JP3948255B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3948255B2
JP3948255B2 JP2001346207A JP2001346207A JP3948255B2 JP 3948255 B2 JP3948255 B2 JP 3948255B2 JP 2001346207 A JP2001346207 A JP 2001346207A JP 2001346207 A JP2001346207 A JP 2001346207A JP 3948255 B2 JP3948255 B2 JP 3948255B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
air
fuel ratio
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001346207A
Other languages
Japanese (ja)
Other versions
JP2003148201A (en
Inventor
池本  宣昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001346207A priority Critical patent/JP3948255B2/en
Publication of JP2003148201A publication Critical patent/JP2003148201A/en
Application granted granted Critical
Publication of JP3948255B2 publication Critical patent/JP3948255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、触媒の状態を考慮し空燃比制御することで排出ガス浄化率を向上可能な内燃機関の排気浄化装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関の排気浄化装置に関連する先行技術文献としては、特開平9−88688号公報にて開示されたものが知られている。このものでは、車両の市街地走行の信号待ち等における長い停車時に内燃機関を自動的に停止させ、この後、キー操作等の始動操作なしで内燃機関を再始動させる自動始動停止制御(エコラン制御ともいう)のための所謂、アイドルストップ機構を搭載し、排出ガスの空燃比を検出する酸素濃度(空燃比)センサの活性状態に応じて、空燃比制御における空燃比フィードバック制御を好適に実行し、早期に理論空燃比に制御することで内燃機関の再始動時のエミッション悪化を抑制する技術が示されている。
【0003】
【発明が解決しようとする課題】
ところで、前述の内燃機関のアイドルストップ機構を搭載した車両や内燃機関と電動モータとを搭載したハイブリッド車両では、内燃機関を搭載した車両がそれまで無駄にしていた車両停止中の燃料消費を低減するため内燃機関の自動停止及び再始動を頻繁に繰返すこととなる。この際、再始動時や再始動直後に内燃機関の排出ガスを浄化する触媒の状態が考慮されておらず、触媒の最適な浄化率が得られる空燃比で燃焼が行なわれないことで、再始動時や再始動直後のエミッションが悪化するという不具合があった。
【0004】
そこで、この発明はかかる不具合を解決するためになされたもので、内燃機関のアイドルストップ機構を搭載した車両や内燃機関と電動モータとを搭載するハイブリッド車両において、内燃機関の自動停止後の再始動時に触媒の状態を考慮した空燃比制御により良好なエミッションを確保可能な内燃機関の排気浄化装置の提供を課題としている。
【0005】
【課題を解決するための手段】
請求項1の内燃機関の排気浄化装置によれば、触媒状態制御手段で自動始動停止制御手段による内燃機関の自動停止直前に三元触媒の酸素ストレージ量を消費、即ち、中立状態から空燃比リッチ相当側となるよう意図的に遷移させ、自動停止後の再始動時の空燃比制御では三元触媒に不足している酸素を供給させるため、酸素濃度センサで検出される空燃比がリーン側となるよう燃料噴射制御手段によって燃料噴射される。これにより、内燃機関の自動停止後の再始動時における三元触媒の酸素ストレージ量が素早く中立状態に復帰されるため良好なエミッションが確保される。
【0006】
請求項2の内燃機関の排気浄化装置における燃料噴射制御手段では、内燃機関の自動停止直前に空燃比がリッチとなる燃料噴射量が供給されることで、三元触媒の酸素ストレージ量が消費される。このため、内燃機関の再始動時に空燃比がリーン側となるよう空燃比制御されることで、三元触媒の酸素ストレージ量が素早く中立状態に復帰されるため良好なエミッションが確保される。
【0007】
請求項3の内燃機関の排気浄化装置における燃料噴射制御手段では、例えば、内燃機関が直噴エンジンであるときには、内燃機関の自動停止直前の膨張行程または排気行程で内燃機関の燃焼室内に向けて燃料噴射されることで、燃料噴射による燃料量が燃焼されずにそのまま三元触媒に到達することとなる。このため、内燃機関の自動停止時の三元触媒の酸素ストレージ量が空燃比リッチ相当側に設定される。これにより、内燃機関の再始動時に空燃比がリーン側となるよう空燃比制御されることで、三元触媒の酸素ストレージ量が素早く中立状態に復帰されるため良好なエミッションが確保される。
【0008】
請求項4の内燃機関の排気浄化装置における燃料噴射制御手段では、触媒温度推定手段で検出または推定された三元触媒の温度が、内燃機関の自動停止後の再始動時に所定値以下であると三元触媒が活性状態になく空燃比のリーン制御に対応できないため、三元触媒を活性状態とするための昇温制御が優先的に実施される。これにより、三元触媒が速やかに活性状態に復帰され、エミッション悪化が抑制される。
【0009】
請求項5の内燃機関の排気浄化装置では、内燃機関に導入される外気温、内燃機関の自動停止時からの経過時間としての停止時間、排出ガスの温度のうち1つ以上を用いて三元触媒の温度が推定されることで、三元触媒の温度状況が的確に推定される。
【0010】
請求項6の内燃機関の排気浄化装置では、酸素濃度センサが内燃機関の自動停止中も活性状態に保持されることで、自動停止後の再始動時に直ちに的確な空燃比制御が実施でき三元触媒の酸素ストレージ量が素早く中立状態に復帰されるため良好なエミッションが確保される。
【0011】
請求項7の内燃機関の排気浄化装置における燃料噴射制御手段では、内燃機関の自動停止後の再始動時に空燃比のリーン制御が禁止されるような条件となると、酸素濃度センサの活性状態を保持することが禁止されるため、省電力化が図られる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0013】
図1は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置が適用された内燃機関とその周辺機器を示す概略構成図である。
【0014】
図1において、内燃機関1は直列4気筒4サイクルの火花点火式として構成され、その吸入空気は上流側からエアクリーナ2、吸気通路3、スロットルバルブ4、サージタンク5及びインテークマニホルド6を通過し、インテークマニホルド6内でインジェクタ(燃料噴射弁)7から噴射された燃料と混合され、所定空燃比の混合気として各気筒に分配供給される。また、内燃機関1の各気筒に設けられた点火プラグ8には、点火回路9から供給される高電圧がディストリビュータ10にて分配供給され、各気筒の混合気が所定タイミングにて点火される。そして、燃焼後の排出ガスはエキゾーストマニホルド11及び排気通路12を通過し、排気通路12に設けられ、白金やロジウム等の触媒成分とセリウムやランタン等の添加物を担持した三元触媒13にて有害成分であるCO(一酸化炭素)、HC(炭化水素)、NOx (窒素酸化物)等が浄化され大気中に排出される。
【0015】
内燃機関1の図示しない出力軸(クランク軸)には、トルクコンバータを用いたオートマチックトランスミッション(以下、単に、『AT』と記す)14が連結されており、このAT14より延びる出力軸(ドライブシャフト)15の回転により車両が走行される。この出力軸15には車速センサ16が設けられ、車両の速度としての車速Vが検出される。
【0016】
また、エアクリーナ2の下流側の吸気通路3にはエアフローメータ21が設けられ、このエアフローメータ21にてエアクリーナ2を通過する単位時間当たりの吸入空気量QAが検出される。また、スロットルバルブ4にはスロットル開度センサ22が設けられ、このスロットル開度センサ22にてスロットル開度TAに応じたアナログ信号が検出されると共に、スロットルバルブ4がほぼ全閉であることが図示しないアイドルスイッチからの「ON(オン)」/「OFF(オフ)」信号によって検出される。また、内燃機関1のシリンダブロックには水温センサ23が設けられ、この水温センサ23にて内燃機関1の冷却水温THWが検出される。
【0017】
そして、ディストリビュータ10には回転角センサ24が設けられ、この回転角センサ24にて内燃機関1の機関回転数NEが検出される。回転角センサ24からは内燃機関1のクランクシャフトの2回転、即ち、720〔°CA(Crank Angle:クランク角)〕毎に24個のパルス信号が出力される。更に、排気通路12の三元触媒13の上流側には、内燃機関1の排出ガスの空燃比λに応じたリニアな電圧信号VOX1を出力する酸素濃度センサ25が設けられている。この空燃比λの逆数が後述の実際の当量比φである。また、酸素濃度センサ25には、この酸素濃度センサ25を活性状態に保持するためのヒータ26が付設されている。
【0018】
内燃機関1の運転状態を制御するECU(Electronic Control Unit:電子制御ユニット)30は、周知の各種演算処理を実行する中央処理装置としてのCPU31、制御プログラムや制御マップを格納したROM32、各種データを格納するRAM33、B/U(バックアップ)RAM34等を中心に論理演算回路として構成され、各種センサからの検出信号を入力する入力ポート35及び各種アクチュエータ等に制御信号を出力する出力ポート36等に対しバス37を介して接続されている。
【0019】
このECU30には、入力ポート35を介して車速センサ16からの車速V、エアフローメータ21からの吸入空気量QA、スロットル開度センサ22からのスロットル開度TA、水温センサ23からの冷却水温THW、回転角センサ24からの機関回転数NE等の各種センサ信号が入力され、それらに基づいて燃料噴射量TAU、点火時期Ig等が算出され、出力ポート36を介してインジェクタ7及び点火回路9等にそれぞれ制御信号が出力される。
【0020】
また、ECU30に入力される酸素濃度センサ25からの電圧信号VOX1によって、排出ガスに基づく混合気の空燃比判定が行われる。そして、ECU30はリッチからリーンに反転したとき及びリーンからリッチに反転したときには燃料噴射量を増減すべく、後述の空燃比F/B(フィードバック)補正係数としてのFAF値を階段状に大きく変化(スキップ)させると共に、リーンまたはリッチが連続するときには空燃比F/B補正係数FAF値を徐々に増減させるようになっている。なお、この空燃比F/B制御は内燃機関1の冷却水温THWが低いときや機関高負荷・高回転走行時には実施されない。また、後述のように、ECU30は機関回転数NEと吸入空気量QAとにより基本燃料噴射量(基本燃料噴射時間)を求め、この基本燃料噴射量に対し空燃比F/B補正係数FAF等による補正を行って最終の燃料噴射量(燃料噴射時間)TAUを算出し、インジェクタ7に所定の噴射タイミングでの燃料噴射を行わせる。
【0021】
なお、ECU30にて、酸素濃度センサ25からの電圧信号VOX1による空燃比λの逆数である実際の当量比φと後述の目標当量比φref 演算ルーチンで算出される目標当量比φref との偏差を小さくするよう燃料噴射量TAUがF/B補正され、後述の三元触媒13の酸素ストレージ量OSが中立状態に維持される。
【0022】
上述の各種センサの他、ECU30には、以下のスイッチ類からのSW(スイッチ)信号が入力される。車室内の例えば、操作パネルには、エコランを実施するという意向を基に運転者により操作されるエコランSW41が設けられている。また、AT14にはニュートラル位置を検出するニュートラルSW42が設けられている。そして、図示しないブレーキペダルには、踏込んだときに「ON」となるブレーキSW43が設けられている。また、ECU30は、エコランSW41の指示や車両状態に応じて自動的に内燃機関1を停止またはスタータ44を駆動し再始動させる。
【0023】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31における空燃比制御について、図2乃至図10を参照して説明する。ここで、図10は本実施例の空燃比制御に対応する各種制御量の遷移状態を示すタイムチャートであり、本実施例を実線にて示し、比較のために従来例を破線にて示す。
【0024】
《空燃比制御のメインルーチン:図2参照》
空燃比制御ルーチンを図2に基づいて説明する。なお、この空燃比制御ルーチンは所定時間毎にCPU31にて繰返し実行される。
【0025】
図2において、まず、ステップS101で、後述の内燃機関停止判定処理が実行される。次にステップS102に移行して、後述の触媒温度推定処理が実行される。次にステップS103に移行して、後述の酸素濃度センサヒータ制御処理が実行される。次にステップS104に移行して、後述の目標当量比φref 演算処理が実行される。次にステップS105に移行して、後述の空燃比F/B補正係数FAF演算処理が実行される。次にステップS106に移行して、後述の燃料噴射量TAU演算処理が実行され、本ルーチンを終了する。
【0026】
〈内燃機関停止判定のサブルーチン:図3参照〉
内燃機関停止判定ルーチンを図3に基づいて説明する。
【0027】
図3において、まず、ステップS201で、内燃機関1が停止中であるかが判定される。ステップS201の判定条件が成立せず、即ち、内燃機関1が運転中であるときにはステップS202に移行し、エコランSW41が「ON」であるかが判定される。ステップS202の判定条件が成立、即ち、エコランSW41が「ON」であるときにはステップS203に移行し、ニュートラルSW42が「ON」であるかが判定される。ステップS203の判定条件が成立、即ち、ニュートラルSW42が「ON」でAT14のギヤ位置が「N」となっているときにはステップS204に移行し、その他の各種エコラン条件が成立するかが判定される。
【0028】
このエコラン条件としては、具体的に、内燃機関1の冷却水温THWが所定温度以上、車速Vが「0〔km/h〕」、車速Vが「0〔km/h〕」になってから所定時間経過、ブレーキSW43が「ON」、右折側のターンシグナルランプ(図示略)が「OFF」、内燃機関1がアイドル状態等が挙げられる。
【0029】
ステップS204の判定条件が成立、即ち、上記エコラン条件が全て成立するときにはステップS205に移行し、内燃機関1の自動停止前の空燃比リッチ化実施時間を設定する停止前リッチ化カウンタが所定値以上であるかが判定される。ステップS205の判定条件が成立せず、即ち、停止前リッチ化カウンタが所定値未満と小さいときにはステップS206に移行し、リッチ化フラグが「ON」とされる。次にステップS207に移行して、停止前リッチ化カウンタが「+1」インクリメントされたのち、本ルーチンを終了する。
【0030】
一方、ステップS205の判定条件が成立、即ち、停止前リッチ化カウンタが所定値以上と大きくなるとステップS208に移行し、内燃機関1を自動停止させるため燃料噴射量及び火花点火の停止処理が実施される(図10に示す時刻t2 )。次にステップS209に移行して、停止前リッチ化カウンタが「0(零)」にクリアされたのち、本ルーチンを終了する。一方、ステップS202の判定条件が成立せず、即ち、エコランSW41が「OFF」であるとき、またはステップS203の判定条件が成立せず、即ち、ニュートラルSW42が「OFF」でAT14のギヤ位置が「N」以外であるとき、またはステップS204の判定条件が成立せず、即ち、エコラン条件のうち何れか1つでも不成立のときには内燃機関1の運転中が継続され、本ルーチンを終了する。
【0031】
一方、ステップS201の判定条件が成立、即ち、内燃機関1が停止中であるときにはステップS210に移行し、ブレーキSW43が「OFF」であるかが判定される。ステップS210の判定条件が成立、即ち、ブレーキSW43が「OFF」で運転者によるブレーキペダルの踏込みが緩められ車両走行開始の意志があるときにはステップS211に移行し、内燃機関1を再始動させるため燃料噴射量及び火花点火の実行処理が実施されたのち(図10に示す時刻t3 )、本ルーチンを終了する。一方、ステップS210の判定条件が成立せず、即ち、ブレーキSW43が「ON」で運転者によってブレーキペダルが一杯まで踏込まれているときには、内燃機関1の自動停止中が継続され、本ルーチンを終了する。
【0032】
〈触媒温度推定のサブルーチン:図4及び図5参照〉
触媒温度推定ルーチンを図4に基づき、図5を参照して説明する。ここで、図5は、単位時間当たりの吸入空気量QA〔g /sec〕に対する触媒温度の初期値Tini 〔℃〕を算出するマップである。
【0033】
図4において、まず、ステップS301で、内燃機関1が停止中であるかが判定される。ステップS301の判定条件が成立、即ち、内燃機関1が停止中(図10に示す時刻t2 〜時刻t3 )であるときにはステップS302に移行し、三元触媒13の触媒温度TMPcat が次式(1)にて算出される。ここで、kは温度減衰係数、Tstopは内燃機関1の自動停止時からの停止時間である。なお、図5に示すように、触媒温度初期値Tini は吸入空気量QAが多いほど大きな値に設定される。
【0034】
【数1】
TMPcat =Tini −k・Tstop ・・・(1)
【0035】
次にステップS303に移行して、触媒温度TMPcat に対するガード処理が実行される。次にステップS304に移行して、触媒温度TMPcat が所定値以上であるかが判定される。ステップS304の判定条件が成立、即ち、触媒温度TMPcat が所定値以上と高いときには、本ルーチンを終了する。
【0036】
一方、ステップS304の判定条件が成立せず、即ち、触媒温度TMPcat が所定値未満と低いときにはステップS305に移行し、再始動時ストレージ制御が禁止され、本ルーチンを終了する。一方、ステップS301の判定条件が成立せず、即ち、内燃機関1が運転中であるときにはステップS306に移行し、触媒温度初期値Tini の更新として、触媒温度初期値Tini が触媒温度TMPcat とされたのち、本ルーチンを終了する。
【0037】
〈酸素濃度センサヒータ制御のサブルーチン:図6参照〉
酸素濃度センサヒータ制御ルーチンを図6に基づいて説明する。
【0038】
図6において、まず、ステップS401で、内燃機関1が停止中であるかが判定される。ステップS401の判定条件が成立、即ち、内燃機関1が停止中(図10に示す時刻t2 〜時刻t3 )であるときにはステップS402に移行し、次回始動時に酸素ストレージ制御を実施するかが判定される。ステップS402の判定条件が成立、即ち、次回始動時に酸素ストレージ制御を実施するとき、またはステップS401の判定条件が成立せず、即ち、内燃機関1が運転中であるときにはステップS403に移行し、通常のヒータ制御が実施されたのち、本ルーチンを終了する。
【0039】
一方、ステップS402の判定条件が成立せず、即ち、次回始動時に酸素ストレージ制御を実施しないときにはステップS404に移行し、省電力のためヒータ制御が停止されたのち、本ルーチンを終了する。
【0040】
〈目標当量比φref 演算のサブルーチン:図7参照〉
目標当量比φref 演算ルーチンを図7に基づいて説明する。
【0041】
図7において、まず、ステップS501で、内燃機関1が停止中であるかが判定される。ステップS501の判定条件が成立せず、即ち、内燃機関1が運転中であるときにはステップS502に移行し、リッチ化フラグが「ON」であるかが判定される。ステップS502の判定条件が成立せず、即ち、リッチ化フラグが「OFF」であるときにはステップS503に移行し、内燃機関1の運転中における目標当量比φref が算出され、本ルーチンを終了する。
【0042】
一方、ステップS502の判定条件が成立、即ち、リッチ化フラグが「ON」であるときにはステップS504に移行し、内燃機関1の自動停止前(図10に示す時刻t1 〜時刻t2 )のリッチ化目標値となる目標当量比φref が算出され、本ルーチンを終了する。一方、ステップS501の判定条件が成立、即ち、内燃機関1が停止中(図10に示す時刻t2 〜時刻t3 )であるときにはステップS505に移行し、触媒温度TMPcat が所定値以下であるかが判定される。ステップS505の判定条件が成立せず、即ち、触媒温度TMPcat が所定値を越え高く三元触媒13が活性状態を保持できるときにはステップS506に移行し、内燃機関1の再始動時(図10に示す時刻t3 )のリーン始動目標値となる目標当量比φref が算出され、本ルーチンを終了する。
【0043】
一方、ステップS505の判定条件が成立、即ち、触媒温度TMPcat が所定値以下と低く三元触媒13が活性状態を保持できないときにはステップS507に移行し、触媒暖機目標値となる目標当量比φref が算出され、本ルーチンを終了する。
【0044】
〈空燃比F/B補正係数FAF演算のサブルーチン:図8参照〉
空燃比F/B補正係数FAF演算ルーチンを図8に基づいて説明する。
【0045】
図8において、まず、ステップS601で、空燃比F/B制御条件が成立するかが判定される。この空燃比F/B制御条件が成立するのは、内燃機関1の冷却水温THWが所定温度以上、機関回転数NE及び負荷が高くないこと等である。ステップS601の判定条件が成立、即ち、空燃比F/B制御条件が全て成立するときにはステップS602に移行し、上述の目標当量比φref 演算ルーチンで求められた目標当量比φref が読込まれる。
【0046】
次にステップS603に移行して、酸素濃度センサ25の検出値が空燃比制御を維持し得る所定の範囲内であるかが判定される。ステップS603の判定条件が成立、即ち、酸素濃度センサ25の検出値が所定の範囲内であるときにはステップS604に移行し、ROM32内に予め記憶されている状態F/B系の最適F/BゲインIKn (n=1,2,3,4,A)が選択的に読込まれる。
【0047】
一方、ステップS603の判定条件が成立せず、即ち、酸素濃度センサ25の検出値が所定の範囲外であるときにはステップS605に移行し、ROM32内に予め記憶されている状態F/B系のF/Bゲインのうち、より低いF/BゲインIKn ′(n=1,2,3,4,A)が選択的に読込まれる。次にステップS606に移行して、ステップS604またはステップS605で選択的に読込まれたF/BゲインIKn (n=1,2,3,4)またはIKn ′(n=1,2,3,4)が次式(2)に代入され積分項ZI(K) が算出される。ここで、Ka は積分定数、φ(K) は実際の当量比である。
【0048】
【数2】
ZI(K) ←ZI(K-1) +Ka ・(φref −φ(K) ) ・・・(2)
【0049】
次にステップS607に移行して、空燃比F/B補正係数FAFが次式(3)にて算出され、本ルーチンを終了する。ここで、FAF(K-1) は1回前の空燃比F/B補正係数、FAF(K-2) は2回前の空燃比F/B補正係数、FAF(K-3) は3回前の空燃比F/B補正係数、K1 ,K2 ,K3 ,K4 はF/B定数である。
【0050】
【数3】

Figure 0003948255
【0051】
一方、ステップS601の判定条件が成立せず、即ち、空燃比F/B制御条件のうち1つでも成立しないときにはステップS608に移行し、空燃比F/B補正係数FAFが「1.0」にセットされ、本ルーチンを終了する。
【0052】
〈燃料噴射量TAU演算のサブルーチン:図9参照〉
燃料噴射量TAU演算ルーチンを図9に基づいて説明する。
【0053】
図9において、まず、ステップS701で、機関回転数NEと吸入空気量QAとに基づき基本燃料噴射量Tpが算出される。次にステップS702に移行して、上述の空燃比F/B補正係数FAF演算ルーチンで算出された空燃比F/B補正係数FAFが読込まれる。次にステップS703に移行して、最終の燃料噴射量TAUが次式(4)にて算出され、本ルーチンを終了する。ここで、FALLは空燃比制御以外の要素で燃料噴射量を補正するための補正係数である。
【0054】
【数4】
TAU←FAF・Tp・FALL ・・・(4)
【0055】
したがって、三元触媒13の酸素ストレージ量OSが、従来例の空燃比制御(図10に示す破線)では、内燃機関1の自動停止後の再始動時(図10に示す時刻t3 )の空燃比リーン相当の状態からなかなか中立状態に復帰されないが、上述の実施例の空燃比制御(図10に示す実線)によれば、内燃機関1の自動停止後の再始動時(図10に示す時刻t3 )の空燃比リッチ相当の状態から素早く中立状態に復帰されることが分かる。
【0056】
このように、本実施例の内燃機関の排気浄化装置は、内燃機関1の排気通路12途中に配設され、内燃機関1の排出ガスを浄化する三元触媒13と、内燃機関1の排出ガスの空燃比を検出する酸素濃度センサ25と、内燃機関1の所定の運転条件下における自動停止及びこの後の自動始動を制御するECU30にて達成される自動始動停止制御手段と、前記自動始動停止制御手段による内燃機関1の自動停止直前に三元触媒13の酸素ストレージ量OSを消費させるECU30にて達成される触媒状態制御手段と、内燃機関1に対し所定の空燃比となるよう燃料噴射すると共に、内燃機関1の自動停止後の再始動時には空燃比がリーンとなるよう燃料噴射するECU30にて達成される燃料噴射制御手段とを具備するものである。
【0057】
つまり、内燃機関1の自動停止直前の空燃比制御では三元触媒13の酸素ストレージ量OSを消費、即ち、中立状態から空燃比リッチ相当側となるよう意図的に遷移させ、自動停止後の再始動時の空燃比制御では三元触媒13に不足している酸素を供給させるため、空燃比の逆数である当量比φがリーン側となるよう燃料噴射される。これにより、内燃機関1の自動停止後の再始動時における三元触媒13の酸素ストレージ量OSを素早く中立状態に復帰させ良好なエミッションを確保することができる。
【0058】
また、本実施例の内燃機関の排気浄化装置のECU30にて達成される燃料噴射制御手段は、内燃機関1の自動停止直前に空燃比がリッチになるよう燃料噴射するものである。つまり、内燃機関1の自動停止直前に空燃比がリッチとなる燃料噴射量が供給されることで、三元触媒13の酸素ストレージ量OSが消費される。このため、内燃機関の再始動時に空燃比の逆数である当量比φがリーン側となるよう空燃比制御されることで、三元触媒13の酸素ストレージ量OSを素早く中立状態に復帰させ良好なエミッションを確保することができる。
【0059】
そして、本実施例の内燃機関の排気浄化装置は、三元触媒13の温度を推定するECU30にて達成される触媒温度推定手段を具備し、ECU30にて達成される燃料噴射制御手段が内燃機関1の自動停止後の再始動時に三元触媒13の温度が所定値以下であるときには、空燃比のリーン制御を禁止し、三元触媒13の昇温制御を優先するものである。つまり、内燃機関1の自動停止後の再始動時に三元触媒13の温度が所定値以下であると三元触媒13が活性状態になく空燃比のリーン制御に対応できないため、三元触媒13を活性状態とするための昇温制御が優先的に実施される。これにより、三元触媒13が速やかに活性状態に復帰され、エミッション悪化を抑制することができる。
【0060】
更に、本実施例の内燃機関の排気浄化装置は、三元触媒13の温度を内燃機関1の停止時間Tstopを用いて推定するものである。つまり、三元触媒13の温度は内燃機関1の自動停止時からの経過時間に応じて推移されるため、停止時間Tstopを用いることで三元触媒13の温度を的確に推定することができる。
【0061】
更にまた、本実施例の内燃機関の排気浄化装置は、酸素濃度センサ25を内燃機関1の自動停止中も活性状態に保持するものである。つまり、酸素濃度センサ25が内燃機関1の自動停止中も活性状態に保持されておれば、自動停止後の再始動時に直ちに的確な空燃比制御が実施できるため、三元触媒13の酸素ストレージ量OSを素早く中立状態に復帰させ良好なエミッションを確保することができる。
【0062】
加えて、本実施例の内燃機関の排気浄化装置のECU30にて達成される燃料噴射制御手段は、内燃機関1の自動停止後の再始動時に空燃比のリーン制御を禁止するときには、酸素濃度センサ25の活性状態の保持を禁止するものである。つまり、内燃機関1の自動停止後の再始動時に空燃比のリーン制御が禁止されるような条件となると、酸素濃度センサ25の活性状態を保持するためのヒータ26への通電が停止されることで、省電力化を図ることができる。
【0063】
ところで、上記実施例では、インテークマニホルド6内でインジェクタ(燃料噴射弁)7から噴射された燃料と混合され、所定空燃比の混合気として各気筒に分配供給される内燃機関1に対する空燃比制御について述べたが、本発明を実施する場合には、これに限定されるものではなく、内燃機関が直噴エンジンであるときには、内燃機関の自動停止直前の膨張行程または排気行程で内燃機関の燃焼室内に向けて燃料噴射されることで、燃料噴射による燃料量が燃焼されずにそのまま三元触媒13に到達することとなる。これにより、内燃機関の自動停止時の三元触媒13の酸素ストレージ量OSを空燃比リッチ相当側に設定することができる。そして、内燃機関の再始動時の当量比φがリーン側となるよう空燃比制御されることで、三元触媒13の酸素ストレージ量OSを素早く中立状態に復帰させることができる。
【0064】
このような内燃機関の排気浄化装置のECU30にて達成される燃料噴射制御手段は、内燃機関の自動停止直前の膨張行程または排気行程で内燃機関の燃焼室内に燃料噴射するものであり、上述の実施例と同様の作用・効果が期待できる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置が適用された内燃機関とその周辺機器を示す概略構成図である。
【図2】 図2は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおける空燃比制御の処理手順を示すメインルーチンである。
【図3】 図3は図2における内燃機関停止判定の処理手順を示すサブルーチンである。
【図4】 図4は図2における触媒温度推定の処理手順を示すサブルーチンである。
【図5】 図5は図4における吸入空気量をパラメータとして触媒温度初期値を算出するマップである。
【図6】 図6は図2における酸素濃度センサヒータ制御の処理手順を示すサブルーチンである。
【図7】 図7は図2における目標当量比演算の処理手順を示すサブルーチンである。
【図8】 図8は図2における空燃比F/B補正係数演算の処理手順を示すサブルーチンである。
【図9】 図9は図2における燃料噴射量演算の処理手順を示すサブルーチンである。
【図10】 図10は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置の空燃比制御に対応する各種制御量の遷移状態を示すタイムチャートである。
【符号の説明】
1 内燃機関
7 インジェクタ(燃料噴射弁)
12 排気通路
13 三元触媒
25 酸素濃度センサ
30 ECU(電子制御ユニット)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that can improve an exhaust gas purification rate by controlling an air-fuel ratio in consideration of the state of a catalyst.
[0002]
[Prior art]
Conventionally, as a prior art document related to an exhaust gas purification apparatus for an internal combustion engine, one disclosed in Japanese Patent Laid-Open No. 9-88688 has been known. This system automatically stops the internal combustion engine when the vehicle stops for a long time, such as waiting for a signal for traveling in an urban area, and then restarts the internal combustion engine without starting operation such as a key operation (also known as eco-run control). The air-fuel ratio feedback control in the air-fuel ratio control is suitably executed in accordance with the active state of the oxygen concentration (air-fuel ratio) sensor that detects the air-fuel ratio of the exhaust gas. A technique for suppressing the deterioration of emissions when restarting an internal combustion engine by controlling the stoichiometric air-fuel ratio at an early stage is shown.
[0003]
[Problems to be solved by the invention]
By the way, in a vehicle equipped with the aforementioned idle stop mechanism of an internal combustion engine or a hybrid vehicle equipped with an internal combustion engine and an electric motor, the vehicle equipped with the internal combustion engine reduces the fuel consumption during the vehicle stop that was previously wasted. Therefore, the automatic stop and restart of the internal combustion engine are frequently repeated. At this time, the state of the catalyst that purifies the exhaust gas of the internal combustion engine at the time of restart or immediately after the restart is not taken into consideration, and combustion is not performed at an air-fuel ratio that can obtain an optimal purification rate of the catalyst. There was a problem that emissions at start-up and immediately after restart deteriorated.
[0004]
Therefore, the present invention has been made to solve such a problem, and in a vehicle equipped with an idle stop mechanism of an internal combustion engine or a hybrid vehicle equipped with an internal combustion engine and an electric motor, the internal combustion engine is restarted after automatic stop. An object of the present invention is to provide an exhaust purification device for an internal combustion engine that can ensure good emission by air-fuel ratio control that sometimes takes into account the state of the catalyst.
[0005]
[Means for Solving the Problems]
According to the exhaust gas purification apparatus for an internal combustion engine of claim 1, the catalyst state control means immediately before the automatic stop of the internal combustion engine by the automatic start / stop control means. Three-way catalyst In the air-fuel ratio control at the restart after the automatic stop, the oxygen storage amount is consumed, that is, intentionally shifted from the neutral state to the air-fuel ratio rich side. Three-way catalyst In order to supply the deficient oxygen, the fuel injection control means injects the fuel so that the air-fuel ratio detected by the oxygen concentration sensor is on the lean side. As a result, when the internal combustion engine is restarted after automatic stop Three-way catalyst As the oxygen storage amount of the gas is quickly returned to the neutral state, good emission is ensured.
[0006]
In the fuel injection control means in the exhaust gas purification apparatus for an internal combustion engine according to claim 2, the fuel injection amount at which the air-fuel ratio becomes rich immediately before the automatic stop of the internal combustion engine is supplied, Three-way catalyst The amount of oxygen storage is consumed. For this reason, when the air-fuel ratio is controlled so that the air-fuel ratio becomes lean when the internal combustion engine is restarted, Three-way catalyst As the oxygen storage amount of the gas is quickly returned to the neutral state, good emission is ensured.
[0007]
In the fuel injection control means in the exhaust gas purification apparatus for an internal combustion engine according to claim 3, for example, when the internal combustion engine is a direct injection engine, it is directed toward the combustion chamber of the internal combustion engine in an expansion stroke or an exhaust stroke immediately before the internal combustion engine is automatically stopped. By fuel injection, the amount of fuel from fuel injection is not burned Three-way catalyst Will be reached. Therefore, when the internal combustion engine is automatically stopped Three-way catalyst The oxygen storage amount is set to the air-fuel ratio rich equivalent side. Thereby, the air-fuel ratio is controlled so that the air-fuel ratio becomes lean when the internal combustion engine is restarted, Three-way catalyst As the oxygen storage amount of the gas is quickly returned to the neutral state, good emission is ensured.
[0008]
The fuel injection control means in the exhaust gas purification apparatus for an internal combustion engine according to claim 4 is detected or estimated by the catalyst temperature estimating means. Three-way catalyst The temperature of the engine is not more than a predetermined value when the internal combustion engine is restarted after being automatically stopped. Three-way catalyst Is not in an active state and cannot support air-fuel ratio lean control. Three-way catalyst The temperature increase control for bringing the active state into the active state is preferentially performed. This Three-way catalyst Is quickly returned to the active state, and emission deterioration is suppressed.
[0009]
The exhaust gas purification apparatus for an internal combustion engine according to claim 5 uses one or more of an outside air temperature introduced into the internal combustion engine, a stop time as an elapsed time from the automatic stop of the internal combustion engine, and an exhaust gas temperature. Three-way catalyst By estimating the temperature of Three-way catalyst Is accurately estimated.
[0010]
In the exhaust gas purification apparatus for an internal combustion engine according to claim 6, since the oxygen concentration sensor is kept active even during the automatic stop of the internal combustion engine, accurate air-fuel ratio control can be performed immediately upon restart after the automatic stop. Three-way catalyst As the oxygen storage amount of the gas is quickly returned to the neutral state, good emission is ensured.
[0011]
The fuel injection control means in the exhaust gas purification apparatus for an internal combustion engine according to claim 7 maintains the active state of the oxygen concentration sensor under a condition that the lean control of the air-fuel ratio is prohibited when the internal combustion engine is automatically restarted after being stopped. Since this is prohibited, power saving can be achieved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0013]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine to which an exhaust gas purification apparatus for an internal combustion engine according to an example of an embodiment of the present invention is applied and its peripheral devices.
[0014]
In FIG. 1, an internal combustion engine 1 is configured as an in-line four-cylinder four-cycle spark ignition type, and its intake air passes from an upstream side through an air cleaner 2, an intake passage 3, a throttle valve 4, a surge tank 5, and an intake manifold 6. It is mixed with fuel injected from an injector (fuel injection valve) 7 in the intake manifold 6 and distributed and supplied to each cylinder as an air-fuel mixture having a predetermined air-fuel ratio. Further, the high voltage supplied from the ignition circuit 9 is distributed and supplied by the distributor 10 to the spark plug 8 provided in each cylinder of the internal combustion engine 1, and the air-fuel mixture in each cylinder is ignited at a predetermined timing. The exhaust gas after combustion passes through the exhaust manifold 11 and the exhaust passage 12, and is provided in the exhaust passage 12, in a three-way catalyst 13 carrying a catalyst component such as platinum or rhodium and an additive such as cerium or lanthanum. Harmful components such as CO (carbon monoxide), HC (hydrocarbon), and NOx (nitrogen oxide) are purified and discharged into the atmosphere.
[0015]
An automatic transmission (hereinafter simply referred to as “AT”) 14 using a torque converter is connected to an output shaft (crankshaft) (not shown) of the internal combustion engine 1, and an output shaft (drive shaft) extending from the AT 14. The vehicle is driven by the rotation of 15. A vehicle speed sensor 16 is provided on the output shaft 15 to detect a vehicle speed V as a vehicle speed.
[0016]
An air flow meter 21 is provided in the intake passage 3 on the downstream side of the air cleaner 2, and the air flow meter 21 detects the intake air amount QA per unit time passing through the air cleaner 2. The throttle valve 4 is provided with a throttle opening sensor 22, which detects an analog signal corresponding to the throttle opening TA and that the throttle valve 4 is almost fully closed. It is detected by an “ON” / “OFF” signal from an idle switch (not shown). Further, a water temperature sensor 23 is provided in the cylinder block of the internal combustion engine 1, and the coolant temperature THW of the internal combustion engine 1 is detected by the water temperature sensor 23.
[0017]
The distributor 10 is provided with a rotation angle sensor 24, and the rotation angle sensor 24 detects the engine speed NE of the internal combustion engine 1. The rotation angle sensor 24 outputs 24 pulse signals every two rotations of the crankshaft of the internal combustion engine 1, that is, every 720 [° CA (Crank Angle)]. Further, an oxygen concentration sensor 25 that outputs a linear voltage signal VOX 1 corresponding to the air-fuel ratio λ of the exhaust gas of the internal combustion engine 1 is provided on the upstream side of the three-way catalyst 13 in the exhaust passage 12. The reciprocal of the air-fuel ratio λ is an actual equivalent ratio φ described later. Further, the oxygen concentration sensor 25 is provided with a heater 26 for maintaining the oxygen concentration sensor 25 in an active state.
[0018]
An ECU (Electronic Control Unit) 30 that controls the operating state of the internal combustion engine 1 includes a CPU 31 as a central processing unit that executes various known arithmetic processes, a ROM 32 that stores a control program and a control map, and various data. It is configured as a logical operation circuit centering on the RAM 33 to store, B / U (backup) RAM 34, etc., and to the input port 35 for inputting detection signals from various sensors and the output port 36 for outputting control signals to various actuators They are connected via a bus 37.
[0019]
The ECU 30 is connected to the vehicle speed V from the vehicle speed sensor 16 via the input port 35, the intake air amount QA from the air flow meter 21, the throttle opening TA from the throttle opening sensor 22, the cooling water temperature THW from the water temperature sensor 23, Various sensor signals such as the engine speed NE from the rotation angle sensor 24 are input, and based on them, the fuel injection amount TAU, the ignition timing Ig, and the like are calculated, and are output to the injector 7 and the ignition circuit 9 through the output port 36. A control signal is output for each.
[0020]
Further, the air-fuel ratio determination of the air-fuel mixture based on the exhaust gas is performed based on the voltage signal VOX1 from the oxygen concentration sensor 25 input to the ECU 30. Then, the ECU 30 greatly changes the FAF value as an air-fuel ratio F / B (feedback) correction coefficient, which will be described later, in a stepwise manner in order to increase or decrease the fuel injection amount when reversing from rich to lean and when reversing from lean to rich ( The air-fuel ratio F / B correction coefficient FAF value is gradually increased or decreased when lean or rich continues. Note that this air-fuel ratio F / B control is not performed when the coolant temperature THW of the internal combustion engine 1 is low or when the engine is running at a high load and high speed. Further, as will be described later, the ECU 30 obtains a basic fuel injection amount (basic fuel injection time) from the engine speed NE and the intake air amount QA, and the basic fuel injection amount is determined by an air-fuel ratio F / B correction coefficient FAF or the like. Correction is performed to calculate the final fuel injection amount (fuel injection time) TAU, and the injector 7 is made to perform fuel injection at a predetermined injection timing.
[0021]
Note that the ECU 30 reduces the deviation between the actual equivalent ratio φ, which is the reciprocal of the air-fuel ratio λ, and the target equivalent ratio φref calculated by the calculation routine described later, based on the voltage signal VOX1 from the oxygen concentration sensor 25. Thus, the fuel injection amount TAU is F / B corrected, and an oxygen storage amount OS of the three-way catalyst 13 described later is maintained in a neutral state.
[0022]
In addition to the various sensors described above, the ECU 30 receives SW (switch) signals from the following switches. For example, an operation panel in the passenger compartment is provided with an eco-run SW 41 that is operated by the driver based on the intention of performing the eco-run. The AT 14 is provided with a neutral SW 42 that detects the neutral position. A brake pedal (not shown) is provided with a brake SW 43 that is “ON” when depressed. In addition, the ECU 30 automatically stops the internal combustion engine 1 or drives the starter 44 to restart it according to the instruction of the eco-run SW 41 or the vehicle state.
[0023]
Next, air-fuel ratio control in the CPU 31 in the ECU 30 used in the exhaust gas purification apparatus for an internal combustion engine according to an example of the embodiment of the present invention will be described with reference to FIGS. Here, FIG. 10 is a time chart showing transition states of various control amounts corresponding to the air-fuel ratio control of this embodiment. This embodiment is shown by a solid line, and a conventional example is shown by a broken line for comparison.
[0024]
<< Main routine of air-fuel ratio control: See Fig. 2 >>
The air-fuel ratio control routine will be described with reference to FIG. This air-fuel ratio control routine is repeatedly executed by the CPU 31 every predetermined time.
[0025]
In FIG. 2, first, in step S101, an internal combustion engine stop determination process described later is executed. Next, the process proceeds to step S102, and a catalyst temperature estimation process described later is executed. Next, the process proceeds to step S103, and an oxygen concentration sensor heater control process described later is executed. Next, the process proceeds to step S104, and a target equivalent ratio φref calculation process described later is executed. Next, the process proceeds to step S105, and an air-fuel ratio F / B correction coefficient FAF calculation process described later is executed. Next, the routine proceeds to step S106, where a fuel injection amount TAU calculation process described later is executed, and this routine is terminated.
[0026]
<Internal combustion engine stop determination subroutine: see FIG. 3>
An internal combustion engine stop determination routine will be described with reference to FIG.
[0027]
In FIG. 3, first, in step S201, it is determined whether the internal combustion engine 1 is stopped. When the determination condition of step S201 is not satisfied, that is, when the internal combustion engine 1 is in operation, the routine proceeds to step S202, where it is determined whether the eco-run SW 41 is “ON”. When the determination condition of step S202 is satisfied, that is, when the eco-run SW 41 is “ON”, the process proceeds to step S203, and it is determined whether the neutral SW 42 is “ON”. When the determination condition of step S203 is satisfied, that is, when the neutral SW 42 is “ON” and the gear position of the AT 14 is “N”, the process proceeds to step S204 to determine whether various other eco-run conditions are satisfied.
[0028]
Specifically, the eco-run condition is predetermined after the coolant temperature THW of the internal combustion engine 1 is equal to or higher than a predetermined temperature, the vehicle speed V is “0 [km / h]”, and the vehicle speed V is “0 [km / h]”. For example, the time has elapsed, the brake SW 43 is “ON”, the right turn signal lamp (not shown) is “OFF”, and the internal combustion engine 1 is in an idle state.
[0029]
When the determination condition of step S204 is satisfied, that is, when all the eco-run conditions are satisfied, the process proceeds to step S205, and the before-stop enrichment counter for setting the air-fuel ratio enrichment execution time before the automatic stop of the internal combustion engine 1 is greater than or equal to a predetermined value. Is determined. If the determination condition in step S205 is not satisfied, that is, if the pre-stop enrichment counter is less than a predetermined value, the process proceeds to step S206, and the enrichment flag is set to “ON”. Next, the process proceeds to step S207, and after the pre-stop enrichment counter is incremented by "+1", this routine is terminated.
[0030]
On the other hand, when the determination condition of step S205 is satisfied, that is, when the pre-stop rich counter becomes larger than a predetermined value, the process proceeds to step S208, and the fuel injection amount and spark ignition stop processing is performed to automatically stop the internal combustion engine 1. (Time t2 shown in FIG. 10). Next, the process proceeds to step S209, and after the pre-stop enrichment counter is cleared to “0 (zero)”, this routine ends. On the other hand, when the determination condition of step S202 is not satisfied, that is, when the eco-run SW 41 is "OFF" or when the determination condition of step S203 is not satisfied, that is, the neutral SW 42 is "OFF" and the gear position of the AT 14 is " When it is other than “N” or when the determination condition of step S204 is not satisfied, that is, when any one of the eco-run conditions is not satisfied, the operation of the internal combustion engine 1 is continued and this routine is ended.
[0031]
On the other hand, when the determination condition of step S201 is satisfied, that is, when the internal combustion engine 1 is stopped, the process proceeds to step S210, and it is determined whether the brake SW 43 is “OFF”. When the determination condition of step S210 is satisfied, that is, when the brake SW 43 is "OFF" and the driver depresses the brake pedal and is willing to start running the vehicle, the routine proceeds to step S211 and the fuel for restarting the internal combustion engine 1 is restarted. After executing the injection amount and spark ignition execution processing (time t3 shown in FIG. 10), this routine is terminated. On the other hand, when the determination condition of step S210 is not satisfied, that is, when the brake SW 43 is "ON" and the brake pedal is fully depressed by the driver, the internal combustion engine 1 is continuously stopped and this routine is finished. To do.
[0032]
<Catalyst temperature estimation subroutine: see FIGS. 4 and 5>
The catalyst temperature estimation routine will be described with reference to FIG. 5 based on FIG. Here, FIG. 5 is a map for calculating the initial value Tini [° C.] of the catalyst temperature with respect to the intake air amount QA [g / sec] per unit time.
[0033]
In FIG. 4, first, in step S301, it is determined whether the internal combustion engine 1 is stopped. When the determination condition in step S301 is satisfied, that is, when the internal combustion engine 1 is stopped (time t2 to time t3 shown in FIG. 10), the process proceeds to step S302, and the catalyst temperature TMPcat of the three-way catalyst 13 is expressed by the following equation (1). It is calculated by. Here, k is a temperature attenuation coefficient, and Tstop is a stop time from when the internal combustion engine 1 is automatically stopped. As shown in FIG. 5, the catalyst temperature initial value Tini is set to a larger value as the intake air amount QA is larger.
[0034]
[Expression 1]
TMPcat = Tini−k · Tstop (1)
[0035]
Next, the process proceeds to step S303, and a guard process for the catalyst temperature TMPcat is executed. Next, the process proceeds to step S304, where it is determined whether the catalyst temperature TMPcat is equal to or higher than a predetermined value. When the determination condition in step S304 is satisfied, that is, when the catalyst temperature TMPcat is higher than a predetermined value, this routine is ended.
[0036]
On the other hand, when the determination condition of step S304 is not satisfied, that is, when the catalyst temperature TMPcat is lower than a predetermined value, the process proceeds to step S305, the restart storage control is prohibited, and this routine is terminated. On the other hand, when the determination condition of step S301 is not satisfied, that is, when the internal combustion engine 1 is in operation, the process proceeds to step S306, and the catalyst temperature initial value Tini is set to the catalyst temperature TMPcat as the update of the catalyst temperature initial value Tini. After that, this routine is finished.
[0037]
<Oxygen concentration sensor heater control subroutine: see FIG. 6>
The oxygen concentration sensor heater control routine will be described with reference to FIG.
[0038]
In FIG. 6, first, in step S401, it is determined whether the internal combustion engine 1 is stopped. When the determination condition of step S401 is satisfied, that is, when the internal combustion engine 1 is stopped (time t2 to time t3 shown in FIG. 10), the routine proceeds to step S402, where it is determined whether to perform oxygen storage control at the next start. . When the determination condition of step S402 is satisfied, that is, when the oxygen storage control is performed at the next start, or when the determination condition of step S401 is not satisfied, that is, when the internal combustion engine 1 is in operation, the routine proceeds to step S403. After the heater control is executed, this routine is terminated.
[0039]
On the other hand, when the determination condition of step S402 is not satisfied, that is, when oxygen storage control is not performed at the next start, the routine proceeds to step S404, where the heater control is stopped for power saving, and then this routine is terminated.
[0040]
<Target equivalence ratio φref calculation subroutine: See FIG. 7>
The target equivalent ratio φref calculation routine will be described with reference to FIG.
[0041]
In FIG. 7, first, in step S501, it is determined whether the internal combustion engine 1 is stopped. When the determination condition of step S501 is not satisfied, that is, when the internal combustion engine 1 is in operation, the routine proceeds to step S502, where it is determined whether the enrichment flag is “ON”. When the determination condition of step S502 is not satisfied, that is, when the enrichment flag is “OFF”, the process proceeds to step S503, the target equivalent ratio φref during the operation of the internal combustion engine 1 is calculated, and this routine ends.
[0042]
On the other hand, when the determination condition of step S502 is satisfied, that is, when the enrichment flag is “ON”, the process proceeds to step S504, and the enrichment target before the automatic stop of the internal combustion engine 1 (time t1 to time t2 shown in FIG. 10). A target equivalent ratio φref which is a value is calculated, and this routine is terminated. On the other hand, when the determination condition of step S501 is satisfied, that is, when the internal combustion engine 1 is stopped (time t2 to time t3 shown in FIG. 10), the process proceeds to step S505 to determine whether the catalyst temperature TMPcat is equal to or lower than a predetermined value. Is done. When the determination condition in step S505 is not satisfied, that is, when the catalyst temperature TMPcat exceeds a predetermined value and the three-way catalyst 13 can maintain the active state, the process proceeds to step S506, and when the internal combustion engine 1 is restarted (shown in FIG. 10). The target equivalence ratio φref which is the lean start target value at time t3) is calculated, and this routine is finished.
[0043]
On the other hand, when the determination condition of step S505 is satisfied, that is, when the catalyst temperature TMPcat is low below a predetermined value and the three-way catalyst 13 cannot maintain the active state, the routine proceeds to step S507, where the target equivalent ratio φref that becomes the catalyst warm-up target value is set. This routine is completed after the calculation.
[0044]
<Air-fuel ratio F / B correction coefficient FAF calculation subroutine: see FIG. 8>
The air-fuel ratio F / B correction coefficient FAF calculation routine will be described with reference to FIG.
[0045]
In FIG. 8, first, in step S601, it is determined whether the air-fuel ratio F / B control condition is satisfied. The air-fuel ratio F / B control condition is satisfied when the coolant temperature THW of the internal combustion engine 1 is equal to or higher than a predetermined temperature, the engine speed NE and the load are not high, and the like. When the determination condition of step S601 is satisfied, that is, when all of the air-fuel ratio F / B control conditions are satisfied, the process proceeds to step S602, and the target equivalent ratio φref obtained by the above-described target equivalent ratio φref calculation routine is read.
[0046]
Next, the process proceeds to step S603, where it is determined whether the detected value of the oxygen concentration sensor 25 is within a predetermined range in which air-fuel ratio control can be maintained. When the determination condition of step S603 is satisfied, that is, when the detection value of the oxygen concentration sensor 25 is within the predetermined range, the process proceeds to step S604, and the state is stored in advance in the ROM 32. The optimum F / B gain of the state F / B system IKn (n = 1, 2, 3, 4, A) is selectively read.
[0047]
On the other hand, when the determination condition of step S603 is not satisfied, that is, when the detected value of the oxygen concentration sensor 25 is outside the predetermined range, the process proceeds to step S605, and the F / B system F stored in the ROM 32 in advance is stored. Of the / B gain, the lower F / B gain IKn '(n = 1, 2, 3, 4, A) is selectively read. In step S606, the F / B gain IKn (n = 1, 2, 3, 4) or IKn '(n = 1, 2, 3, 4) selectively read in step S604 or step S605 is entered. ) Is substituted into the following equation (2) to calculate the integral term ZI (K). Here, Ka is an integral constant, and φ (K) is an actual equivalence ratio.
[0048]
[Expression 2]
ZI (K) ← ZI (K-1) + Ka ・ (φref −φ (K)) (2)
[0049]
Next, the routine proceeds to step S607, where the air-fuel ratio F / B correction coefficient FAF is calculated by the following equation (3), and this routine is finished. Here, FAF (K-1) is the previous air-fuel ratio F / B correction coefficient, FAF (K-2) is the previous air-fuel ratio F / B correction coefficient, and FAF (K-3) is three times. The previous air-fuel ratio F / B correction coefficients, K1, K2, K3, and K4 are F / B constants.
[0050]
[Equation 3]
Figure 0003948255
[0051]
On the other hand, when the determination condition of step S601 is not satisfied, that is, when one of the air-fuel ratio F / B control conditions is not satisfied, the process proceeds to step S608, and the air-fuel ratio F / B correction coefficient FAF is set to “1.0”. When set, this routine ends.
[0052]
<Fuel injection amount TAU calculation subroutine: see FIG. 9>
The fuel injection amount TAU calculation routine will be described with reference to FIG.
[0053]
In FIG. 9, first, in step S701, the basic fuel injection amount Tp is calculated based on the engine speed NE and the intake air amount QA. Next, the routine proceeds to step S702, where the air-fuel ratio F / B correction coefficient FAF calculated by the above-described air-fuel ratio F / B correction coefficient FAF calculation routine is read. Next, the routine proceeds to step S703, where the final fuel injection amount TAU is calculated by the following equation (4), and this routine ends. Here, FALL is a correction coefficient for correcting the fuel injection amount by an element other than the air-fuel ratio control.
[0054]
[Expression 4]
TAU ← FAF / Tp / FALL (4)
[0055]
Therefore, the oxygen storage amount OS of the three-way catalyst 13 is the air-fuel ratio at the time of restart after the automatic stop of the internal combustion engine 1 (time t3 shown in FIG. 10) in the conventional air-fuel ratio control (broken line shown in FIG. 10). Although it is difficult to return from the lean equivalent state to the neutral state, according to the air-fuel ratio control of the above-described embodiment (solid line shown in FIG. 10), when the internal combustion engine 1 is restarted after automatic stop (time t3 shown in FIG. 10). It can be seen that the air-fuel ratio rich state) is quickly returned to the neutral state.
[0056]
As described above, the exhaust gas purification apparatus for an internal combustion engine of the present embodiment is disposed in the exhaust passage 12 of the internal combustion engine 1 and purifies the exhaust gas of the internal combustion engine 1, and the exhaust gas of the internal combustion engine 1. An oxygen concentration sensor 25 that detects the air-fuel ratio of the engine, an automatic start / stop control means that is achieved by an ECU 30 that controls automatic stop and subsequent automatic start of the internal combustion engine 1 under predetermined operating conditions, and the automatic start / stop The catalyst state control means achieved by the ECU 30 that consumes the oxygen storage amount OS of the three-way catalyst 13 immediately before the internal combustion engine 1 is automatically stopped by the control means, and the fuel injection to the internal combustion engine 1 so as to have a predetermined air-fuel ratio. At the same time, it includes a fuel injection control means that is achieved by the ECU 30 that injects the fuel so that the air-fuel ratio becomes lean when the internal combustion engine 1 is restarted after the automatic stop.
[0057]
That is, in the air-fuel ratio control immediately before the internal combustion engine 1 is automatically stopped, the oxygen storage amount OS of the three-way catalyst 13 is consumed, that is, intentionally transited from the neutral state to the air-fuel ratio rich side, and restarted after the automatic stop. In the air-fuel ratio control at the time of starting, in order to supply the insufficient oxygen to the three-way catalyst 13, fuel is injected so that the equivalent ratio φ, which is the reciprocal of the air-fuel ratio, is on the lean side. Thereby, the oxygen storage amount OS of the three-way catalyst 13 at the time of restart after the internal combustion engine 1 is automatically stopped can be quickly returned to the neutral state, and good emission can be ensured.
[0058]
Further, the fuel injection control means achieved by the ECU 30 of the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment performs fuel injection so that the air-fuel ratio becomes rich immediately before the internal combustion engine 1 is automatically stopped. In other words, the oxygen storage amount OS of the three-way catalyst 13 is consumed by supplying the fuel injection amount that makes the air-fuel ratio rich immediately before the internal combustion engine 1 is automatically stopped. For this reason, when the internal combustion engine is restarted, the air-fuel ratio is controlled so that the equivalent ratio φ, which is the reciprocal of the air-fuel ratio, becomes lean, so that the oxygen storage amount OS of the three-way catalyst 13 can be quickly returned to the neutral state. Emissions can be secured.
[0059]
The exhaust gas purification apparatus for an internal combustion engine according to the present embodiment includes a catalyst temperature estimation means that is achieved by the ECU 30 that estimates the temperature of the three-way catalyst 13, and the fuel injection control means that is achieved by the ECU 30 is the internal combustion engine. When the temperature of the three-way catalyst 13 is equal to or lower than a predetermined value at the restart after the automatic stop of No. 1, the lean control of the air-fuel ratio is prohibited, and the temperature increase control of the three-way catalyst 13 is given priority. That is, if the temperature of the three-way catalyst 13 is below a predetermined value when the internal combustion engine 1 is restarted after automatic stop, the three-way catalyst 13 is not in an active state and cannot cope with the lean control of the air-fuel ratio. The temperature rise control for making the active state preferentially performed. As a result, the three-way catalyst 13 is quickly returned to the active state, and emission deterioration can be suppressed.
[0060]
Furthermore, the exhaust gas purification apparatus for an internal combustion engine of the present embodiment estimates the temperature of the three-way catalyst 13 using the stop time Tstop of the internal combustion engine 1. That is, since the temperature of the three-way catalyst 13 changes according to the elapsed time from the automatic stop of the internal combustion engine 1, the temperature of the three-way catalyst 13 can be accurately estimated by using the stop time Tstop.
[0061]
Furthermore, the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment holds the oxygen concentration sensor 25 in an active state even during the automatic stop of the internal combustion engine 1. In other words, if the oxygen concentration sensor 25 is kept active even during the automatic stop of the internal combustion engine 1, accurate air-fuel ratio control can be performed immediately upon restart after the automatic stop. The OS can be quickly returned to the neutral state to ensure good emission.
[0062]
In addition, the fuel injection control means achieved by the ECU 30 of the exhaust gas purification apparatus for an internal combustion engine according to the present embodiment includes an oxygen concentration sensor when prohibiting air-fuel ratio lean control when the internal combustion engine 1 is restarted after automatic stop. The holding of 25 active states is prohibited. That is, energization to the heater 26 for maintaining the active state of the oxygen concentration sensor 25 is stopped when the condition that the lean control of the air-fuel ratio is prohibited at the restart after the internal combustion engine 1 is automatically stopped. Thus, power saving can be achieved.
[0063]
By the way, in the above embodiment, the air-fuel ratio control for the internal combustion engine 1 mixed with the fuel injected from the injector (fuel injection valve) 7 in the intake manifold 6 and distributed and supplied to each cylinder as an air-fuel mixture having a predetermined air-fuel ratio. As described above, the present invention is not limited to this. When the internal combustion engine is a direct injection engine, the combustion chamber of the internal combustion engine is used in the expansion stroke or the exhaust stroke immediately before the automatic stop of the internal combustion engine. As a result of the fuel injection toward, the amount of fuel from the fuel injection reaches the three-way catalyst 13 as it is without being burned. Thus, the oxygen storage amount OS of the three-way catalyst 13 when the internal combustion engine is automatically stopped can be set to the air-fuel ratio rich side. Then, the oxygen storage amount OS of the three-way catalyst 13 can be quickly returned to the neutral state by performing the air-fuel ratio control so that the equivalent ratio φ at the restart of the internal combustion engine becomes the lean side.
[0064]
The fuel injection control means achieved by the ECU 30 of the exhaust gas purification apparatus for an internal combustion engine injects fuel into the combustion chamber of the internal combustion engine in the expansion stroke or exhaust stroke immediately before the automatic stop of the internal combustion engine. The same operation and effect as the embodiment can be expected.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine to which an exhaust gas purification apparatus for an internal combustion engine according to an example of an embodiment of the present invention is applied and its peripheral devices.
FIG. 2 is a main routine showing a processing procedure of air-fuel ratio control in a CPU in an ECU used in an exhaust gas purification apparatus for an internal combustion engine according to an example of an embodiment of the present invention.
FIG. 3 is a subroutine showing a processing procedure of internal combustion engine stop determination in FIG. 2;
FIG. 4 is a subroutine showing a processing procedure of catalyst temperature estimation in FIG.
FIG. 5 is a map for calculating an initial value of the catalyst temperature using the intake air amount in FIG. 4 as a parameter.
6 is a subroutine showing a processing procedure of oxygen concentration sensor heater control in FIG. 2. FIG.
FIG. 7 is a subroutine showing a processing procedure of target equivalence ratio calculation in FIG. 2;
FIG. 8 is a subroutine showing a processing procedure of air-fuel ratio F / B correction coefficient calculation in FIG.
FIG. 9 is a subroutine showing a processing procedure of fuel injection amount calculation in FIG. 2;
FIG. 10 is a time chart showing transition states of various control amounts corresponding to the air-fuel ratio control of the exhaust gas purification apparatus for an internal combustion engine according to an example of the embodiment of the present invention.
[Explanation of symbols]
1 Internal combustion engine
7 Injector (fuel injection valve)
12 Exhaust passage
13 Three-way catalyst
25 Oxygen concentration sensor
30 ECU (Electronic Control Unit)

Claims (7)

内燃機関の排気通路途中に配設され、前記内燃機関の排出ガスを浄化する三元触媒と、
前記内燃機関の排出ガスの空燃比を検出する酸素濃度センサと、
前記内燃機関の所定の運転条件下における自動停止及びこの後の自動始動を制御する自動始動停止制御手段と、
前記自動始動停止制御手段による前記内燃機関の自動停止直前に前記触媒の酸素ストレージ(Storage:吸着及び吸蔵)量を消費させる触媒状態制御手段と、
前記内燃機関に対し所定の空燃比となるよう燃料噴射すると共に、前記内燃機関の自動停止後の再始動時には空燃比がリーンとなるよう燃料噴射する燃料噴射制御手段と
を具備することを特徴とする内燃機関の排気浄化装置。
A three-way catalyst disposed in the exhaust passage of the internal combustion engine and purifying exhaust gas of the internal combustion engine;
An oxygen concentration sensor for detecting an air-fuel ratio of the exhaust gas of the internal combustion engine;
Automatic start / stop control means for controlling automatic stop under the predetermined operating conditions of the internal combustion engine and subsequent automatic start;
Catalyst state control means for consuming an oxygen storage (storage: adsorption and storage) amount of the catalyst immediately before the internal combustion engine is automatically stopped by the automatic start / stop control means;
Fuel injection control means for injecting fuel to the internal combustion engine so as to have a predetermined air-fuel ratio and for injecting fuel so that the air-fuel ratio becomes lean when the internal combustion engine is restarted after automatic stop. An exhaust purification device for an internal combustion engine.
前記燃料噴射制御手段は、前記内燃機関の自動停止直前の空燃比がリッチになるよう燃料噴射することを特徴とする請求項1に記載の内燃機関の排気浄化装置。2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the fuel injection control unit performs fuel injection so that an air-fuel ratio immediately before the internal combustion engine is automatically stopped becomes rich. 前記燃料噴射制御手段は、前記内燃機関の自動停止直前の膨張行程または排気行程で前記内燃機関の燃焼室内に燃料噴射することを特徴とする請求項1または請求項2に記載の内燃機関の排気浄化装置。The exhaust of the internal combustion engine according to claim 1 or 2, wherein the fuel injection control means injects fuel into a combustion chamber of the internal combustion engine in an expansion stroke or an exhaust stroke immediately before the internal combustion engine is automatically stopped. Purification equipment. 更に、前記触媒の温度を検出または推定する触媒温度推定手段を具備し、前記燃料噴射制御手段は、前記内燃機関の自動停止後の再始動時に前記触媒の温度が所定値以下であるときには、空燃比のリーン制御を禁止し、前記触媒の昇温制御を優先することを特徴とする請求項1乃至請求項3の何れか1つに記載の内燃機関の排気浄化装置。Furthermore, a catalyst temperature estimating means for detecting or estimating the temperature of the catalyst is provided, and the fuel injection control means is empty when the temperature of the catalyst is not more than a predetermined value during restart after the internal combustion engine is automatically stopped. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein lean control of the fuel ratio is prohibited, and priority is given to temperature increase control of the catalyst. 前記触媒の温度は、外気温、前記内燃機関の停止時間、排出ガスの温度のうち1つ以上を用いて推定することを特徴とする請求項4に記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein the temperature of the catalyst is estimated using one or more of an outside air temperature, a stop time of the internal combustion engine, and an exhaust gas temperature. 前記酸素濃度センサは、前記内燃機関の自動停止中も活性状態に保持することを特徴とする請求項4または請求項5に記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 4 or 5, wherein the oxygen concentration sensor is maintained in an active state even during an automatic stop of the internal combustion engine. 前記燃料噴射制御手段は、前記内燃機関の自動停止後の再始動時に空燃比のリーン制御を禁止するときには、前記酸素濃度センサの活性状態の保持を禁止することを特徴とする請求項6に記載の内燃機関の排気浄化装置。The fuel injection control means prohibits holding of an active state of the oxygen concentration sensor when prohibiting air-fuel ratio lean control during restart after the internal combustion engine is automatically stopped. Exhaust gas purification device for internal combustion engine.
JP2001346207A 2001-11-12 2001-11-12 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3948255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346207A JP3948255B2 (en) 2001-11-12 2001-11-12 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001346207A JP3948255B2 (en) 2001-11-12 2001-11-12 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003148201A JP2003148201A (en) 2003-05-21
JP3948255B2 true JP3948255B2 (en) 2007-07-25

Family

ID=19159420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346207A Expired - Fee Related JP3948255B2 (en) 2001-11-12 2001-11-12 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3948255B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257943B2 (en) * 2004-07-27 2007-08-21 Ford Global Technologies, Llc System for controlling NOx emissions during restarts of hybrid and conventional vehicles
JP4507749B2 (en) * 2004-08-05 2010-07-21 トヨタ自動車株式会社 Exhaust gas purification device
WO2010013365A1 (en) * 2008-08-01 2010-02-04 ボッシュ株式会社 Catalyst temperature estimation method
JP2010071116A (en) * 2008-09-16 2010-04-02 Hitachi Ltd Control device for engine
JP2010185383A (en) * 2009-02-12 2010-08-26 Mitsubishi Motors Corp Temperature estimating device for exhaust system of vehicle
JP5427525B2 (en) * 2009-09-18 2014-02-26 日産自動車株式会社 Automatic engine stop control device
JP5152134B2 (en) * 2009-09-18 2013-02-27 日産自動車株式会社 Automatic engine stop control device
JP5679210B2 (en) * 2011-11-29 2015-03-04 トヨタ自動車株式会社 Exhaust gas purification apparatus and exhaust gas purification method
JP6015684B2 (en) * 2014-01-30 2016-10-26 株式会社デンソー Reducing agent addition device
WO2023181224A1 (en) * 2022-03-24 2023-09-28 日産自動車株式会社 Method and device for controlling stopping of engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3217683B2 (en) * 1994-12-30 2001-10-09 本田技研工業株式会社 Fuel injection control device for internal combustion engine
JPH1182143A (en) * 1997-09-10 1999-03-26 Toyota Motor Corp Catalyst temperature estimating device for internal combustion engine
JP3788049B2 (en) * 1998-07-10 2006-06-21 トヨタ自動車株式会社 Exhaust gas purification device for lean combustion internal combustion engine
JP3760053B2 (en) * 1998-09-30 2006-03-29 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP3911917B2 (en) * 1999-08-18 2007-05-09 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
JP2001295678A (en) * 2000-04-12 2001-10-26 Nissan Motor Co Ltd Engine automatic stop and restart apparatus for vehicle

Also Published As

Publication number Publication date
JP2003148201A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JPH11280457A (en) Exhaust emission control device for engine
US7168240B2 (en) Control apparatus for an internal combustion engine
JP2004316523A (en) Air-fuel ratio control device for internal combustion engine
JP3948255B2 (en) Exhaust gas purification device for internal combustion engine
JP2006233943A (en) Air fuel ratio control device for internal combustion engine
JP2003232246A (en) Air-fuel ratio control device for internal combustion engine
JP3948254B2 (en) Exhaust gas purification device for internal combustion engine
JP4244824B2 (en) Fuel injection control device for internal combustion engine
JP2008151025A (en) Control device of internal combustion engine
JP2017115620A (en) Control device of internal combustion engine
JP2003206791A (en) Exhaust emission control device of internal combustion engine
JP4019745B2 (en) Air-fuel ratio control device for internal combustion engine
JP2940378B2 (en) Fuel supply control device for internal combustion engine
JP5074717B2 (en) Fuel injection control device for internal combustion engine
JPH09177580A (en) Fuel supply controller of internal combustion engine
JP4269593B2 (en) Secondary air supply control device for internal combustion engine
JPH11107828A (en) Air-fuel ratio controller for internal combustion engine
JP3561142B2 (en) Control device for internal combustion engine
JP2022114996A (en) Drive control device
JP2017115615A (en) Internal combustion engine control device
JP2807554B2 (en) Air-fuel ratio control method for internal combustion engine
JP2796182B2 (en) Air-fuel ratio control method for internal combustion engine
JP2004293351A (en) Control method of cutting engine fuel
JPH0656112B2 (en) Fuel injection control device for internal combustion engine
JP2006132506A (en) Fuel injection controller for internal combustion engine for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3948255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees