, V- is charger negative potential input terminal.
[0014]
The battery pack 11 using the secondary battery protection IC 1 of this example is used for various electronic devices such as a mobile phone, a notebook computer, and a PDA.
[0015]
As shown in FIG. 1, the secondary battery protection IC 1 provided in the battery pack 11 of this example is roughly composed of an overcharge detection circuit 2, an overdischarge detection circuit 3, an overcurrent detection circuit 4, and a short circuit detection circuit 5. And an abnormal charger detection circuit 6, an oscillation circuit 7, and a counter circuit 8, and detects overcharge, overdischarge, overcurrent, etc. of the secondary battery cell 15 to overcharge, overdischarge the secondary battery cell 15. And protect against overcurrent.
[0016]
For example, when different overcharge, overdischarge, or short circuit is detected by the overcharge detection circuit 2, the overdischarge detection circuit 3, or the short circuit detection circuit 5, the oscillation circuit 7 starts to operate and the counter circuit 8 starts to operate.
[0017]
When the delay time set at each detection is counted, the output of the Cout terminal becomes low level in the case of overcharge through the logic circuits 9a and 9b and the level shift 10, and the charge control FET is turned off and over. In the case of discharge or short circuit, the output of the Dout terminal is at a low level, and the discharge control FET is turned off.
[0018]
The abnormal charger detection circuit 6 is connected to the input of the overcurrent detection circuit 4 and the short-circuit detection circuit 5 when the abnormal charger 14 or the like is connected and a large voltage is applied to the battery pack 11. This is a circuit for preventing the shift of the overcurrent detection voltage value and the short-circuit detection voltage value due to the change with time of Vth of the transistor by turning off the FET switch 6a so that no potential is applied.
[0019]
In the secondary battery protection IC 1 having such a configuration, the delay time when overdischarge is detected is usually about 20 mS (milliseconds), the delay time when overcurrent is detected is about 10 mS, and the delay time when short circuit is detected is about 1 mS. However, the delay time when overcharge is detected is 1 S (seconds) or more.
[0020]
In the secondary battery protection IC 1 of this example, as shown in FIG. 2, a test control circuit 20 is provided in the oscillation circuit 7, and the Cout terminal is connected when the secondary battery protection IC 1 is tested. The test time is shortened by increasing the frequency of the oscillation circuit 7 and shortening the delay time by fixing the V-terminal at a high level (in a state where no overcharge is detected) and a level lower than the Vss terminal.
[0021]
That is, the oscillation circuit 7 shown in FIG. 2 is a ring oscillator using a constant current inverter and a capacitor, and a normal oscillation frequency includes constant current values of constant currents 26 and 28, values of capacitors 29 and 30, inverters 31, It is determined by the threshold of 32, and the delay time when overcharge is detected is 1 S (seconds) or more.
[0022]
However, in this example, in the test control circuit 20, the values of the Cout terminal (overcharge detection output terminal), the Vss terminal (ground terminal), and the V− terminal (charger minus potential input terminal) are input, When the charge detection output terminal (Cout) is set to a high level and the charger minus potential input terminal (V−) is set to a level lower than the ground terminal (Vss), the P-channel transistors 23 and 24 as switch circuits are turned on. The current values of the constant currents 25 and 27 as the current increasing circuit are added, and the frequency of the oscillation circuit 7 is increased.
[0023]
The test control circuit 20 of this example gives a hysteresis characteristic to the value of the charger minus potential input terminal (V−), inverts the low level input from the ground terminal (Vss), and outputs a high level hysteresis inverter 33. And an inverter 34 for inputting the high level output of the hysteresis inverter and inverting the low level output, and inputting the low level output of the inverter 34 and the high level signal of the overcharge detection output terminal (Cout) to output the low level. NAND circuit 35 to be turned on, P channel transistors 23 and 24 that are turned on by the low level output of NAND circuit 35, and the constant current value that determines the frequency of oscillation circuit 7 is increased by the on operation of P channel transistors 23 and 24. And a constant current 25, 27 as a current increasing circuit .
[0024]
The Cout terminal is normally at a high level. When the low level of the normal Vss terminal is input to the input of the hysteresis inverter 33 of the test control circuit 20, the output of the hysteresis inverter 33 is high and the output of the inverter 34 is low. Thus, the input of the NAND circuit 35 becomes the high level of the Cout terminal and the low level output of the inverter 34, and the output becomes the high level.
[0025]
Thus, when the output of the NAND circuit 35 becomes high level, since the gate voltages of the P channel transistors 23 and 24 are high level, the P channel transistors 23 and 24 are turned off. Accordingly, the oscillation frequency of the oscillation circuit 7 in this case is determined by the values of the constant currents 26 and 28 and the capacitors 29 and 30.
[0026]
However, when testing the overcharge detection operation of the secondary battery protection IC, if the Cout terminal remains at the high level and the V− terminal is lowered to a level lower than the Vss terminal, the high level is input to the hysteresis inverter 33. Therefore, the output of the hysteresis inverter 33 is low level, the output of the inverter 34 is high level, the input of the NAND circuit 35 is high level of the Cout terminal and the high level output of the inverter 34, and the output is low level. .
[0027]
Thus, when the output of the NAND circuit 35 becomes low level, since the gate voltages of the P channel transistors 23 and 24 are low level, the P channel transistors 23 and 24 are turned on, and the oscillation frequency of the oscillation circuit 7 is determined. The constant current values are constant current 26 + constant current 25, constant current 28 + constant current 27, and the oscillation frequency increases.
[0028]
As a result, the delay time when overcharge is detected can be shortened. For example, when the ratio of the constant current 26 to the constant current 25 and the ratio of the constant current 28 to the constant current 27 is 1: 9, the delay time can be reduced to 1/10. In this case, the test time of the secondary battery protection IC 1 can be shortened to 1/10.
[0029]
As described above with reference to FIGS. 1 and 2, in this example, when the overcharge detection operation of the secondary battery protection IC 1 is tested, the frequency of the oscillation circuit 7 is increased to detect overcharge. The delay time can be shortened, and the time required for the test can be shortened. In particular, in this example, in order to increase the frequency of the oscillation circuit during the test, the value of the constant current that determines the oscillation frequency is increased.
[0030]
In order to increase the value of the constant current, in this example, the P channel transistors 23 and 24 for additionally connecting the constant currents 25 and 27 and the P channel transistors 23 and 24 are connected to the Cout terminal (overcharge). Hysteresis inverter 33 and inverter 34 for ON control based on the high level set value of the detection output terminal) and the set value of the V− terminal (charger minus potential input terminal) lower than the Vss terminal (ground terminal). In addition, a test control circuit 20 including a NAND element 35 is provided.
[0031]
In particular, the test control circuit 20 in this example includes a high-level set value of Cout terminal (overcharge detection output terminal), lower than Vss terminal (ground terminal) level V- terminal (charger negative potential input terminal) The frequency of the oscillation circuit 7 is increased by the set value, and only a terminal provided in the normal secondary battery protection IC 1 is required, and it is not necessary to provide a special test terminal.
[0032]
Further, in this example, the test control circuit 20 includes a hysteresis inverter 33, an inverter 34, and a NAND element 35, so that the circuit scale can be kept small, and the battery provided with the secondary battery protection IC 1 of this example is provided. The size of the pack 11 and various electronic devices such as a mobile phone, a notebook computer, and a PDA that use the battery pack 11 can be kept small.
[0033]
In addition, this invention is not limited to the example demonstrated using FIG. 1 and FIG. 2, It can change variously in the range which does not deviate from the summary. For example, in this example, the test control circuit 20 is provided in the oscillation circuit 7, but the test control circuit 20 may be provided outside the oscillation circuit 7.
[0034]
In the test control circuit 20 of this example, P channel transistors 23 and 24 are provided as the switching means for increasing the constant currents 25 and 27 and the constant currents 25 and 27 are increased. Other switching elements such as channel transistors may be used.
[0035]
【The invention's effect】
According to the present invention, it is possible to efficiently test a circuit that protects a secondary battery from overcharge, overdischarge, and overcurrent. A battery pack using the protection circuit, a mobile phone, a notebook computer, and a PDA using the battery pack are provided. It is possible to improve the efficiency of the manufacturing process of various electronic devices.
[0036]
Further, in the present invention, a high-level set value of Cout terminal (overcharge detection output terminal), the setting value of Vss terminals (ground terminals) lower levels of the V- terminal (charger negative potential input terminal), the oscillator circuit The terminal of the secondary battery protection IC can be used, and there is no need to provide a special test terminal. .
[0037]
Furthermore, in the present invention, a hysteresis inverter, an inverter, and a NAND circuit are used as a circuit for increasing the frequency of the oscillation circuit, so that the circuit scale can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of a secondary battery protection IC and a battery pack using the same according to the present invention.
2 is a block diagram showing a configuration example of an oscillation circuit provided in the secondary battery protection IC in FIG. 1 and a test control circuit for changing the frequency thereof. FIG.
FIG. 3 is a block diagram showing a configuration example of a conventional secondary battery protection IC.
[Explanation of symbols]
1: secondary battery protection IC ("protection device"), 2: overcharge detection circuit, 2a, 2b: comparator, 3: overdischarge detection circuit, 3a, 3b: comparator, 4: overcurrent detection circuit, 5: Short circuit detection circuit, 6: abnormal charger detection circuit, 6a: N-channel FET, 7: oscillation circuit, 8: counter circuit, 9a, 9b: logic circuit, 10: level shift, 11: battery pack, 12: positive terminal , 13: negative terminal, 14: charger, 15: secondary battery cell, 20: test control circuit, 23, 24: P-channel transistor (switch circuit), 25, 27: constant current (current increase circuit), 26, 28: constant current, 29, 30: capacitor, 31, 32: inverter, 33: hysteresis inverter, 34: inverter, 35: NAND circuit, C: capacitor, R: resistance Vdd: base potential terminal, Vss: Ground terminals, Dout: overdischarge detection output terminal, Cout: overcharge detection output terminal, V-: Charger negative potential input terminal.

Claims (4)

2次電池の過充電、過放電および過電流を検出して、充電制御用FETまたは放電制御用FETをオフにすることにより、2次電池を過充電、過放電および過電流から保護する2次電池保護用ICであって、
過充電、過放電および過電流の検出時間を遅延させるための発振回路およびカウンタ回路と、
過充電検出出力端子(Cout)とグランド端子(Vss)および充電器マイナス電位入力端子(V−)のそれぞれの値を入力とし、上記過充電検出出力端子(Cout)が前記充電制御用FETをオン状態にするレベル、上記充電器マイナス電位入力端子(V−)が上記グランド端子(Vss)より低いレベルに設定されると上記発振回路の周波数を高くするテスト用制御回路と
を有することを特徴とする2次電池保護用IC。
Secondary battery is protected from overcharge, overdischarge and overcurrent by detecting overcharge, overdischarge and overcurrent of the secondary battery and turning off the charge control FET or discharge control FET. A battery protection IC,
An oscillation circuit and a counter circuit for delaying detection times of overcharge, overdischarge and overcurrent;
The values of the overcharge detection output terminal (Cout), the ground terminal (Vss), and the charger minus potential input terminal (V−) are input, and the overcharge detection output terminal (Cout) turns on the charge control FET. And a test control circuit for increasing the frequency of the oscillation circuit when the charger minus potential input terminal (V−) is set to a level lower than the ground terminal (Vss). IC for secondary battery protection.
請求項1に記載の2次電池保護用ICであって、
上記テスト用制御回路は、
上記充電器マイナス電位入力端子(V−)の値ヒステリシス特性を持たせて上記グランド端子(Vss)からの入力をローレベル出力するヒステリシスインバータと、
該ヒステリシスインバータのローレベル出力を入力してハイレベルに反転出力するインバータと、
該インバータのハイレベル出力と上記過充電検出出力端子(Cout)のハイレベル信号を入力してローレベル出力するNAND回路と、
該NAND回路のローレベル出力によりオンするスイッチ回路と、
該スイッチのオン動作により上記発振回路の周波数を決めている定電流値を増加させる電流増加回路と
を有することを特徴とする2次電池保護用IC。
The secondary battery protection IC according to claim 1,
The test control circuit is
A hysteresis inverter that gives a hysteresis characteristic to the value of the charger minus potential input terminal (V−) and outputs the input from the ground terminal (Vss) at a low level;
An inverter that inputs a low level output of the hysteresis inverter and inverts it to a high level;
A NAND circuit that inputs a high level output of the inverter and a high level signal of the overcharge detection output terminal (Cout) and outputs a low level;
A switch circuit that is turned on by a low-level output of the NAND circuit;
A secondary battery protection IC comprising: a current increasing circuit that increases a constant current value that determines a frequency of the oscillation circuit by an ON operation of the switch.
請求項1もしくは請求項2のいずれかに記載の2次電池保護用ICを用いたことを特徴とするバッテリパック。  A battery pack using the secondary battery protection IC according to claim 1. 請求項3に記載のバッテリパックを用いたことを特徴とする電子機器。  An electronic device using the battery pack according to claim 3.
JP2003170814A 2003-06-16 2003-06-16 Secondary battery protection IC and battery pack and electronic device using the same Expired - Lifetime JP3948435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170814A JP3948435B2 (en) 2003-06-16 2003-06-16 Secondary battery protection IC and battery pack and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170814A JP3948435B2 (en) 2003-06-16 2003-06-16 Secondary battery protection IC and battery pack and electronic device using the same

Publications (2)

Publication Number Publication Date
JP2005012852A JP2005012852A (en) 2005-01-13
JP3948435B2 true JP3948435B2 (en) 2007-07-25

Family

ID=34095511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170814A Expired - Lifetime JP3948435B2 (en) 2003-06-16 2003-06-16 Secondary battery protection IC and battery pack and electronic device using the same

Country Status (1)

Country Link
JP (1) JP3948435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7764109B2 (en) 2008-02-26 2010-07-27 Ricoh Company, Ltd. Semiconductor device and voltage divider circuit

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535910B2 (en) * 2005-03-16 2010-09-01 株式会社リコー Secondary battery protection circuit, battery pack and electronic device
JP5036148B2 (en) * 2005-07-25 2012-09-26 Necエナジーデバイス株式会社 Secondary battery pack
JP4667157B2 (en) * 2005-08-08 2011-04-06 株式会社リコー Secondary battery protection semiconductor device
JP4415131B2 (en) 2005-10-31 2010-02-17 ミツミ電機株式会社 Battery protection device and battery protection circuit
JP4539582B2 (en) * 2006-02-21 2010-09-08 ミツミ電機株式会社 Charge protection circuit
JP4965203B2 (en) * 2006-09-11 2012-07-04 株式会社リコー Delay time generation circuit, secondary battery protection semiconductor device using the same, battery pack and electronic device
JP5064746B2 (en) * 2006-09-13 2012-10-31 株式会社リコー SECONDARY BATTERY PROTECTION SEMICONDUCTOR DEVICE, BATTERY PACK AND ELECTRONIC DEVICE CONTAINING THE SECONDARY BATTERY PROTECTION SEMICONDUCTOR
JP5439800B2 (en) * 2008-12-04 2014-03-12 ミツミ電機株式会社 Secondary battery protection integrated circuit device, secondary battery protection module using the same, and battery pack
GB2563489B (en) 2018-04-19 2019-12-04 O2Micro Inc Battery protection systems
GB2577814B (en) * 2018-04-19 2021-02-03 O2Micro Inc Battery protection systems
CN109831001B (en) * 2019-01-29 2024-06-04 福建省福芯电子科技有限公司 MOS tube driving circuit and lithium battery protection IC
CN113892221A (en) * 2019-06-27 2022-01-04 三洋电机株式会社 Battery pack and abnormality monitoring method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7764109B2 (en) 2008-02-26 2010-07-27 Ricoh Company, Ltd. Semiconductor device and voltage divider circuit

Also Published As

Publication number Publication date
JP2005012852A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US7772805B2 (en) Charge/discharge protection circuit utilizing a charger connection recovery circuit that cycles a discharge control transistor on and off while a battery is over-discharged during charging
US7816890B2 (en) Semiconductor unit for protecting secondary battery, battery pack having the semiconductor unit built-in and electronic apparatus using it
US6501248B2 (en) Charge/discharge protection apparatus having a charge-state overcurrent detector, and battery pack including the same
US7710076B2 (en) Back-gate voltage generator circuit, four-terminal back gate switching FET, and charge and discharge protection circuit using same
JP5434168B2 (en) Secondary battery protection semiconductor device, battery pack and electronic device using the same
US8581556B2 (en) Protection circuit and battery pack having current varying circuit to vary current flowing through power terminal
JP3948435B2 (en) Secondary battery protection IC and battery pack and electronic device using the same
JP2009072002A (en) Charge-and-discharge protective circuit, battery pack incorporating the same, and electronic apparatus using its battery pack
JP4535910B2 (en) Secondary battery protection circuit, battery pack and electronic device
JP3498736B2 (en) Charge / discharge protection circuit, battery pack incorporating the charge / discharge protection circuit, and electronic device using the battery pack
JP5428675B2 (en) Secondary battery protection circuit, battery pack and electronic equipment
JP2005168159A (en) Overcurrent protection circuit and charging type battery pack
JP3794547B2 (en) Semiconductor device having test function, charge / discharge protection circuit, battery pack incorporating the charge / discharge protection circuit, and electronic apparatus using the battery pack
KR20180047178A (en) Battery protection circuit for common use of csr supporting ic
JP2001268810A (en) Charge/discharge protection circuit, battery pack incorporating the same, electronic equipment using the same
JP2005168160A (en) Overcurrent protection circuit and charging type battery pack
KR102220900B1 (en) Battery Protection Circuit and Battery Pack Including The Same
JP2006211761A (en) Semiconductor device for monitoring lithium-ion secondary battery, and its test method
JP2010109606A (en) Counter circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3948435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term