WO2010013365A1 - Catalyst temperature estimation method - Google Patents

Catalyst temperature estimation method Download PDF

Info

Publication number
WO2010013365A1
WO2010013365A1 PCT/JP2008/072738 JP2008072738W WO2010013365A1 WO 2010013365 A1 WO2010013365 A1 WO 2010013365A1 JP 2008072738 W JP2008072738 W JP 2008072738W WO 2010013365 A1 WO2010013365 A1 WO 2010013365A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
catalyst
internal combustion
combustion engine
calculation
Prior art date
Application number
PCT/JP2008/072738
Other languages
French (fr)
Japanese (ja)
Inventor
謙一 谷岡
黒木 史宏
宮本 武司
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Publication of WO2010013365A1 publication Critical patent/WO2010013365A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • F01N11/005Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus the temperature or pressure being estimated, e.g. by means of a theoretical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a catalyst temperature estimation method for estimating the temperature of a catalyst disposed in an exhaust passage of an internal combustion engine.
  • the present invention relates to a catalyst temperature estimation method for estimating the temperature of a catalyst disposed in an exhaust passage of an internal combustion engine having an idling stop function.
  • the exhaust gas discharged from an internal combustion engine such as a diesel engine contains nitrogen oxides (hereinafter referred to as “NO x ”) that may affect the environment.
  • NO x nitrogen oxides
  • As an exhaust gas purification apparatus used to purify the NO X additives unburned fuel and urea water solution or the like on the upstream side of the disposed in an exhaust passage catalyst injection supply, NO in the exhaust gas in the catalyst
  • An exhaust gas purification device that causes X to undergo a reduction reaction is known.
  • the supply amount of the additive is obtained by calculation so that the amount of the additive to be supplied does not become excessive or insufficient.
  • One factor in calculating the supply amount of the additive is the temperature of the catalyst.
  • the temperature of the catalyst affects the reduction efficiency of NO x in the catalyst.
  • the temperature of the catalyst also affects the amount of adsorption of ammonia produced from the aqueous urea solution to the catalyst.
  • the catalyst temperature estimation device that can accurately estimate the catalyst temperature. More specifically, the catalyst device provided in the exhaust passage of the internal combustion engine, the exhaust temperature sensor for detecting the temperature of the exhaust gas flowing into the catalyst device, and the situation of the outside air that affects the detection result of the exhaust temperature sensor Catalyst temperature estimation configured to include an outside air condition detecting means for detecting or estimating, and a catalyst temperature estimating means for estimating the temperature of the catalyst device based on the detection output of the exhaust temperature sensor and the detection output of the outside air condition detecting means.
  • An apparatus is disclosed (see Patent Document 1).
  • an idling stop device for automatically stopping the internal combustion engine during a temporary stop of the vehicle has been used in order to reduce exhaust gas from the internal combustion engine for the purpose of environmental protection and noise prevention.
  • the operation time of the internal combustion engine is restarted before the stop time of the internal combustion engine is relatively short and the temperature of the catalyst becomes equal to the exhaust temperature upstream of the catalyst.
  • the catalyst temperature estimation device as described in Patent Document 1 if this idling stop function is not taken into consideration, the catalyst temperature is reset when the internal combustion engine is automatically stopped by the idling stop control, and the operation of the internal combustion engine is performed.
  • the calculation of the catalyst temperature may be restarted with the temperature of the exhaust gas upstream of the catalyst as the initial value.
  • an error may occur between the estimated value of the catalyst temperature and the actual catalyst temperature, and the amount of additive added may be excessive or insufficient.
  • an object of the present invention is to provide a catalyst temperature estimation method capable of accurately estimating the catalyst temperature and accurately determining the supply amount of the additive even when idling stop control is performed. is there.
  • a catalyst temperature estimation method for estimating the temperature of a catalyst disposed in an exhaust passage of an internal combustion engine, wherein the catalyst temperature includes the temperature of exhaust gas discharged from the internal combustion engine, and the exhaust gas.
  • the catalyst temperature includes the temperature of exhaust gas discharged from the internal combustion engine, and the exhaust gas.
  • the calculation is continued while the internal combustion engine is stopped, and the difference between the temperature of the catalyst calculated by the calculation and the temperature of the exhaust gas upstream of the catalyst is predetermined.
  • the calculation is interrupted when the value is within the range, and the calculation is restarted when the operation of the internal combustion engine is resumed.
  • the calculation is continued while the internal combustion engine is stopped, the calculation is interrupted when a predetermined time has elapsed from the stop of the internal combustion engine, and the temperature of the catalyst is Is preferably set to the temperature of the exhaust gas upstream of the catalyst, and then the calculation is restarted.
  • the calculation is interrupted when the internal combustion engine is stopped, and the calculation is restarted after estimating the temperature change of the catalyst while the internal combustion engine is stopped when the operation of the internal combustion engine is resumed. It is preferable.
  • the calculation is interrupted when the internal combustion engine is stopped, and the measurement of the stop time is started.
  • the temperature change of the catalyst corresponding to the stop time is estimated. It is preferable to do.
  • the calculation is interrupted when the internal combustion engine is stopped and the measurement of the stop time is started.
  • the stop time exceeds a predetermined time, the measurement is stopped and the operation of the internal combustion engine is stopped.
  • restarting it is preferable to restart the calculation after setting the temperature of the catalyst to the temperature of the exhaust gas upstream of the catalyst.
  • the catalyst temperature estimation method of the present invention since the temperature change of the catalyst while the internal combustion engine is stopped by the idling stop control is also taken into consideration, the initial value of the catalyst temperature after the restart of operation may greatly deviate from the actual catalyst temperature.
  • the catalyst temperature can be accurately estimated. Therefore, the supply amount of the additive determined with the catalyst temperature as one factor is accurately calculated, and it is possible to reduce the flow of the additive or NO x to the downstream side of the catalyst.
  • the catalyst temperature estimation method of the present invention since the engine switch is on while the internal combustion engine is stopped by the idling stop control, the calculation of the catalyst temperature is continued even when the internal combustion engine is stopped. As a result, the temperature change of the catalyst can be continuously grasped, and an increase in the deviation between the estimated value of the catalyst temperature and the actual catalyst temperature can be prevented.
  • the calculation is stopped when the difference between the estimated value of the catalyst temperature and the exhaust temperature upstream of the catalyst falls within a predetermined range while the internal combustion engine is stopped.
  • the temperature of the catalyst after the stop can be predicted to match the exhaust temperature on the upstream side of the catalyst
  • the value of the exhaust gas temperature on the upstream side of the catalyst is used as the initial value of the catalyst temperature when restarting the operation of the internal combustion engine. To resume the calculation.
  • the calculation is interrupted after a predetermined time has elapsed from the stop of the internal combustion engine, and the exhaust gas temperature on the upstream side of the catalyst is set as the catalyst temperature when the internal combustion engine is restarted.
  • the catalyst temperature estimation method of the present invention After the internal combustion engine is stopped by the idling stop control, the calculation is restarted after estimating the change in the catalyst temperature during the stop of the internal combustion engine when the operation of the internal combustion engine is restarted. Thus, it is possible to prevent an increase in the difference between the estimated value of the catalyst temperature and the actual catalyst temperature.
  • the change in the catalyst temperature during the stop of the internal combustion engine is estimated in consideration of the stop time of the internal combustion engine by the idling stop control.
  • the deviation between the estimated value of the catalyst temperature and the actual catalyst temperature can be kept small.
  • the exhaust temperature on the upstream side of the catalyst is set without estimating the temperature change of the catalyst when the operation of the internal combustion engine is resumed.
  • FIG. 1 is a diagram showing an overall configuration of an exhaust purification device 10, in which an additive is injected and supplied to the upstream side of a reduction catalyst 13 disposed in an exhaust passage, and NO contained in exhaust gas in the reduction catalyst 13.
  • An exhaust purification device 10 that selectively reduces and purifies X is shown.
  • the exhaust purification device 10 is disposed in the middle of an exhaust passage connected to the internal combustion engine 5, and a reduction catalyst 13 for selectively reducing NO x contained in the exhaust gas, and an upstream side of the reduction catalyst 13.
  • the main component is an additive supply device 20 for injecting and supplying an additive into the exhaust pipe 11.
  • the additive supply device 20 provided in the exhaust purification device 10 includes an additive injection valve 31 fixed to the exhaust pipe 11 on the upstream side of the reduction catalyst 13, a storage tank 50 in which the additive is stored, and a storage tank 50.
  • the additive A control device hereinafter referred to as “DCU: Dosing Control Unit” 60 that controls the operation of the injection valve 31 and the pump is provided.
  • a control device (hereinafter referred to as “ECU: Electronic Control Unit”) 70 for controlling the operation state of the internal combustion engine 5 is connected to the DCU 60.
  • Information regarding the operating state of the internal combustion engine such as the fuel injection amount, injection timing, and rotation speed of the internal combustion engine 5, is output from the ECU 70 to the DCU 60.
  • the ECU 70 obtains the exhaust gas flow rate Ugas by calculation based on the operating state of the internal combustion engine, and the calculation result is also output to the DCU 60.
  • the flow rate Ugas of the exhaust gas may be detected by providing a known flow rate sensor in the exhaust pipe 11.
  • the ECU 70 and the DCU 60 are configured as separate control devices, but the ECU 70 and the DCU 60 may be configured as a single control device. Further, each signal input / output to / from the DCU 60 may be exchanged via the CAN.
  • An exhaust temperature sensor 15 is provided in the exhaust pipe 11 upstream of the reduction catalyst 13, and the sensor value Ts of the exhaust temperature sensor 15 is read by the DCU 60.
  • the value of the exhaust temperature sensor 15 may be sent to the DCU 60 after being read by the ECU 70.
  • the exhaust purification device 10 includes an outside air temperature sensor 21 that measures the temperature of outside air around the exhaust purification device 10 and an outside air flow rate sensor 23 that measures the flow rate of outside air.
  • the sensor values Tenv and Uenv of these sensors 21 and 23 are read by the DCU 60 and used to calculate the temperature of the reduction catalyst 13.
  • the detected value of the outside air temperature sensor normally provided in the vehicle is used as the sensor value Tenv
  • the detected value of the vehicle speed sensor that detects the speed of the vehicle is used as the sensor value Uenv, which increases the cost. Is suppressed.
  • additive injection control performed by the additive supply device 20 provided in the exhaust purification device 10 of FIG. 1 will be described.
  • the additive in the storage tank 50 is pumped toward the additive injection valve 31 by a pump.
  • feedback control of the pump is performed so that the pressure on the downstream side of the pump is maintained at a predetermined pressure value.
  • the additive injection valve 31 is opened while the pressure on the downstream side of the pump is maintained at a predetermined pressure value, the additive is injected into the exhaust passage.
  • the opening / closing control of the additive injection valve 31 is performed by performing energization control to the additive injection valve 31 based on the addition instruction value from the DCU 60.
  • the DCU 60 passes through the reduction catalyst 13 without being reduced, which is detected by the temperature of the reduction catalyst 13, the operating state of the internal combustion engine 5, the exhaust gas temperature, and the NO X sensor disposed on the downstream side of the reduction catalyst 13. based on the information of the NO X amount and the like, it calculates the required injection amount of the additive to be supplied.
  • the temperature of the reduction catalyst 13, and the amount of adsorbable additives or NO X in reducing catalyst 13, a large influence to the element to reduction efficiency of the NO X in the reduction catalyst 13, to know the exact temperature Is required.
  • the requested injection amount calculated by the DCU 60 is transmitted to the control portion of the additive injection valve 31 as an addition instruction value, and the energization control of the additive injection valve 31 is performed according to the addition instruction value, whereby a predetermined amount of addition is added.
  • the agent is injected and supplied into the exhaust passage.
  • the additive injected into the exhaust passage flows into the reduction catalyst 13 together with the exhaust gas, and is used for the reduction reaction of NO x contained in the exhaust gas.
  • the ECU 70 that controls the operating state of the internal combustion engine has an idling stop function for automatically stopping the internal combustion engine 5.
  • This idling stop function automatically stops the internal combustion engine 5 when a predetermined idling stop condition is satisfied in a state where the engine switch of the internal combustion engine is turned on, thereby preventing air pollution caused by exhaust gas and noise caused by engine noise. It is a function for.
  • the idling stop condition is, for example, the state where the engine switch is on, the speed of the internal combustion engine is equal to or lower than a predetermined threshold value, and the vehicle speed is equal to or lower than the predetermined threshold value for a predetermined time or longer.
  • the present invention is not limited to this.
  • the ECU 70 restarts the operation of the internal combustion engine when the idling stop condition is once established and the internal combustion engine is automatically stopped and then the accelerator pedal is depressed or a predetermined switch is turned on.
  • the ECU 70 outputs a signal IS to the DCU 60 when the idling stop condition is satisfied and the internal combustion engine is automatically stopped or when the operation of the internal combustion engine is resumed.
  • FIG. 2 is a functional block diagram showing a part related to the temperature estimation of the catalyst in the configuration of the DCU 60.
  • the DCU 60 is configured around a microcomputer having a known configuration, and includes an output information extraction / generation unit (denoted as “output information extraction”) and an idling stop signal reception unit (denoted as “IS reception”). And a catalyst temperature calculation unit (denoted as “catalyst temperature calculation”) for performing a calculation process of the temperature of the reduction catalyst, etc. Specifically, each of these units is realized by executing a program by a microcomputer.
  • the output information extraction and generation unit includes the sensor value Ts of the exhaust temperature sensor 15 provided in the exhaust purification device 10, the sensor value Tenv of the outside air temperature sensor 21, the sensor value Uenv of the vehicle speed sensor 23, and the exhaust gas calculated by the ECU 70. This is the part that reads the gas flow rate Ugas and outputs it to the catalyst temperature calculator.
  • the idling stop signal receiving unit is a part that receives the signal IS output from the ECU 70 when the automatic stop of the internal combustion engine by the idling stop control is turned on or off, and outputs the signal IS to the catalyst temperature calculating unit.
  • the catalyst temperature calculation unit determines the temperature of the reduction catalyst based on the sensor value Ts of the exhaust temperature sensor 15, the sensor value Tenv of the outside air temperature sensor 21, the sensor value Uenv of the vehicle speed sensor 23, the exhaust gas flow rate Ugas, and the like. Is a part obtained by calculation. An example of the calculation process performed by the catalyst temperature calculation unit will be described below.
  • the reduction catalyst 13 is evenly divided into a plurality of regions B (i) ( B (1) to B (n)), and the region B (i) is determined from the balance between the amount of heat flowing into each region B (i) (B (1) to B (n)) and the amount of heat released.
  • the temperature T (i) (T (1) to T (n)) for each (B (1) to B (n)) and the average temperature TE of the reduction catalyst 13 are calculated.
  • each region B (i) (B (1) to B (n)) of the divided reduction catalyst 13 is referred to as “brick”.
  • the number of bricks B (i) to be divided is arbitrarily set.
  • the concept of “temperature rise” includes the concept of negative temperature rise (temperature drop), and the concept of “heat inflow” includes inflow of negative heat (outflow of heat). This concept is also included.
  • the amount of heat used to increase the temperature of brick B (i) is Q (i) and brick B (i) at the i-th brick B (i) from the upstream side in the exhaust flow direction.
  • Qgas (i) is the heat quantity of the exhaust gas flowing into the wall
  • Qwall (i) is the heat quantity flowing into the brick B (i) from the exhaust pipe wall surface
  • B (i-1), B (i + 1) are adjacent bricks. If the amount of heat transferred to the brick B (i) due to the temperature difference is Qscr (i), the balance of these four amounts of heat can be expressed by the following equation (1).
  • Q (i) Qgas (i) ⁇ ⁇ + Qwall (i) + Qscr (i) (1)
  • Coefficient due to heat transfer of brick B (i)
  • h Heat transfer coefficient between brick B (i) and the atmosphere
  • A1 Surface area of the outer periphery of the brick B (i)
  • the heat transfer coefficient h between the brick B (i) and the atmosphere is a variable depending on the vehicle speed Uenv, and the value of the vehicle speed Uenv read by the vehicle speed sensor 23 is Then, the value of the heat transfer coefficient h is selected.
  • the brick is determined by the temperature difference between two adjacent bricks B (i-1) and B (i + 1).
  • the inlet temperature of the reduction catalyst can be calculated as the temperature T (1) of the brick B (1) at the most upstream in the exhaust flow direction.
  • the outlet temperature of the reduction catalyst can be calculated as the temperature T (n) of the brick B (n) on the most downstream side in the exhaust flow direction when the reduction catalyst is divided into n bricks.
  • the temperature difference ⁇ T between the inlet temperature and the outlet temperature of the reduction catalyst can be obtained by subtracting T (n) from T (1).
  • the temperature of the reduction catalyst changes linearly from the inlet to the outlet simply calculate the average of the inlet temperature T (1) and the outlet temperature T (n) of the reduction catalyst.
  • the value can also be the average temperature TE of the reduction catalyst.
  • FIG. 4 is a diagram showing a flow of the catalyst temperature estimation method of the present embodiment.
  • the rotational speed Ne of the internal combustion engine is read in step S2
  • the process proceeds to step S4.
  • the value of the threshold value Ne0 is set to, for example, the rotational speed at the time of cranking of the internal combustion engine.
  • the reason for waiting until the rotational speed Ne of the internal combustion engine exceeds the threshold value Ne0 is because it is not necessary to consider the amount of heat flowing into the catalyst in estimating the catalyst temperature.
  • step S4 in which the rotational speed Ne of the internal combustion engine has advanced beyond the threshold value Ne0, the exhaust temperature Ts t , the outside air temperature Tenv t , the vehicle speed Uenv t , and the exhaust gas flow rate Ugas t are read, and then in step S5 Based on each value, the temperature T t (i) of each brick B (i) is calculated using the above equations (1) to (9), and the average temperature TE t of the reduction catalyst is calculated. Is done.
  • step S6 it is determined whether or not the internal combustion engine is in an automatic stop state by idling stop control. If the internal combustion engine is not in the automatic stop state, the process returns to step S4, and steps S4 to S6 are repeated until the internal combustion engine is in the automatic stop state.
  • step S6 the process proceeds to step S7 when the engine is automatically stopped, if the temperature T t of each brick B (i) (i) is the same temperature as the sensor value Ts t of the exhaust gas temperature sensor not Is determined.
  • step S4 again when the temperature T t of each brick B (i) (i) is not the same temperature as the sensor value Ts t of the exhaust gas temperature sensor, while the internal combustion engine is in the automatically stopped state, temperature T t (i) is the step S4 ⁇ S7 until the same temperature as the sensor value Ts t of the exhaust gas temperature sensor is repeated for each brick B (i).
  • step S7 when the temperature T t of each brick B (i) (i) have the same temperature as the sensor value Ts t of the exhaust gas temperature sensor, the process proceeds to step S8, operation of the catalyst temperature is interrupted .
  • the calculation of the catalyst temperature is interrupted because the catalyst temperature is estimated to be equivalent to the sensor value Ts of the exhaust temperature sensor until the operation of the internal combustion engine is resumed thereafter, and the battery power Savings.
  • step S9 After the calculation of the catalyst temperature is interrupted, in step S9, when it is detected that the automatic stop of the internal combustion engine by the idling stop control is released and the operation of the internal combustion engine is restarted, the process proceeds to step S10, and the exhaust temperature is increased.
  • the calculation is interrupted when each brick temperature becomes the same as the sensor value of the exhaust temperature sensor during the automatic stop of the internal combustion engine by the idling stop control.
  • the reference time is set so that each brick temperature becomes the same as the sensor value of the exhaust temperature sensor, and the calculation is interrupted when the elapsed time from the automatic stop exceeds the set reference time. It can also be configured as follows.
  • the calculation of the catalyst temperature is continued even during the automatic stop of the internal combustion engine by the idling stop control, an increase in the deviation between the estimated value of the catalyst temperature and the actual catalyst temperature can be suppressed.
  • the calculation is interrupted when the temperature T (i) of each brick B (i) reaches the same temperature as the sensor value Ts of the exhaust temperature sensor, There is no deviation between the estimated value of the catalyst temperature and the actual catalyst temperature, and battery power is also saved.
  • the deviation between the estimated value of the catalyst temperature and the actual catalyst temperature is extremely small, and thus the reduction efficiency according to the catalyst temperature is taken into consideration. Additive injection control can be performed with high accuracy.
  • the calculation of the catalyst temperature is not performed during the automatic stop of the internal combustion engine by the idling stop control, but the internal combustion engine is being automatically stopped when the operation of the internal combustion engine is resumed.
  • This is an estimation method in which the calculation of the catalyst temperature is restarted in consideration of the temperature change of the catalyst.
  • the basic catalyst temperature estimation logic uses the equations (1) to (9) described in the first embodiment. The difference will be mainly described.
  • FIG. 5 is a functional block diagram showing a portion related to catalyst temperature estimation in the configuration of the DCU 60 ′ of this embodiment.
  • the DCU 60 ′ is configured with a microcomputer having a known configuration as a center, and includes an output information extraction / generation unit (denoted as “output information extraction”) and an idling stop signal reception unit (denoted as “IS reception”). ),
  • a catalyst temperature calculation unit (denoted as “catalyst temperature calculation”) for calculating the temperature of the reduction catalyst, a timer counter for counting an automatic stop time of the internal combustion engine, and the like as main elements.
  • the timer counter may be provided in the ECU.
  • the sensor value extraction generation unit and the idling stop signal reception unit can have the same configuration as that provided in the DCU 60 of the first embodiment.
  • the catalyst temperature calculation unit is basically configured similarly to the DCU of the first embodiment, and the above-described catalyst temperature calculation process is performed.
  • the catalyst temperature calculation unit of the DCU 60 ′ of the present embodiment calculates the temperature change of the reduction catalyst during the automatic stop of the internal combustion engine when the operation is restarted after the internal combustion engine is automatically stopped, and the temperature of each brick B (i). The operation is restarted after initializing T (i). An example of the calculation process at the time of restarting the operation will be described below.
  • FIG. 6 is a diagram showing a flow of the catalyst temperature estimation method of the present embodiment.
  • Steps S1 to S6 are performed in the same manner as steps S1 to S6 in the first embodiment.
  • the process proceeds to step S18, and counting of the stop time Tstop of the internal combustion engine by the idling stop control is started.
  • step S19 it is determined whether or not the stop time Tstop of the internal combustion engine has passed the reference time Tstop0.
  • This reference time Tstop0 is set to such a time that the temperature T (i) of each brick B (i) becomes the same temperature as the sensor value Ts of the exhaust temperature sensor. If the stop time Tstop of the internal combustion engine has not passed the reference time Tstop0, the process proceeds to step S20, where it is determined whether or not the idling stop control is canceled and the operation of the internal combustion engine is resumed. If the internal combustion engine is in the automatic stop state, the process returns to step S19. If the operation of the internal combustion engine is resumed, the process proceeds to step S21.
  • step S22 calculation for estimating the temperature T (i) of each brick B (i) during the automatic stop of the internal combustion engine is executed according to the counter value of the stop time Tstop of the internal combustion engine.
  • the amount of heat Qscr t s (1) transferred from the upstream brick B (i-1) during operation of the internal combustion engine. )
  • T t s (n + 1)
  • the temperature gradient of the exhaust temperature is calculated by a calculation formula (curve change) that takes into account heat transfer from the reduction catalyst to the exhaust and heat transfer from the exhaust to the outside air, and the temperature gradient of the outside air temperature is linearly calculated.
  • the temperature T (i) of each brick B (i) is calculated by deriving the exhaust temperature Ts and the outside air temperature Tenv at the time of each calculation, assuming that it changes.
  • step S24 the process proceeds to step S24, and the count of the stop time Tstop is stopped.
  • the reason why the stop time Tstop is stopped is that the catalyst temperature is estimated to be equal to the sensor value Ts of the exhaust temperature sensor until the operation of the internal combustion engine is resumed thereafter.
  • step S25 After the count of the stop time Tstop of the internal combustion engine is stopped, in step S25, when it is detected that the automatic stop of the internal combustion engine by the idling stop control is canceled and the operation of the internal combustion engine is restarted, the process proceeds to step S26.
  • the automatic stop time Tstop of the internal combustion engine by the idling stop control is counted by the timer counter, but the measurement signal of the clock provided in the vehicle or the like May be used.
  • the stop time Tstop is counted during the automatic stop of the internal combustion engine by idling stop control, and the change in the temperature T (i) of each brick B (i) during the automatic stop is calculated when the operation of the internal combustion engine is resumed. By doing so, the spread of the deviation between the estimated value of the catalyst temperature and the actual catalyst temperature can be suppressed.
  • the automatic stop time Tstop of the internal combustion engine by the idling stop control exceeds the reference time Tstop0, the count of the stop time Tstop is stopped, thereby causing a deviation between the estimated value of the catalyst temperature and the actual catalyst temperature. This also saves battery power.
  • the difference between the estimated value of the catalyst temperature and the actual catalyst temperature is extremely small. Therefore, the reduction efficiency according to the catalyst temperature is considered.
  • the injection control of the additive can be performed with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A catalyst temperature estimation method which can, even if idle stop control is performed, precisely estimate the temperature of a catalyst to accurately determine the amount of supply of an addition agent. A catalyst temperature estimation method for estimating the temperature of a catalyst placed in an exhaust gas path of an internal combustion engine, in which the temperature of the catalyst is estimated by calculation performed based on the temperature of exhaust gas discharged from the engine, the speed of flow of the exhaust gas, the temperature of outside air, and the speed of flow of the outside air. The calculation is performed considering a change in the temperature of the catalyst during a stop of the engine effected by idle stop control which automatically stops the engine.

Description

触媒温度推定方法Catalyst temperature estimation method
 本発明は、内燃機関の排気通路に配設された触媒の温度を推定する触媒温度推定方法に関する。特に、アイドリングストップ機能を備えた内燃機関の排気通路に配設された触媒の温度を推定する触媒温度推定方法に関する。 The present invention relates to a catalyst temperature estimation method for estimating the temperature of a catalyst disposed in an exhaust passage of an internal combustion engine. In particular, the present invention relates to a catalyst temperature estimation method for estimating the temperature of a catalyst disposed in an exhaust passage of an internal combustion engine having an idling stop function.
 ディーゼルエンジン等の内燃機関から排出される排気ガス中には、環境に影響を与えるおそれのある窒素酸化物(以下、「NOX」と称する。)が含まれている。このNOXを浄化するために用いられる排気浄化装置として、排気通路に配設された触媒の上流側に未燃燃料や尿素水溶液等の添加剤を噴射供給し、触媒中で排気ガス中のNOXを還元反応させる排気浄化装置が知られている。 The exhaust gas discharged from an internal combustion engine such as a diesel engine contains nitrogen oxides (hereinafter referred to as “NO x ”) that may affect the environment. As an exhaust gas purification apparatus used to purify the NO X, additives unburned fuel and urea water solution or the like on the upstream side of the disposed in an exhaust passage catalyst injection supply, NO in the exhaust gas in the catalyst An exhaust gas purification device that causes X to undergo a reduction reaction is known.
 このような排気浄化装置では、供給する添加剤の量が多すぎると添加剤が触媒の下流側へ流出する一方、供給する添加剤の量が少なすぎるとNOXが触媒の下流側へ流出することになる。そのため、供給する添加剤の量が過不足を生じないように添加剤の供給量が演算によって求められる。この添加剤の供給量を算出する際の一つの要素として、触媒の温度が挙げられる。例えば、触媒の温度は、触媒中でのNOXの還元効率に影響を与える。また、添加剤として尿素水溶液を用いる排気浄化装置の場合、触媒の温度は、尿素水溶液から生成されるアンモニアの触媒への吸着量にも影響を与える。 In such an exhaust purification device, when the amount of additive to be supplied is too large, the additive flows out to the downstream side of the catalyst, while when the amount of additive to be supplied is too small, NO x flows out to the downstream side of the catalyst. It will be. Therefore, the supply amount of the additive is obtained by calculation so that the amount of the additive to be supplied does not become excessive or insufficient. One factor in calculating the supply amount of the additive is the temperature of the catalyst. For example, the temperature of the catalyst affects the reduction efficiency of NO x in the catalyst. In the case of an exhaust gas purification apparatus that uses an aqueous urea solution as an additive, the temperature of the catalyst also affects the amount of adsorption of ammonia produced from the aqueous urea solution to the catalyst.
 そこで、触媒温度を正確に推定するようにされた触媒温度推定装置が提案されている。より具体的には、内燃機関の排気通路に設けられた触媒装置と、触媒装置に流入する排気ガスの温度を検出する排気温度センサと、排気温度センサの検出結果に影響を与える外気の状況を検出又は推定する外気状況検出手段と、排気温度センサの検出出力と外気状況検出手段の検出出力とに基づいて、触媒装置の温度を推定する触媒温度推定手段とを備えるように構成した触媒温度推定装置が開示されている(特許文献1参照)。 Therefore, a catalyst temperature estimation device that can accurately estimate the catalyst temperature has been proposed. More specifically, the catalyst device provided in the exhaust passage of the internal combustion engine, the exhaust temperature sensor for detecting the temperature of the exhaust gas flowing into the catalyst device, and the situation of the outside air that affects the detection result of the exhaust temperature sensor Catalyst temperature estimation configured to include an outside air condition detecting means for detecting or estimating, and a catalyst temperature estimating means for estimating the temperature of the catalyst device based on the detection output of the exhaust temperature sensor and the detection output of the outside air condition detecting means. An apparatus is disclosed (see Patent Document 1).
特開2002-161793号 (全文、全図)JP 2002-161793 (full text, full diagram)
 ところで、近年、環境保全や騒音防止を目的として内燃機関からの排気ガスを減少させるために、車両の一時停止中に内燃機関を自動停止させるアイドリングストップ装置が使用されている。かかるアイドリングストップ機能を有する内燃機関の場合、内燃機関の停止時間が比較的短く、触媒の温度が触媒の上流側の排気温度と同等の温度になる以前に、内燃機関の運転が再開される場合がある。
 そのため、特許文献1に記載されたような触媒温度推定装置では、このアイドリングストップ機能を考慮に入れないと、アイドリングストップ制御によって内燃機関が自動停止したときに触媒温度がリセットされ、内燃機関の運転再開時には触媒上流側の排気ガスの温度を初期値として触媒温度の演算が再開されるおそれがある。その結果、触媒温度の推定値と実際の触媒温度とに誤差が生じ、添加剤の添加量に過不足を生じるおそれがある。
By the way, in recent years, an idling stop device for automatically stopping the internal combustion engine during a temporary stop of the vehicle has been used in order to reduce exhaust gas from the internal combustion engine for the purpose of environmental protection and noise prevention. In the case of an internal combustion engine having such an idling stop function, the operation time of the internal combustion engine is restarted before the stop time of the internal combustion engine is relatively short and the temperature of the catalyst becomes equal to the exhaust temperature upstream of the catalyst. There is.
For this reason, in the catalyst temperature estimation device as described in Patent Document 1, if this idling stop function is not taken into consideration, the catalyst temperature is reset when the internal combustion engine is automatically stopped by the idling stop control, and the operation of the internal combustion engine is performed. When restarting, the calculation of the catalyst temperature may be restarted with the temperature of the exhaust gas upstream of the catalyst as the initial value. As a result, an error may occur between the estimated value of the catalyst temperature and the actual catalyst temperature, and the amount of additive added may be excessive or insufficient.
 そこで、本発明の発明者らは鋭意努力し、アイドリングストップ制御による内燃機関の停止中の触媒の温度変化も考慮して触媒温度を推定することによりこのような問題を解決することができることを見出し、本発明を完成させたものである。すなわち、本発明の目的は、アイドリングストップ制御が行われた場合であっても触媒温度を精度良く推定し、添加剤の供給量を正確に決定することができる触媒温度推定方法を提供することである。 Therefore, the inventors of the present invention have made diligent efforts and found that such a problem can be solved by estimating the catalyst temperature in consideration of the temperature change of the catalyst during the stop of the internal combustion engine by the idling stop control. The present invention has been completed. That is, an object of the present invention is to provide a catalyst temperature estimation method capable of accurately estimating the catalyst temperature and accurately determining the supply amount of the additive even when idling stop control is performed. is there.
 本発明によれば、内燃機関の排気通路中に配設された触媒の温度を推定する触媒温度推定方法であって、触媒の温度は、内燃機関から排出される排気ガスの温度と、排気ガスの流速と、外気の温度と、外気の流速とをもとにして演算を行うことにより推定され、内燃機関を自動停止させるアイドリングストップ制御による内燃機関の停止中の触媒の温度変化も考慮して演算を行うことを特徴とする触媒温度推定方法が提供され、上述した問題を解決することができる。 According to the present invention, there is provided a catalyst temperature estimation method for estimating the temperature of a catalyst disposed in an exhaust passage of an internal combustion engine, wherein the catalyst temperature includes the temperature of exhaust gas discharged from the internal combustion engine, and the exhaust gas. In consideration of changes in the temperature of the catalyst while the internal combustion engine is stopped by idling stop control, which is estimated by performing calculations based on the flow rate of the engine, the temperature of the outside air, and the flow rate of the outside air. A catalyst temperature estimation method characterized by performing computation is provided, and the above-described problems can be solved.
 また、本発明の触媒温度推定方法を実施するにあたり、内燃機関の停止中に演算を継続することが好ましい。 In carrying out the catalyst temperature estimation method of the present invention, it is preferable to continue the calculation while the internal combustion engine is stopped.
 また、本発明の触媒温度推定方法を実施するにあたり、内燃機関の停止中に演算を継続し、演算によって算出される触媒の温度と、触媒の上流側の排気ガスの温度と、の差が所定範囲内になったときには演算を中断し、内燃機関の運転再開時に演算を再開することが好ましい。 In carrying out the catalyst temperature estimation method of the present invention, the calculation is continued while the internal combustion engine is stopped, and the difference between the temperature of the catalyst calculated by the calculation and the temperature of the exhaust gas upstream of the catalyst is predetermined. Preferably, the calculation is interrupted when the value is within the range, and the calculation is restarted when the operation of the internal combustion engine is resumed.
 また、本発明の触媒温度推定方法を実施するにあたり、内燃機関の停止中に演算を継続し、内燃機関の停止から所定時間経過したときには演算を中断し、内燃機関の運転再開時に、触媒の温度を触媒の上流側の排気ガスの温度に設定した後、演算を再開することが好ましい。 Further, in carrying out the catalyst temperature estimation method of the present invention, the calculation is continued while the internal combustion engine is stopped, the calculation is interrupted when a predetermined time has elapsed from the stop of the internal combustion engine, and the temperature of the catalyst is Is preferably set to the temperature of the exhaust gas upstream of the catalyst, and then the calculation is restarted.
 また、本発明の触媒温度推定方法を実施するにあたり、内燃機関の停止時に演算を中断し、内燃機関の運転再開時に、内燃機関の停止中の触媒の温度変化を推定した後、演算を再開することが好ましい。 Further, in carrying out the catalyst temperature estimation method of the present invention, the calculation is interrupted when the internal combustion engine is stopped, and the calculation is restarted after estimating the temperature change of the catalyst while the internal combustion engine is stopped when the operation of the internal combustion engine is resumed. It is preferable.
 また、本発明の触媒温度推定方法を実施するにあたり、内燃機関の停止時に演算を中断するとともに停止時間の計測を開始し、内燃機関の運転再開時に、停止時間に応じた触媒の温度変化を推定することが好ましい。 In carrying out the catalyst temperature estimation method of the present invention, the calculation is interrupted when the internal combustion engine is stopped, and the measurement of the stop time is started. When the operation of the internal combustion engine is resumed, the temperature change of the catalyst corresponding to the stop time is estimated. It is preferable to do.
 また、本発明の触媒温度推定方法を実施するにあたり、内燃機関の停止時に演算を中断するとともに停止時間の計測を開始し、停止時間が所定時間を越えたときには計測を中止し、内燃機関の運転再開時に、触媒の温度を触媒の上流側の排気ガスの温度に設定した後、演算を再開することが好ましい。 In carrying out the catalyst temperature estimation method of the present invention, the calculation is interrupted when the internal combustion engine is stopped and the measurement of the stop time is started. When the stop time exceeds a predetermined time, the measurement is stopped and the operation of the internal combustion engine is stopped. When restarting, it is preferable to restart the calculation after setting the temperature of the catalyst to the temperature of the exhaust gas upstream of the catalyst.
 本発明の触媒温度推定方法によれば、アイドリングストップ制御による内燃機関の停止中の触媒の温度変化も考慮されるため、運転再開後の触媒温度の初期値が実際の触媒温度と大きくずれることがなくなり、触媒温度を精度良く推定することができる。したがって、触媒温度を一つの要素として決定される添加剤の供給量が正確に算出され、添加剤又はNOXが触媒の下流側に流出することを低減することができる。 According to the catalyst temperature estimation method of the present invention, since the temperature change of the catalyst while the internal combustion engine is stopped by the idling stop control is also taken into consideration, the initial value of the catalyst temperature after the restart of operation may greatly deviate from the actual catalyst temperature. The catalyst temperature can be accurately estimated. Therefore, the supply amount of the additive determined with the catalyst temperature as one factor is accurately calculated, and it is possible to reduce the flow of the additive or NO x to the downstream side of the catalyst.
 また、本発明の触媒温度推定方法を実施するにあたり、アイドリングストップ制御による内燃機関の停止中にはエンジンスイッチはオンの状態であることから、内燃機関の停止中においても触媒温度の演算を継続することにより、触媒の温度変化を継続的に把握することができ、触媒温度の推定値と実際の触媒温度とのずれの拡大を防ぐことができる。 In carrying out the catalyst temperature estimation method of the present invention, since the engine switch is on while the internal combustion engine is stopped by the idling stop control, the calculation of the catalyst temperature is continued even when the internal combustion engine is stopped. As a result, the temperature change of the catalyst can be continuously grasped, and an increase in the deviation between the estimated value of the catalyst temperature and the actual catalyst temperature can be prevented.
 また、本発明の触媒温度推定方法を実施するにあたり、内燃機関の停止中に、触媒温度の推定値と触媒上流側の排気温度との差が所定範囲内になったときに演算を中止することにより、中止時以降の触媒の温度は、触媒上流側の排気温度と一致しているものと予測できることから、内燃機関の運転再開時の触媒温度の初期値として触媒上流側排気温度の値を用いて演算を再開することができる。 Further, when carrying out the catalyst temperature estimation method of the present invention, the calculation is stopped when the difference between the estimated value of the catalyst temperature and the exhaust temperature upstream of the catalyst falls within a predetermined range while the internal combustion engine is stopped. Thus, since the temperature of the catalyst after the stop can be predicted to match the exhaust temperature on the upstream side of the catalyst, the value of the exhaust gas temperature on the upstream side of the catalyst is used as the initial value of the catalyst temperature when restarting the operation of the internal combustion engine. To resume the calculation.
 また、本発明の触媒温度推定方法を実施するにあたり、内燃機関の停止から所定時間経過後に演算を中断し、内燃機関の運転再開時に触媒上流側の排気温度を触媒温度として設定して演算を再開することにより、触媒温度の推定値と実際の触媒温度とのずれの発生を抑えつつ、バッテリー電力の浪費を低減することができる。 In carrying out the catalyst temperature estimation method of the present invention, the calculation is interrupted after a predetermined time has elapsed from the stop of the internal combustion engine, and the exhaust gas temperature on the upstream side of the catalyst is set as the catalyst temperature when the internal combustion engine is restarted. By doing so, waste of battery power can be reduced while suppressing the occurrence of a deviation between the estimated value of the catalyst temperature and the actual catalyst temperature.
 また、本発明の触媒温度推定方法を実施するにあたり、アイドリングストップ制御による内燃機関の停止後、内燃機関の運転再開時に、内燃機関の停止中の触媒温度の変化を推定した後に演算を再開することにより、触媒温度の推定値と実際の触媒温度とのずれの拡大を防ぐことができる。 In carrying out the catalyst temperature estimation method of the present invention, after the internal combustion engine is stopped by the idling stop control, the calculation is restarted after estimating the change in the catalyst temperature during the stop of the internal combustion engine when the operation of the internal combustion engine is restarted. Thus, it is possible to prevent an increase in the difference between the estimated value of the catalyst temperature and the actual catalyst temperature.
 また、本発明の触媒温度推定方法を実施するにあたり、アイドリングストップ制御による内燃機関の停止時間を考慮して、内燃機関の停止中の触媒温度の変化を推定することにより、内燃機関の運転再開時の触媒温度の推定値と実際の触媒温度とのずれを小さく抑えることができる。 Further, when the catalyst temperature estimation method of the present invention is performed, the change in the catalyst temperature during the stop of the internal combustion engine is estimated in consideration of the stop time of the internal combustion engine by the idling stop control. The deviation between the estimated value of the catalyst temperature and the actual catalyst temperature can be kept small.
 また、本発明の触媒温度推定方法を実施するにあたり、内燃機関の停止から所定時間経過したときには、内燃機関の運転再開時の触媒の温度変化の推定を行うことなく、触媒上流側の排気温度を触媒温度として設定して演算を再開することにより、触媒温度の推定値と実際の触媒温度とのずれの発生を抑えつつ、バッテリー電力の浪費を低減することができる。 Further, in carrying out the catalyst temperature estimation method of the present invention, when a predetermined time has elapsed since the stop of the internal combustion engine, the exhaust temperature on the upstream side of the catalyst is set without estimating the temperature change of the catalyst when the operation of the internal combustion engine is resumed. By setting the catalyst temperature and restarting the calculation, waste of battery power can be reduced while suppressing the occurrence of a deviation between the estimated value of the catalyst temperature and the actual catalyst temperature.
本発明の実施の形態にかかる触媒温度の推定方法が実施される排気浄化装置の構成例を示す図である。It is a figure which shows the structural example of the exhaust gas purification apparatus with which the estimation method of the catalyst temperature concerning embodiment of this invention is implemented. 本発明の第1の実施の形態の触媒温度の推定方法を実施可能な制御装置(DCU)の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control apparatus (DCU) which can implement the estimation method of the catalyst temperature of the 1st Embodiment of this invention. 触媒を複数のブリックに分割して行う触媒温度の推定方法について説明するための図である。It is a figure for demonstrating the estimation method of the catalyst temperature performed by dividing | segmenting a catalyst into a some brick. 第1の実施の形態にかかる触媒温度の推定方法のフローを示す図である。It is a figure which shows the flow of the estimation method of the catalyst temperature concerning 1st Embodiment. 第2の実施の形態の触媒温度の推定方法を実施可能な制御装置(DCU)の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control apparatus (DCU) which can implement the estimation method of the catalyst temperature of 2nd Embodiment. 第2の実施の形態にかかる触媒温度の推定方法のフローを示す図である。It is a figure which shows the flow of the estimation method of the catalyst temperature concerning 2nd Embodiment.
 以下、図面を参照して、本発明の触媒温度推定方法に関する実施の形態について具体的に説明する。ただし、かかる実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。
 なお、それぞれの図中、同じ符号を付してあるものについては同一の部材を示しており、適宜説明が省略されている。
Embodiments relating to the catalyst temperature estimation method of the present invention will be specifically described below with reference to the drawings. However, this embodiment shows one aspect of the present invention and does not limit the present invention, and can be arbitrarily changed within the scope of the present invention.
In addition, in each figure, what has attached | subjected the same code | symbol has shown the same member, and description is abbreviate | omitted suitably.
[第1の実施の形態]
1.排気浄化装置
 まず、本発明の第1の実施の形態の触媒温度推定方法が行われる排気浄化装置の構成の概略について説明する。
 図1は、排気浄化装置10の全体構成を示す図であり、排気通路中に配設された還元触媒13の上流側に添加剤を噴射供給し、還元触媒13において排気ガス中に含まれるNOXを選択的に還元浄化する排気浄化装置10が表されている。この排気浄化装置10は、内燃機関5に接続された排気通路の途中に配設され、排気ガス中に含まれるNOXを選択的に還元するための還元触媒13と、還元触媒13の上流側で排気管11内に添加剤を噴射供給するための添加剤供給装置20とを主たる要素として構成されている。
[First Embodiment]
1. First, an outline of a configuration of an exhaust gas purification apparatus in which the catalyst temperature estimation method according to the first embodiment of the present invention is performed will be described.
FIG. 1 is a diagram showing an overall configuration of an exhaust purification device 10, in which an additive is injected and supplied to the upstream side of a reduction catalyst 13 disposed in an exhaust passage, and NO contained in exhaust gas in the reduction catalyst 13. An exhaust purification device 10 that selectively reduces and purifies X is shown. The exhaust purification device 10 is disposed in the middle of an exhaust passage connected to the internal combustion engine 5, and a reduction catalyst 13 for selectively reducing NO x contained in the exhaust gas, and an upstream side of the reduction catalyst 13. The main component is an additive supply device 20 for injecting and supplying an additive into the exhaust pipe 11.
 排気浄化装置10に備えられた添加剤供給装置20は、還元触媒13の上流側で排気管11に固定された添加剤噴射弁31と、添加剤が貯蔵された貯蔵タンク50と、貯蔵タンク50内の添加剤を添加剤噴射弁31に対して圧送するポンプ(図示せず。)を含むポンプモジュール40と、排気管11内に噴射供給する添加剤の噴射量を制御するために、添加剤噴射弁31やポンプの動作制御を行う制御装置(以下、「DCU:Dosing Control Unit」と称する。)60を備えている。 The additive supply device 20 provided in the exhaust purification device 10 includes an additive injection valve 31 fixed to the exhaust pipe 11 on the upstream side of the reduction catalyst 13, a storage tank 50 in which the additive is stored, and a storage tank 50. In order to control the injection amount of the additive to be injected into the exhaust pipe 11 and the pump module 40 including a pump (not shown) for pumping the additive in the additive injection valve 31, the additive A control device (hereinafter referred to as “DCU: Dosing Control Unit”) 60 that controls the operation of the injection valve 31 and the pump is provided.
 また、図1に示す排気浄化装置10の例では、DCU60に内燃機関5の運転状態を制御するための制御装置(以下、「ECU:Electronic Control Unit」と称する。)70が接続されており、ECU70からDCU60に内燃機関5の燃料噴射量や噴射タイミング、回転数等をはじめとする内燃機関の運転状態に関する情報が出力される。また、ECU70では、内燃機関の運転状態をもとに排気ガスの流量Ugasが演算によって求められるようになっており、この演算結果についてもDCU60に出力される。排気ガスの流量Ugasは、排気管11内に公知の流量センサを設けて検出するようにしてもよい。
 なお、本実施形態では、ECU70とDCU60とが別の制御装置として構成されているが、これらのECU70とDCU60とが一つの制御装置として構成されていても構わない。また、DCU60に入出力される各信号はCANを介してやり取りされるように構成することもできる。
In the example of the exhaust emission control device 10 shown in FIG. 1, a control device (hereinafter referred to as “ECU: Electronic Control Unit”) 70 for controlling the operation state of the internal combustion engine 5 is connected to the DCU 60. Information regarding the operating state of the internal combustion engine, such as the fuel injection amount, injection timing, and rotation speed of the internal combustion engine 5, is output from the ECU 70 to the DCU 60. In addition, the ECU 70 obtains the exhaust gas flow rate Ugas by calculation based on the operating state of the internal combustion engine, and the calculation result is also output to the DCU 60. The flow rate Ugas of the exhaust gas may be detected by providing a known flow rate sensor in the exhaust pipe 11.
In this embodiment, the ECU 70 and the DCU 60 are configured as separate control devices, but the ECU 70 and the DCU 60 may be configured as a single control device. Further, each signal input / output to / from the DCU 60 may be exchanged via the CAN.
 排気管11のうち、還元触媒13の上流側には排気温度センサ15が備えられており、当該排気温度センサ15のセンサ値TsはDCU60によって読み込まれる。排気温度センサ15の値は、ECU70で読み込まれた後に、DCU60に送られるようになっていてもよい。
 また、排気浄化装置10は、排気浄化装置10の周囲の外気の温度を測定する外気温度センサ21と、外気の流速を測定する外気流速センサ23とを備えている。これらの各センサ21、23のセンサ値Tenv、UenvはDCU60によって読み込まれるようになっており、還元触媒13の温度を演算するために用いられる。
 本実施形態では、通常車両に備えられている外気温度センサの検出値がセンサ値Tenvとして用いられ、車両の速度を検出する車速センサの検出値がセンサ値Uenvとして用いられており、コストの増加が抑えられている。
An exhaust temperature sensor 15 is provided in the exhaust pipe 11 upstream of the reduction catalyst 13, and the sensor value Ts of the exhaust temperature sensor 15 is read by the DCU 60. The value of the exhaust temperature sensor 15 may be sent to the DCU 60 after being read by the ECU 70.
Further, the exhaust purification device 10 includes an outside air temperature sensor 21 that measures the temperature of outside air around the exhaust purification device 10 and an outside air flow rate sensor 23 that measures the flow rate of outside air. The sensor values Tenv and Uenv of these sensors 21 and 23 are read by the DCU 60 and used to calculate the temperature of the reduction catalyst 13.
In this embodiment, the detected value of the outside air temperature sensor normally provided in the vehicle is used as the sensor value Tenv, and the detected value of the vehicle speed sensor that detects the speed of the vehicle is used as the sensor value Uenv, which increases the cost. Is suppressed.
2.添加剤噴射制御
 次に、図1の排気浄化装置10に備えられた添加剤供給装置20によって行われる添加剤噴射制御について説明する。
 内燃機関5の運転時において、貯蔵タンク50内の添加剤は、ポンプによって添加剤噴射弁31に向けて圧送される。このとき、ポンプの下流側の圧力が所定の圧力値で維持されるようにポンプのフィードバック制御が行われる。ポンプの下流側の圧力が所定の圧力値に維持された状態で、添加剤噴射弁31が開いたときに、添加剤が排気通路内に噴射される。添加剤噴射弁31の開閉制御は、DCU60からの添加指示値に基づいて、添加剤噴射弁31への通電制御を行うことによって実施される。
2. Additive Injection Control Next, additive injection control performed by the additive supply device 20 provided in the exhaust purification device 10 of FIG. 1 will be described.
During operation of the internal combustion engine 5, the additive in the storage tank 50 is pumped toward the additive injection valve 31 by a pump. At this time, feedback control of the pump is performed so that the pressure on the downstream side of the pump is maintained at a predetermined pressure value. When the additive injection valve 31 is opened while the pressure on the downstream side of the pump is maintained at a predetermined pressure value, the additive is injected into the exhaust passage. The opening / closing control of the additive injection valve 31 is performed by performing energization control to the additive injection valve 31 based on the addition instruction value from the DCU 60.
 DCU60は、還元触媒13の温度や、内燃機関5の運転状態、排気温度、さらには還元触媒13の下流側に配置したNOXセンサ等で検出される、還元されずに還元触媒13を通過したNOX量等の情報をもとに、供給すべき添加剤の要求噴射量を算出する。このうち、還元触媒13の温度は、還元触媒13に吸着可能な添加剤あるいはNOXの量や、還元触媒13におけるNOXの還元効率に大きく影響する要素であり、正確に温度を把握することが要求される。
 DCU60で算出された要求噴射量は、添加指示値として添加剤噴射弁31の制御部分に送信され、添加指示値に応じて添加剤噴射弁31の通電制御が行われることにより、所定量の添加剤が排気通路中に噴射供給される。排気通路中に噴射された添加剤は、排気ガスとともに還元触媒13に流入し、排気ガス中に含まれるNOXの還元反応に用いられる。
The DCU 60 passes through the reduction catalyst 13 without being reduced, which is detected by the temperature of the reduction catalyst 13, the operating state of the internal combustion engine 5, the exhaust gas temperature, and the NO X sensor disposed on the downstream side of the reduction catalyst 13. based on the information of the NO X amount and the like, it calculates the required injection amount of the additive to be supplied. Of these, the temperature of the reduction catalyst 13, and the amount of adsorbable additives or NO X in reducing catalyst 13, a large influence to the element to reduction efficiency of the NO X in the reduction catalyst 13, to know the exact temperature Is required.
The requested injection amount calculated by the DCU 60 is transmitted to the control portion of the additive injection valve 31 as an addition instruction value, and the energization control of the additive injection valve 31 is performed according to the addition instruction value, whereby a predetermined amount of addition is added. The agent is injected and supplied into the exhaust passage. The additive injected into the exhaust passage flows into the reduction catalyst 13 together with the exhaust gas, and is used for the reduction reaction of NO x contained in the exhaust gas.
3.アイドリングストップ制御
 内燃機関の運転状態を制御するECU70は、内燃機関5を自動停止させるためのアイドリングストップ機能を備えている。このアイドリングストップ機能は、内燃機関のエンジンスイッチがオンにされた状態で、所定のアイドリングストップ条件が成立した場合に内燃機関5を自動停止させ、排気ガスによる大気汚染やエンジン音による騒音を防止するための機能である。
3. Idling Stop Control The ECU 70 that controls the operating state of the internal combustion engine has an idling stop function for automatically stopping the internal combustion engine 5. This idling stop function automatically stops the internal combustion engine 5 when a predetermined idling stop condition is satisfied in a state where the engine switch of the internal combustion engine is turned on, thereby preventing air pollution caused by exhaust gas and noise caused by engine noise. It is a function for.
 アイドリングストップ条件は、例えば、エンジンスイッチがオンの状態にあり、内燃機関の回転数が所定のしきい値以下であり、さらに、車速が所定のしきい値以下である状態が、所定時間以上継続した場合のように設定することができるが、これに制限されるものではない。
 また、ECU70は、一旦アイドリングストップ条件が成立し、内燃機関を自動停止させた後、アクセルペダルが踏まれたり所定のスイッチがオンにされたりしたときに、内燃機関の運転を再開する。
 このECU70は、アイドリングストップ条件が成立し内燃機関が自動停止される場合や、内燃機関の運転が再開される際に、DCU60に対して信号ISを出力する。
The idling stop condition is, for example, the state where the engine switch is on, the speed of the internal combustion engine is equal to or lower than a predetermined threshold value, and the vehicle speed is equal to or lower than the predetermined threshold value for a predetermined time or longer. However, the present invention is not limited to this.
Further, the ECU 70 restarts the operation of the internal combustion engine when the idling stop condition is once established and the internal combustion engine is automatically stopped and then the accelerator pedal is depressed or a predetermined switch is turned on.
The ECU 70 outputs a signal IS to the DCU 60 when the idling stop condition is satisfied and the internal combustion engine is automatically stopped or when the operation of the internal combustion engine is resumed.
4.触媒温度の推定装置(DCU)
(1)DCUの構成
 まず、触媒温度の推定装置としてのDCU60の構成例について説明する。
 図2は、DCU60の構成のうち、触媒の温度推定に関する部分を機能的なブロックで表した図を示している。
 このDCU60は、公知の構成からなるマイクロコンピュータを中心に構成されており、出力情報取出生成部(「出力情報取出」と表記。)と、アイドリングストップ信号受信部(「IS受信」と表記。)と、還元触媒の温度の演算処理を行う触媒温度演算部(「触媒温度演算」と表記。)等を主要な要素として備えている。これらの各部は、具体的には、マイクロコンピュータによるプログラムの実行によって実現されるものである。
4). Catalyst temperature estimation device (DCU)
(1) Configuration of DCU First, a configuration example of the DCU 60 as a catalyst temperature estimation device will be described.
FIG. 2 is a functional block diagram showing a part related to the temperature estimation of the catalyst in the configuration of the DCU 60.
The DCU 60 is configured around a microcomputer having a known configuration, and includes an output information extraction / generation unit (denoted as “output information extraction”) and an idling stop signal reception unit (denoted as “IS reception”). And a catalyst temperature calculation unit (denoted as “catalyst temperature calculation”) for performing a calculation process of the temperature of the reduction catalyst, etc. Specifically, each of these units is realized by executing a program by a microcomputer.
 このうち、出力情報取出生成部は、排気浄化装置10に備えられた排気温度センサ15のセンサ値Tsや外気温度センサ21のセンサ値Tenv、車速センサ23のセンサ値Uenv、ECU70で算出された排気ガス流量Ugasを読み込み、触媒温度演算部に出力する部分である。
 また、アイドリングストップ信号受信部は、アイドリングストップ制御による内燃機関の自動停止がオン又はオフになった場合にECU70から出力される信号ISを受信して、触媒温度演算部に出力する部分である。
Among these, the output information extraction and generation unit includes the sensor value Ts of the exhaust temperature sensor 15 provided in the exhaust purification device 10, the sensor value Tenv of the outside air temperature sensor 21, the sensor value Uenv of the vehicle speed sensor 23, and the exhaust gas calculated by the ECU 70. This is the part that reads the gas flow rate Ugas and outputs it to the catalyst temperature calculator.
The idling stop signal receiving unit is a part that receives the signal IS output from the ECU 70 when the automatic stop of the internal combustion engine by the idling stop control is turned on or off, and outputs the signal IS to the catalyst temperature calculating unit.
 また、触媒温度演算部は、排気温度センサ15のセンサ値Tsや外気温度センサ21のセンサ値Tenv、車速センサ23のセンサ値Uenv、排気ガスの流量Ugas等をもとにして、還元触媒の温度を演算により求める部分である。
 この触媒温度演算部で行われる演算処理の一例について、以下説明する。
In addition, the catalyst temperature calculation unit determines the temperature of the reduction catalyst based on the sensor value Ts of the exhaust temperature sensor 15, the sensor value Tenv of the outside air temperature sensor 21, the sensor value Uenv of the vehicle speed sensor 23, the exhaust gas flow rate Ugas, and the like. Is a part obtained by calculation.
An example of the calculation process performed by the catalyst temperature calculation unit will be described below.
(2)触媒温度の演算ロジック
 本実施形態のDCU60の触媒温度演算部では、図3(a)に示すように、還元触媒13を排気流れ方向に沿って均等に複数の領域B(i)(B(1)~B(n))に分割し、各領域B(i)(B(1)~B(n))に流入する熱量と放出される熱量とのバランスから当該領域B(i)(B(1)~B(n))ごとの温度T(i)(T(1)~T(n))や、還元触媒13の平均温度TEを算出するように構成されている。以下、分割された還元触媒13の各領域B(i)(B(1)~B(n))を「ブリック」と呼ぶ。
 分割されるブリックB(i)の数は任意に設定されるが、分割数が多いほど触媒温度の推定値の精度が高められる一方でDCUの負荷が高まるため、DCUの処理能力を考慮して設定することが好ましい。
 なお、以下の説明において、「温度の上昇」の概念にはマイナスの温度上昇(温度の降下)の概念も含まれ、「熱量の流入」の概念にはマイナスの熱量の流入(熱量の流出)の概念も含まれる。
(2) Calculation logic of catalyst temperature In the catalyst temperature calculation unit of the DCU 60 of this embodiment, as shown in FIG. 3A, the reduction catalyst 13 is evenly divided into a plurality of regions B (i) ( B (1) to B (n)), and the region B (i) is determined from the balance between the amount of heat flowing into each region B (i) (B (1) to B (n)) and the amount of heat released. The temperature T (i) (T (1) to T (n)) for each (B (1) to B (n)) and the average temperature TE of the reduction catalyst 13 are calculated. Hereinafter, each region B (i) (B (1) to B (n)) of the divided reduction catalyst 13 is referred to as “brick”.
The number of bricks B (i) to be divided is arbitrarily set. However, the larger the number of divisions, the higher the accuracy of the estimated value of the catalyst temperature, while the load on the DCU increases. Therefore, considering the processing capacity of the DCU It is preferable to set.
In the following description, the concept of “temperature rise” includes the concept of negative temperature rise (temperature drop), and the concept of “heat inflow” includes inflow of negative heat (outflow of heat). This concept is also included.
 図3(b)に示すように、排気流れ方向の上流側からi番目のブリックB(i)で、ブリックB(i)の温度上昇に利用される熱量をQ(i)、ブリックB(i)に流入する排気ガスの熱量をQgas(i)、排気管壁面からブリックB(i)に流入する熱量をQwall(i)、隣り合うブリックB(i-1)、B(i+1)との温度差によってブリックB(i)に移動してくる熱量をQscr(i)とすると、これら四つの熱量のバランスは下記式(1)で表すことができる。
Q(i)=Qgas(i)× η+Qwall(i)+Qscr(i) …(1)
η:ブリックB(i)の熱伝達に起因する係数
As shown in FIG. 3B, the amount of heat used to increase the temperature of brick B (i) is Q (i) and brick B (i) at the i-th brick B (i) from the upstream side in the exhaust flow direction. ) Qgas (i) is the heat quantity of the exhaust gas flowing into the wall), Qwall (i) is the heat quantity flowing into the brick B (i) from the exhaust pipe wall surface, and B (i-1), B (i + 1) are adjacent bricks. If the amount of heat transferred to the brick B (i) due to the temperature difference is Qscr (i), the balance of these four amounts of heat can be expressed by the following equation (1).
Q (i) = Qgas (i) × η + Qwall (i) + Qscr (i) (1)
η: Coefficient due to heat transfer of brick B (i)
 ここで、ある時間t=sのときに排気流れ方向の上流側からi番目のブリックB(i)に流入する熱量Qgast=s(i)は、下記式(2)で表すことができる。
Qgast=s(i)=mgas×cgas×(Tgast=s(i-1)-Tt=s-1(i)) …(2)
mgas     :排気ガスの質量流量
cgas      :排気ガスの比熱
Tgast=s(i-1):時間t=sのときの一つ上流側のブリックB(i-1)での排気ガスの温度
Tt=s-1(i)    :前回測定時t=s-1のときのブリックB(i)内の温度
Here, the heat quantity Qgas t = s (i) flowing into the i-th brick B (i) from the upstream side in the exhaust flow direction at a certain time t = s can be expressed by the following equation (2).
Qgas t = s (i) = mgas × cgas × (Tgas t = s (i-1) −T t = s-1 (i)) (2)
mgas: Mass flow rate of exhaust gas
cgas: Specific heat of exhaust gas
Tgas t = s (i-1): Temperature of exhaust gas at brick B (i-1) on the upstream side at time t = s
T t = s-1 (i): Temperature in brick B (i) when t = s-1 at the previous measurement
 この式(2)において、最上流のブリックB(1)の温度を求める際のTgast=s(i-1)、すなわちTgast=s(0)は触媒上流ガス温度であり、排気温度センサのセンサ値Tst=sで置き換えることができる。 In this equation (2), Tgas t = s (i-1) when obtaining the temperature of the most upstream brick B (1), that is, Tgas t = s (0) is the catalyst upstream gas temperature, and the exhaust gas temperature sensor Can be replaced with the sensor value Ts t = s .
 また、ある時間t=sのときにi番目のブリックB(i)の一つ下流側のブリックB(i+1)に流入する熱量Qgast=s(i+1)は、ブリックB(i)の熱伝達に起因する係数ηを考慮すると、下記式(3)で表すことができる。
Qgast=s(i+1)=(1-η)×Qgast=s(i) …(3)
Further, at a certain time t = s, the amount of heat Qgas t = s (i + 1) flowing into the brick B (i + 1) on the downstream side of the i-th brick B (i) is the brick B (i In consideration of the coefficient η resulting from the heat transfer of), it can be expressed by the following equation (3).
Qgas t = s (i + 1) = (1-η) × Qgas t = s (i) (3)
 また、ある時間t=sのときのi番目のブリックB(i)での排気ガスの温度Tgast=s(i)は、下記式(4)で表すことができる。
Tgast=s(i)=(1-η)×Tgast=s(i-1) …(4)
 すなわち、各ブリックB(i)に流入する熱量Qgast=s(i)及び各ブリックB(i)での排気ガスの温度Tgast=s(i)は、下流側に行くにつれて小さくなる。
Further, the exhaust gas temperature Tgas t = s (i) at the i-th brick B (i) at a certain time t = s can be expressed by the following equation (4).
Tgas t = s (i) = (1-η) × Tgas t = s (i-1) (4)
That is, the amount of heat Qgas t = s (i) flowing into each brick B (i) and the temperature Tgas t = s (i) of the exhaust gas at each brick B (i) become smaller toward the downstream side.
 また、ある時間t=sのときにブリックB(i)から排気管を介して外部に放熱される熱量Qwallt=s(i)は、下記式(5)で表すことができる。
Qwallt=s(i)=h×A1×(Tt=s(i)-Tenvt=s) …(5)
h  :ブリックB(i)と大気との間の熱伝達率
A1 :ブリックB(i)の外周部分の表面積
 ここで、ブリックB(i)と大気との熱伝達率hは車速Uenvに依存する変数であり、車速センサ23で読み込まれる車速Uenvの値をもとにして熱伝達率hの値が選択される。
Further, the amount of heat Qwall t = s (i) radiated to the outside from the brick B (i) through the exhaust pipe at a certain time t = s can be expressed by the following equation (5).
Qwall t = s (i) = h × A1 × (T t = s (i) −Tenv t = s ) (5)
h: Heat transfer coefficient between brick B (i) and the atmosphere
A1: Surface area of the outer periphery of the brick B (i) Here, the heat transfer coefficient h between the brick B (i) and the atmosphere is a variable depending on the vehicle speed Uenv, and the value of the vehicle speed Uenv read by the vehicle speed sensor 23 is Then, the value of the heat transfer coefficient h is selected.
 また、排気上流側のブリックの温度が排気下流側のブリックの温度よりも高い場合が多いことから、隣り合う二つのブリックB(i-1)、B(i+1)との温度差によってブリックB(i)に移動してくる熱量Qscrt=s(i)は、排気上流側のブリックB(i-1)から移動してくる熱量Qscrt=s(i)inから排気下流側のブリックB(i+1)へ移動していく熱量Qscrt=s(i)outを減算した値となるため、下記式(6)で表すことができる。なお、この値がマイナスの値となる場合もある。
Qscrt=s(i)=Qscrt=s(i)in-Qscrt=s(i)out
        ={A2×λ/L×(Tt=s(i-1)-Tt=s(i))}-{A2×λ/L×(Tt=s(i)-Tt=s(i+1))}
        =A2×λ/L×(Tt=s(i-1)-2Tt=s(i)+Tt=s(i+1)) …(6)
A2 :ブリックB(i)有効断面積
λ  :ブリックB(i)の熱伝導率
L  :隣り合うブリックの中心間の距離
In addition, since the temperature of the brick on the upstream side of the exhaust is often higher than the temperature of the brick on the downstream side of the exhaust, the brick is determined by the temperature difference between two adjacent bricks B (i-1) and B (i + 1). B heat coming moves to (i) Qscr t = s ( i) is the exhaust downstream side of the bricks from the heat Qscr t = s (i) in which come to move from the exhaust upstream side of the brick B (i-1) Since it is a value obtained by subtracting the amount of heat Qscr t = s (i) out that moves to B (i + 1), it can be expressed by the following equation (6). Note that this value may be a negative value.
Qscr t = s (i) = Qscr t = s (i) in−Qscr t = s (i) out
= {A2 × λ / L × (T t = s (i-1) −T t = s (i))} − {A2 × λ / L × (T t = s (i) −T t = s ( i + 1))}
= A2 × λ / L × (T t = s (i-1) −2T t = s (i) + T t = s (i + 1)) (6)
A2: Brick B (i) effective area λ: Thermal conductivity of brick B (i)
L: Distance between the centers of adjacent bricks
 この式(6)において、最上流のブリックB(1)の温度を求める際には、上流側のブリックB(i-1)が存在しないため、上流側のブリックB(i-1)から移動してくる熱量Qscrt=s(1)inがないものとして演算を行う。同様に、式(6)において、最下流のブリックB(n)の温度を求める際には、下流側のブリックB(i+1)が存在しないため、下流側のブリックB(n+1)へ移動する熱量Qscrt=s(n)outがないものとして演算を行う。 In this equation (6), when calculating the temperature of the most upstream brick B (1), there is no upstream brick B (i-1), so it moves from the upstream brick B (i-1). Calculation is performed assuming that there is no heat quantity Qscr t = s (1) in. Similarly, in Equation (6), when the temperature of the most downstream brick B (n) is determined, there is no downstream brick B (i + 1), so the downstream brick B (n + 1) Calculation is performed assuming that there is no amount of heat Qscr t = s (n) out transferred to
 また、前回測定時t=s-1から時間Δtが経過したときのブリックB(i)の温度上昇分をΔTt=s(i)とすると、ブリックB(i)の温度上昇に利用される熱量Qt=s(i)は、下記式(7)で表すことができる。
Qt=s(i)=mscr×cscr×ΔTt=s(i)/Δt …(7)
mscr:ブリックの有効質量
cscr :ブリックの比熱
 なお、mscr×cscrは、還元触媒の熱容量を示している。
Also, if the temperature rise of brick B (i) when time Δt has passed since t = s-1 at the previous measurement is ΔT t = s (i), it is used for the temperature rise of brick B (i) The amount of heat Q t = s (i) can be expressed by the following formula (7).
Q t = s (i) = mscr × cscr × ΔT t = s (i) / Δt (7)
mscr: Effective mass of brick
cscr: Specific heat of brick Note that mscr × cscr indicates the heat capacity of the reduction catalyst.
 上記式(1)と式(7)とから、ブリックB(i)の前回測定時t=s-1から時間Δtが経過したときのブリックB(i)の温度上昇分ΔTt=s(i)は下記式(8)で表すことができる。
ΔTt=s(i)={(Qgast=s(i)×η+Qwallt=s(i) +Qscrt=s(i))/(mscr×cscr)}×Δt …(8)
From the above formula (1) and formula (7), the temperature rise ΔT t = s (i of the brick B (i) when the time Δt has elapsed from the time t = s−1 at the previous measurement of the brick B (i). ) Can be represented by the following formula (8).
ΔT t = s (i) = {(Qgas t = s (i) × η + Qwall t = s (i) + Qscr t = s (i)) / (mscr × cscr)} × Δt (8)
 ここで、時間t=sのときのブリックB(i)の温度Tt=s(i)は下記式(9)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
Here, the temperature T t = s (i) of the brick B (i) at the time t = s can be expressed by the following equation (9).
Figure JPOXMLDOC01-appb-M000001
 この式(9)において、内燃機関の運転開始直後や、内燃機関の運転停止後、所定時間を経過した時点では、還元触媒の各ブリックB(i)の温度Tt=0(i)は排気温度センサのセンサ値Tsとほぼ一致しているため、各ブリックB(i)の温度の初期値Tt=0(i)は、内燃機関の始動時の排気温度センサのセンサ値Tst=0で置き換えることができる。
 そして、上記各式(2)~式(8)を用いて時間ΔtごとにΔTt=s(i)を演算し、式(9)のように初期値Tt=0(i)に積算することによって、時間t=sのときの各ブリックB(i)の温度Tt=s(i)を算出することができる。
In this equation (9), the temperature T t = 0 (i) of each brick B (i) of the reduction catalyst is the exhaust gas immediately after the start of the operation of the internal combustion engine or when a predetermined time has elapsed after the operation of the internal combustion engine is stopped. The initial value T t = 0 (i) of the temperature of each brick B (i) is substantially the same as the sensor value Ts of the temperature sensor, so the sensor value Ts t = 0 of the exhaust temperature sensor at the start of the internal combustion engine Can be replaced.
Then, ΔT t = s (i) is calculated for each time Δt using the above equations (2) to (8), and integrated to the initial value T t = 0 (i) as in equation (9). Thus, the temperature T t = s (i) of each brick B (i) at time t = s can be calculated.
 例えば、還元触媒の入口温度は、排気流れ方向最上流のブリックB(1)の温度T(1)として算出することができる。また、還元触媒の出口温度は、還元触媒をn個のブリックに分割したときの、排気流れ方向最下流のブリックB(n)の温度T(n)として算出することができる。その結果、還元触媒の入口温度と出口温度との温度差ΔTは、T(1)からT(n)を減算することによって求められる。 For example, the inlet temperature of the reduction catalyst can be calculated as the temperature T (1) of the brick B (1) at the most upstream in the exhaust flow direction. Further, the outlet temperature of the reduction catalyst can be calculated as the temperature T (n) of the brick B (n) on the most downstream side in the exhaust flow direction when the reduction catalyst is divided into n bricks. As a result, the temperature difference ΔT between the inlet temperature and the outlet temperature of the reduction catalyst can be obtained by subtracting T (n) from T (1).
 また、時間t=sのときの還元触媒の平均温度TEは、すべてのブリックB(i)の温度T(i)を加算して、ブリック数で割ることによって求められる。あるいは、還元触媒の温度が、入口から出口までが直線的に変化することを前提にするのであれば、簡易的に、還元触媒の入口温度T(1)と出口温度T(n)との平均値を、還元触媒の平均温度TEとすることもできる。 Also, the average temperature TE of the reduction catalyst at time t = s is obtained by adding the temperatures T (i) of all bricks B (i) and dividing by the number of bricks. Alternatively, if it is assumed that the temperature of the reduction catalyst changes linearly from the inlet to the outlet, simply calculate the average of the inlet temperature T (1) and the outlet temperature T (n) of the reduction catalyst. The value can also be the average temperature TE of the reduction catalyst.
4.触媒温度の推定方法
 次に、これまで説明したDCU60によって行われる触媒温度の推定方法の具体例について説明する。図4は、本実施形態の触媒温度推定方法のフローを示す図である。
 まず、内燃機関の運転開始直後に、ステップS1で、排気温度センサのセンサ値Tst=0が読み込まれ、還元触媒の各ブリックB(i)の温度の初期値Tt=0(i)として設定される。次いで、ステップS2で内燃機関の回転数Neが読み込まれた後、ステップS3で内燃機関の回転数Neが閾値Ne0を超えたか否かの判別が行われる。内燃機関の回転数Neが閾値Ne0を超えるまでは、ステップS2~S3が繰返し行われる。そして、内燃機関の回転数Neが閾値Ne0を超えたときにステップS4に進む。この閾値Ne0の値は、例えば内燃機関のクランキング時の回転数に設定される。内燃機関の回転数Neが閾値Ne0を超えるまで待機させるのは、触媒温度を推定するにあたり、触媒に流入する熱量を考慮する必要がないからである。
4). Next, a specific example of the catalyst temperature estimation method performed by the DCU 60 described so far will be described. FIG. 4 is a diagram showing a flow of the catalyst temperature estimation method of the present embodiment.
First, immediately after the operation of the internal combustion engine is started, in step S1, the sensor value Tst = 0 of the exhaust temperature sensor is read, and the initial value Tt = 0 (i) of the temperature of each brick B (i) of the reduction catalyst is set. Is set. Next, after the rotational speed Ne of the internal combustion engine is read in step S2, it is determined whether or not the rotational speed Ne of the internal combustion engine exceeds a threshold value Ne0 in step S3. Until the rotation speed Ne of the internal combustion engine exceeds the threshold value Ne0, steps S2 to S3 are repeated. Then, when the rotational speed Ne of the internal combustion engine exceeds the threshold value Ne0, the process proceeds to step S4. The value of the threshold value Ne0 is set to, for example, the rotational speed at the time of cranking of the internal combustion engine. The reason for waiting until the rotational speed Ne of the internal combustion engine exceeds the threshold value Ne0 is because it is not necessary to consider the amount of heat flowing into the catalyst in estimating the catalyst temperature.
 内燃機関の回転数Neが閾値Ne0を超えて進んだステップS4では、排気温度Tst、外気温度Tenvt、車速Uenvt、排気ガスの流量Ugastが読み込まれ、次いで、ステップS5で、これらの各値をもとにして、上記各式(1)~式(9)を用いて各ブリックB(i)の温度Tt(i)が算出されるとともに、還元触媒の平均温度TEtが算出される。 In step S4 in which the rotational speed Ne of the internal combustion engine has advanced beyond the threshold value Ne0, the exhaust temperature Ts t , the outside air temperature Tenv t , the vehicle speed Uenv t , and the exhaust gas flow rate Ugas t are read, and then in step S5 Based on each value, the temperature T t (i) of each brick B (i) is calculated using the above equations (1) to (9), and the average temperature TE t of the reduction catalyst is calculated. Is done.
 次いで、ステップS6では、内燃機関が、アイドリングストップ制御によって自動停止状態となっているか否かが判別される。内燃機関が自動停止状態になっていなければステップS4に戻り、内燃機関が自動停止状態となるまでステップS4~S6が繰返し行われる。 Next, in step S6, it is determined whether or not the internal combustion engine is in an automatic stop state by idling stop control. If the internal combustion engine is not in the automatic stop state, the process returns to step S4, and steps S4 to S6 are repeated until the internal combustion engine is in the automatic stop state.
 ステップS6において、内燃機関が自動停止状態にである場合にはステップS7に進み、各ブリックB(i)の温度Tt(i)が排気温度センサのセンサ値Tstと同じ温度であるか否かが判別される。各ブリックB(i)の温度Tt(i)が排気温度センサのセンサ値Tstと同じ温度になっていない場合には再びステップS4に戻り、内燃機関が自動停止状態になっている間、各ブリックB(i)の温度Tt(i)が排気温度センサのセンサ値Tstと同じ温度になるまでステップS4~S7が繰返し行われる。 In step S6, the process proceeds to step S7 when the engine is automatically stopped, if the temperature T t of each brick B (i) (i) is the same temperature as the sensor value Ts t of the exhaust gas temperature sensor not Is determined. Returning to step S4 again when the temperature T t of each brick B (i) (i) is not the same temperature as the sensor value Ts t of the exhaust gas temperature sensor, while the internal combustion engine is in the automatically stopped state, temperature T t (i) is the step S4 ~ S7 until the same temperature as the sensor value Ts t of the exhaust gas temperature sensor is repeated for each brick B (i).
 このとき、最上流のブリックB(1)の温度を求めるにあたり、内燃機関の運転中には上流側のブリックB(i-1)から移動してくる熱量Qscrt=s(1)inがないものとして演算が行われるのに対して、内燃機関の自動停止中には排気ガスの流れがなくなるため、最上流のブリックB(1)から上流側の排気通路内への熱量Qscrt=s(1)inの移動が想定される。したがって、内燃機関の自動停止中に触媒温度の演算を行う場合には、上記式(6)において、Tt=s(0)を排気温度センサのセンサ値Tst=sとして演算が行われる。 At this time, in obtaining the temperature of the most upstream brick B (1), there is no amount of heat Qscr t = s (1) in transferred from the upstream brick B (i-1) during operation of the internal combustion engine. On the other hand, since the exhaust gas does not flow during the automatic stop of the internal combustion engine, the amount of heat from the most upstream brick B (1) into the upstream exhaust passage Qscr t = s ( 1) In movement is assumed. Therefore, when the catalyst temperature is calculated during the automatic stop of the internal combustion engine, the calculation is performed using T t = s (0) as the sensor value Ts t = s of the exhaust temperature sensor in the above equation (6).
 同様に、最下流のブリックB(n)の温度を求めるにあたり、内燃機関の運転中には下流側のブリックB(n+1)へ移動する熱量Qscrt=s(n)outがないものとして演算が行われるのに対して、内燃機関の自動停止中には排気ガスの流れがなくなるため、最下流のブリックB(n)から下流側の排気通路内への熱量Qscrt=s(n)outの移動が想定される。したがって、内燃機関の自動停止中に触媒温度の演算を行う場合には、上記式(6)のTt=s(n+1)を算出する際に、最上流のブリックB(1)での排気ガスの温度Tgast(1)と最下流のブリックB(n)での排気ガスの温度Tgast(n)との温度差をΔTgastとしたときに、Tt=s(n+1)=Tt=s(0)+ΔTgast=sとして演算が行われる。 Similarly, in determining the temperature of the most downstream brick B (n), it is assumed that there is no amount of heat Qscr t = s (n) out transferred to the downstream brick B (n + 1) during operation of the internal combustion engine. Whereas the calculation is performed, the flow of exhaust gas disappears during the automatic stop of the internal combustion engine, so the amount of heat Qscr t = s (n) from the most downstream brick B (n) into the downstream exhaust passage The movement of out is assumed. Therefore, when calculating the catalyst temperature during the automatic stop of the internal combustion engine, when calculating T t = s (n + 1) in the above equation (6), the most upstream brick B (1) is calculated. the temperature difference between the temperature Tgas t of the exhaust gas temperature Tgas t of the exhaust gas (1) at the most downstream brick B (n) (n) is taken as ΔTgas t, T t = s ( n + 1) = T t = s (0) + ΔTgas t = s .
 また、各ブリックB(i)の温度Tt(i)が排気温度センサのセンサ値Tstと同じ温度になる以前に、アイドリングストップ制御が解除されて、内燃機関の運転が再開された場合には、そのままステップS4~S6が繰り返され、触媒温度の演算が継続して行われる。
 内燃機関の運転が再開されるときには、上記式(6)の演算を行う際のTt=s(0)=Tst=s、Tt=s(n+1)=Tt=s(0)+ΔTgast=sの設定は解除される。
Further, before the temperature T t of each brick B (i) (i) is the same temperature as the sensor value Ts t of the exhaust gas temperature sensor, and the idling stop control is canceled, when the operation of the internal combustion engine is restarted Steps S4 to S6 are repeated as they are, and the calculation of the catalyst temperature is continued.
When the operation of the internal combustion engine is resumed, T t = s (0) = Ts t = s and T t = s (n + 1) = T t = s (0 ) + ΔTgas t = s is canceled.
 ステップS7において、各ブリックB(i)の温度Tt(i)が排気温度センサのセンサ値Tstと同じ温度になっている場合には、ステップS8に進み、触媒温度の演算が中断される。同時に、上記式(6)の演算を行う際のTt=s(0)=Tst=s、Tt=s(n+1)=Tt=s(0)+ΔTgast=sの設定は解除される。ここで触媒温度の演算を中断するのは、これ以降、内燃機関の運転が再開されるまでは、触媒温度は排気温度センサのセンサ値Tsと同等であると推定されるためであり、バッテリー電力の節約にもつながる。 In step S7, when the temperature T t of each brick B (i) (i) have the same temperature as the sensor value Ts t of the exhaust gas temperature sensor, the process proceeds to step S8, operation of the catalyst temperature is interrupted . At the same time, the setting of T t = s (0) = Ts t = s and T t = s (n + 1) = T t = s (0) + ΔTgas t = s in the calculation of the above equation (6) is Canceled. Here, the calculation of the catalyst temperature is interrupted because the catalyst temperature is estimated to be equivalent to the sensor value Ts of the exhaust temperature sensor until the operation of the internal combustion engine is resumed thereafter, and the battery power Savings.
 触媒温度の演算が中断された後は、ステップS9で、アイドリングストップ制御による内燃機関の自動停止が解除され、内燃機関の運転が再開されたことが検知されると、ステップS10に進み、排気温度センサのセンサ値Tsが読み込まれ、当該センサ値Tsが還元触媒の各ブリックB(i)の温度の初期値Tt=0’(i)として設定される。
 この後は、再びステップS2に戻り、これまでの各ステップが繰り返される。
After the calculation of the catalyst temperature is interrupted, in step S9, when it is detected that the automatic stop of the internal combustion engine by the idling stop control is released and the operation of the internal combustion engine is restarted, the process proceeds to step S10, and the exhaust temperature is increased. The sensor value Ts of the sensor is read, and the sensor value Ts is set as the initial value T t = 0 ′ (i) of each brick B (i) of the reduction catalyst.
After this, the process returns to step S2 again, and the steps so far are repeated.
 なお、上記の本実施形態の触媒温度推定方法の例では、アイドリングストップ制御による内燃機関の自動停止中に、各ブリック温度が排気温度センサのセンサ値と同じ温度になったときに演算が中断されるが、各ブリック温度が排気温度センサのセンサ値と同じ温度になるような基準時間を設定しておき、自動停止からの経過時間が設定された基準時間を経過したときに演算が中断されるように構成することもできる。 In the example of the catalyst temperature estimation method of the present embodiment described above, the calculation is interrupted when each brick temperature becomes the same as the sensor value of the exhaust temperature sensor during the automatic stop of the internal combustion engine by the idling stop control. However, the reference time is set so that each brick temperature becomes the same as the sensor value of the exhaust temperature sensor, and the calculation is interrupted when the elapsed time from the automatic stop exceeds the set reference time. It can also be configured as follows.
 以上のように、アイドリングストップ制御による内燃機関の自動停止中においても触媒温度の演算が継続されることによって、触媒温度の推定値と実際の触媒温度とのずれの拡大が抑えられる。また、アイドリングストップ制御による内燃機関の自動停止中に、各ブリックB(i)の温度T(i)が排気温度センサのセンサ値Tsと同じ温度になったときに演算が中断されることによって、触媒温度の推定値と実際の触媒温度とのずれを生じさせることがなく、また、バッテリー電力の節約にもつながる。
 このように、本実施形態の触媒温度の推定方法であれば、触媒温度の推定値と実際の触媒温度とのずれが極めて小さくされるため、触媒温度に応じた還元効率を考慮して行われる添加剤の噴射制御を精度良く行なえるようになる。
As described above, since the calculation of the catalyst temperature is continued even during the automatic stop of the internal combustion engine by the idling stop control, an increase in the deviation between the estimated value of the catalyst temperature and the actual catalyst temperature can be suppressed. In addition, during the automatic stop of the internal combustion engine by idling stop control, the calculation is interrupted when the temperature T (i) of each brick B (i) reaches the same temperature as the sensor value Ts of the exhaust temperature sensor, There is no deviation between the estimated value of the catalyst temperature and the actual catalyst temperature, and battery power is also saved.
As described above, according to the method for estimating the catalyst temperature of the present embodiment, the deviation between the estimated value of the catalyst temperature and the actual catalyst temperature is extremely small, and thus the reduction efficiency according to the catalyst temperature is taken into consideration. Additive injection control can be performed with high accuracy.
[第2の実施の形態]
 本発明の第2の実施の形態の触媒温度推定方法は、アイドリングストップ制御による内燃機関の自動停止中には触媒温度の演算を行わないものの、内燃機関の運転再開時に、内燃機関の自動停止中の触媒の温度変化を加味して、触媒温度の演算を再開するようにした推定方法である。
 本実施形態においても、基本的な触媒温度の推定ロジックは第1の実施の形態で説明した式(1)~式(9)を用いたものであるため、以下、第1の実施の形態と異なる点を中心に説明する。
[Second Embodiment]
In the catalyst temperature estimation method according to the second embodiment of the present invention, the calculation of the catalyst temperature is not performed during the automatic stop of the internal combustion engine by the idling stop control, but the internal combustion engine is being automatically stopped when the operation of the internal combustion engine is resumed. This is an estimation method in which the calculation of the catalyst temperature is restarted in consideration of the temperature change of the catalyst.
Also in this embodiment, the basic catalyst temperature estimation logic uses the equations (1) to (9) described in the first embodiment. The difference will be mainly described.
1.触媒温度の推定装置(DCU)の構成
 図5は、本実施形態のDCU60´の構成のうち、触媒の温度推定に関する部分を機能的なブロックで表した図を示している。
 このDCU60´は、公知の構成からなるマイクロコンピュータを中心に構成されており、出力情報取出生成部(「出力情報取出」と表記。)と、アイドリングストップ信号受信部(「IS受信」と表記。)と、還元触媒の温度の演算処理を行う触媒温度演算部(「触媒温度演算」と表記。)と、内燃機関の自動停止時間をカウントするタイマカウンタ等を主要な要素として備えている。なお、タイマカウンタはECUに備えられていてもよい。
1. Configuration of Catalyst Temperature Estimating Device (DCU) FIG. 5 is a functional block diagram showing a portion related to catalyst temperature estimation in the configuration of the DCU 60 ′ of this embodiment.
The DCU 60 ′ is configured with a microcomputer having a known configuration as a center, and includes an output information extraction / generation unit (denoted as “output information extraction”) and an idling stop signal reception unit (denoted as “IS reception”). ), A catalyst temperature calculation unit (denoted as “catalyst temperature calculation”) for calculating the temperature of the reduction catalyst, a timer counter for counting an automatic stop time of the internal combustion engine, and the like as main elements. The timer counter may be provided in the ECU.
 このうち、センサ値取出生成部やアイドリングストップ信号受信部は、第1の実施の形態のDCU60に備えられたものと同様の構成とすることができる。
 また、触媒温度演算部についても、基本的には第1の実施の形態のDCUと同様の構成となっており、上述した触媒温度の演算処理が行われる。ただし、本実施形態のDCU60´の触媒温度演算部では、内燃機関の自動停止後の運転再開時に、内燃機関の自動停止中の還元触媒の温度変化を演算し、各ブリックB(i)の温度T(i)を初期化した上で、演算を再開するように構成されている。この運転再開時の演算処理の一例について、以下説明する。
Among these, the sensor value extraction generation unit and the idling stop signal reception unit can have the same configuration as that provided in the DCU 60 of the first embodiment.
Further, the catalyst temperature calculation unit is basically configured similarly to the DCU of the first embodiment, and the above-described catalyst temperature calculation process is performed. However, the catalyst temperature calculation unit of the DCU 60 ′ of the present embodiment calculates the temperature change of the reduction catalyst during the automatic stop of the internal combustion engine when the operation is restarted after the internal combustion engine is automatically stopped, and the temperature of each brick B (i). The operation is restarted after initializing T (i). An example of the calculation process at the time of restarting the operation will be described below.
2.触媒の温度推定方法
 次に、これまで説明したDCU60´によって行われる本実施形態の触媒温度推定方法の具体例について説明する。図6は、本実施形態の触媒温度推定方法のフローを示す図である。
2. Next, a specific example of the catalyst temperature estimation method of the present embodiment performed by the DCU 60 ′ described so far will be described. FIG. 6 is a diagram showing a flow of the catalyst temperature estimation method of the present embodiment.
 ステップS1~S6までは、第1の実施の形態のステップS1~S6と同様に行われる。
 本実施形態では、ステップS6において内燃機関が自動停止状態である場合にはステップS17に進み、この時点での排気温度Tst=stop、各ブリックB(i)の温度Tt=stop(i)、触媒下流側の排気ガス温度Tgast=stop(n+1)、外気温度Tenvt=stopの値が記憶される。触媒下流側の排気通路内の温度Tt=s(n+1)が検出できるのであれば、触媒下流側の排気ガス温度Tgast=stop(n+1)の代わりに触媒下流側の排気通路内の温度Tt=s(n+1)が記憶されるようにしてもよい。次いで、ステップS18に進み、アイドリングストップ制御による内燃機関の停止時間Tstopのカウントが開始される。
Steps S1 to S6 are performed in the same manner as steps S1 to S6 in the first embodiment.
In this embodiment, when the internal combustion engine is in the automatic stop state in step S6, the process proceeds to step S17, and the exhaust temperature Ts t = stop at this time and the temperature T t = stop (i) of each brick B (i). Further, the values of the exhaust gas temperature Tgas t = stop (n + 1) and the outside air temperature Tenv t = stop on the downstream side of the catalyst are stored. If the temperature Tt = s (n + 1) in the exhaust passage on the downstream side of the catalyst can be detected, the exhaust gas temperature on the downstream side of the catalyst instead of the exhaust gas temperature Tgas t = stop (n + 1) on the downstream side of the catalyst The temperature Tt = s (n + 1) may be stored. Next, the process proceeds to step S18, and counting of the stop time Tstop of the internal combustion engine by the idling stop control is started.
 次いで、ステップS19では、内燃機関の停止時間Tstopが基準時間Tstop0を経過したか否かの判別が行われる。この基準時間Tstop0は、各ブリックB(i)の温度T(i)が排気温度センサのセンサ値Tsと同じ温度になるような時間に設定されたものである。そして、内燃機関の停止時間Tstopが基準時間Tstop0を経過していない場合には、ステップS20に進み、アイドリングストップ制御が解除され、内燃機関の運転が再開されたか否かの判別が行われる。内燃機関の自動停止状態が継続している場合にはステップS19に戻る一方、内燃機関の運転が再開された場合にはステップS21に進む。 Next, in step S19, it is determined whether or not the stop time Tstop of the internal combustion engine has passed the reference time Tstop0. This reference time Tstop0 is set to such a time that the temperature T (i) of each brick B (i) becomes the same temperature as the sensor value Ts of the exhaust temperature sensor. If the stop time Tstop of the internal combustion engine has not passed the reference time Tstop0, the process proceeds to step S20, where it is determined whether or not the idling stop control is canceled and the operation of the internal combustion engine is resumed. If the internal combustion engine is in the automatic stop state, the process returns to step S19. If the operation of the internal combustion engine is resumed, the process proceeds to step S21.
 内燃機関の運転が再開されたステップS21では、内燃機関の自動停止時に記憶された排気温度Tst=stop、各ブリックB(i)の温度Tt=stop(i)、触媒下流側の排気ガス温度Tgast=stop(n+1)、外気温度Tenvt=stopの値が読み込まれるとともに、内燃機関の停止時間Tstopのカウンタ値、運転再開時の排気温度Tst=0’’及び外気温度Tenvt=0’’が読み込まれる。そして、ステップS22において、内燃機関の停止時間Tstopのカウンタ値に応じて、内燃機関の自動停止中の各ブリックB(i)の温度T(i)を推定する演算が実行される。 In step S21 where the operation of the internal combustion engine is resumed, the exhaust temperature Ts t = stop stored at the time of the automatic stop of the internal combustion engine, the temperature T t = stop (i) of each brick B (i), the exhaust gas downstream of the catalyst The values of the temperature Tgas t = stop (n + 1) and the outside air temperature Tenv t = stop are read, the counter value of the stop time Tstop of the internal combustion engine, the exhaust gas temperature Ts t = 0 '' when restarting the operation, and the outside air temperature Tenv t = 0 '' is read. Then, in step S22, calculation for estimating the temperature T (i) of each brick B (i) during the automatic stop of the internal combustion engine is executed according to the counter value of the stop time Tstop of the internal combustion engine.
 このとき、最上流のブリックB(1)の温度T(1)を求めるにあたり、内燃機関の運転中には上流側のブリックB(i-1)から移動してくる熱量Qscrt=s(1)inがないものとして演算が行われるのに対して、内燃機関の自動停止中には排気ガスの流れがなくなるため、最上流のブリックB(1)から上流側の排気通路内への熱量Qscrt=s(1)inの移動が想定される。そのため、本実施形態では、内燃機関の自動停止中のブリックB(1)の温度T(1)の演算が行われる場合に、上記式(6)において、Tt=s(0)の値として触媒上流側の排気温度センサのセンサ値Tst=sが用いられる。具体的には、内燃機関の自動停止時から内燃機関の再始動時までのセンサ値Tst=sが示す温度変化が直線的であると仮定して、自動停止時のセンサ値Tst=stop、運転再開時のセンサ値Tst=0’’及び経過時間に基づいて、Tt=s(0)が求められる。 At this time, in obtaining the temperature T (1) of the most upstream brick B (1), the amount of heat Qscr t = s (1) transferred from the upstream brick B (i-1) during operation of the internal combustion engine. ) The calculation is performed on the assumption that there is no in, but the exhaust gas does not flow during the automatic stop of the internal combustion engine, so the amount of heat Qscr from the most upstream brick B (1) into the upstream exhaust passage t = s (1) In-movement is assumed. Therefore, in the present embodiment, when the temperature T (1) of the brick B (1) during the automatic stop of the internal combustion engine is calculated, the value of T t = s (0) in the above equation (6) is used. The sensor value Tst = s of the exhaust gas temperature sensor upstream of the catalyst is used. Specifically, assuming that the temperature change indicated by the sensor value Ts t = s from when the internal combustion engine is automatically stopped to when the internal combustion engine is restarted is linear, the sensor value Ts t = stop at the time of automatic stop Then, T t = s (0) is obtained based on the sensor value Ts t = 0 ″ when the operation is resumed and the elapsed time.
 同様に、最下流のブリックB(n)の温度T(n)を求めるにあたり、内燃機関の運転中には下流側のブリックB(n+1)へ移動する熱量Qscrt=s(n)outがないものとして演算が行われるのに対して、内燃機関の自動停止中には排気ガスの流れがなくなるため、最下流のブリックB(n)から下流側の排気通路内への熱量Qscrt=s(n)outの移動が想定される。そのため、本実施形態では、内燃機関の自動停止中の各ブリックB(n)の温度T(n)の演算を行う場合に、上記式(6)において、Tt=s(n+1)の値として触媒下流側の排気ガスの温度Tgast=s(n+1)が用いられる。具体的には、内燃機関の自動停止時から内燃機関の再始動時までの触媒下流側の排気ガスの温度Tgast=s(n+1)の変化が直線的であると仮定して、自動停止時の温度Tgast=stop(n+1)、運転再開時の温度Tgast=0’’(n+1)及び経過時間に基づいて、Tt=s(n+1)が求められる。 Similarly, in determining the temperature T (n) of the most downstream brick B (n), the amount of heat transferred to the downstream brick B (n + 1) during operation of the internal combustion engine Qscr t = s (n) out On the other hand, the calculation is performed on the assumption that there is no exhaust gas, but the exhaust gas flow disappears during the automatic stop of the internal combustion engine, so the amount of heat Qscr t = from the most downstream brick B (n) into the exhaust passage on the downstream side s (n) out movement is assumed. Therefore, in this embodiment, when calculating the temperature T (n) of each brick B (n) during the automatic stop of the internal combustion engine, in the above equation (6), T t = s (n + 1) As the value, the exhaust gas temperature Tgas t = s (n + 1) on the downstream side of the catalyst is used. Specifically, it is assumed that the change in the temperature Tgas t = s (n + 1) of the exhaust gas downstream of the catalyst from when the internal combustion engine is automatically stopped to when the internal combustion engine is restarted is linear. Based on the temperature Tgas t = stop (n + 1) at the time of stop , the temperature Tgas t = 0 ″ (n + 1) at the time of restarting operation, and the elapsed time, T t = s (n + 1) is obtained.
 また、内燃機関の自動停止中における、式(5)中の外気温度Tenvt=sについても、内燃機関の自動停止時から内燃機関の再始動時までの温度変化が直線的であると仮定して、自動停止時の外気温度Tenvt=stop、運転再開時の外気温度Tenvt=0’’及び経過時間に基づいて、Tenvt=sが求められる。
 さらに、本実施形態では、内燃機関の運転再開時のTt=0’’(0)、Tt=0’’(n+1)、触媒下流側の排気ガスの温度Tgast=s(n+1)の値は、排気温度Tst=0’’と同じ値であると仮定して、演算が行われている。
Also, regarding the outside air temperature Tenv t = s in the equation (5) during the automatic stop of the internal combustion engine, it is assumed that the temperature change from the automatic stop of the internal combustion engine to the restart of the internal combustion engine is linear. Thus, Tenv t = s is obtained based on the outside air temperature Tenv t = stop at the time of automatic stop, the outside air temperature Tenv t = 0 ″ at the time of restarting operation, and the elapsed time.
Further, in the present embodiment, T t = 0 '' (0), T t = 0 '' (n + 1) at the time of restarting the operation of the internal combustion engine, the exhaust gas temperature Tgas t = s (n The calculation is performed on the assumption that the value of +1) is the same value as the exhaust gas temperature Tst = 0 ″ .
 ただし、排気温度の温度勾配を、還元触媒から排気への熱伝達及び排気から外気への熱伝達を加味した計算式(曲線的変化)で演算するとともに、外気温度の温度勾配を、直線的に変化すると仮定し、各演算時の排気温度Ts及び外気温度Tenvを導いて、各ブリックB(i)の温度T(i)の演算が行われてもよい。このときの排気温度Tsの演算は、内燃機関の自動停止時の排気温度Tst=stopと内燃機関の停止時間Tstopにもとづいて算出される。ここで、算出された運転再開時の排気温度Tsと排気温度センサの値Tst=0’’を比較して差がある場合、内燃機関の自動停止中の外気温度が直線的に変化していないことが原因であると仮定し、温度差から求められる熱量を各ブリックB(i)の熱量計算に加算し、温度T(i)の演算が行われる。 However, the temperature gradient of the exhaust temperature is calculated by a calculation formula (curve change) that takes into account heat transfer from the reduction catalyst to the exhaust and heat transfer from the exhaust to the outside air, and the temperature gradient of the outside air temperature is linearly calculated. It is assumed that the temperature T (i) of each brick B (i) is calculated by deriving the exhaust temperature Ts and the outside air temperature Tenv at the time of each calculation, assuming that it changes. The calculation of the exhaust gas temperature Ts at this time is calculated based on the exhaust gas temperature Tst = stop when the internal combustion engine is automatically stopped and the stop time Tstop of the internal combustion engine. Here, if there is a difference between the calculated exhaust temperature Ts at the time of restarting operation and the value Ts t = 0 '' of the exhaust temperature sensor, the outside air temperature during the automatic stop of the internal combustion engine changes linearly. Assuming that this is the cause, the amount of heat obtained from the temperature difference is added to the amount of heat calculated for each brick B (i), and the temperature T (i) is calculated.
 これらの演算を終えると、ステップS23で、演算された運転再開時の各ブリックB(i)の温度Tt=0’’(i)が初期値として設定される。この後はステップS2に戻り、これまでのステップが繰り返される。 When these calculations are finished, in step S23, the calculated temperature T t = 0 ″ (i) of each brick B (i) when the operation is resumed is set as an initial value. After this, the process returns to step S2, and the steps so far are repeated.
 一方、上述のステップS19において、内燃機関の停止時間Tstopが基準時間Tstop0を経過したときには、ステップS24に進み、停止時間Tstopのカウントが中止される。ここで停止時間Tstopのカウントを中止するのは、これ以降、内燃機関の運転が再開されるまでは、触媒温度は排気温度センサのセンサ値Tsと同等であると推定されるためである。 On the other hand, when the stop time Tstop of the internal combustion engine has passed the reference time Tstop0 in step S19 described above, the process proceeds to step S24, and the count of the stop time Tstop is stopped. The reason why the stop time Tstop is stopped is that the catalyst temperature is estimated to be equal to the sensor value Ts of the exhaust temperature sensor until the operation of the internal combustion engine is resumed thereafter.
 内燃機関の停止時間Tstopのカウントが中止された後は、ステップS25で、アイドリングストップ制御による内燃機関の自動停止が解除され、内燃機関の運転が再開されたことを検知すると、ステップS26に進み、排気温度センサのセンサ値Tsが読み込まれ、当該センサ値Tsが還元触媒の各ブリックB(i)の温度の初期値Tt=0’(i)として設定される。この後はステップS2に戻り、これまでのステップが繰り返される。 After the count of the stop time Tstop of the internal combustion engine is stopped, in step S25, when it is detected that the automatic stop of the internal combustion engine by the idling stop control is canceled and the operation of the internal combustion engine is restarted, the process proceeds to step S26. The sensor value Ts of the exhaust temperature sensor is read, and the sensor value Ts is set as the initial value T t = 0 ′ (i) of each brick B (i) of the reduction catalyst. After this, the process returns to step S2, and the steps so far are repeated.
 なお、上記の本実施形態の触媒温度推定方法の例では、アイドリングストップ制御による内燃機関の自動停止時間Tstopのカウントがタイマカウンタによって行われているが、車両等に備えられている時計の計測信号を利用してもよい。あるいは、内燃機関の冷却に用いられるエンジン冷却水の温度を利用して、停止時間Tstopを推定してもよい。
 具体的には、内燃機関が自動停止状態になったときの外気温度Tenvt=stopと、車両等の内燃機関に備えられているエンジン冷却装置内を循環するエンジン冷却水の温度を検出する冷却水温度センサのセンサ値Tcoolt=stopとを読み込むとともに、外気温度Tenvt=stopと冷却水温度Tcoolt=stopとの温度差ΔTcoolt=stopを記憶する。さらに、内燃機関の運転再開時においても、外気温度Tenvt=0’と冷却水温度Tcoolt=0’とを読み込むとともに、外気温度Tenvt=0’と冷却水温度Tcoolt=0’との温度差ΔTcoolt=0’を記憶する。そして、温度差ΔTcoolの変化と経過時間との関係を示すマップや、熱伝達を考慮した計算式等を用いて、二つの温度差ΔTcoolt=stop、ΔTcoolt=0’をもとに、内燃機関の停止時間Tstopが推定される。
In the example of the catalyst temperature estimation method of the present embodiment described above, the automatic stop time Tstop of the internal combustion engine by the idling stop control is counted by the timer counter, but the measurement signal of the clock provided in the vehicle or the like May be used. Alternatively, the stop time Tstop may be estimated using the temperature of engine coolant used for cooling the internal combustion engine.
Specifically, cooling is performed to detect the outside air temperature Tenv t = stop when the internal combustion engine is automatically stopped and the temperature of the engine coolant circulating in the engine cooling device provided in the internal combustion engine such as a vehicle. The sensor value Tcool t = stop of the water temperature sensor is read, and the temperature difference ΔTcool t = stop between the outside air temperature Tenv t = stop and the cooling water temperature Tcool t = stop is stored. Further, when the internal combustion engine is restarted, the outside air temperature Tenv t = 0 ' and the cooling water temperature Tcool t = 0' are read, and the outside air temperature Tenv t = 0 ' and the cooling water temperature Tcool t = 0' The temperature difference ΔTcool t = 0 ′ is stored. Then, based on the two temperature differences ΔTcool t = stop and ΔTcool t = 0 ′ using a map showing the relationship between the change in temperature difference ΔTcool and the elapsed time, a calculation formula that takes heat transfer into account, etc. The engine stop time Tstop is estimated.
 以上のように、アイドリングストップ制御による内燃機関の自動停止中に停止時間Tstopをカウントし、内燃機関の運転再開時に、自動停止中の各ブリックB(i)の温度T(i)の変化を演算することによって、触媒温度の推定値と実際の触媒温度とのずれの拡大が抑えられる。また、アイドリングストップ制御による内燃機関の自動停止時間Tstopが基準時間Tstop0を経過したときに停止時間Tstopのカウントを中止することによって、触媒温度の推定値と実際の触媒温度とのずれを生じさせることがなく、また、バッテリー電力の節約にもつながる。
 このように、本実施形態の触媒温度の推定方法であっても、触媒温度の推定値と実際の触媒温度とのずれが極めて小さくされるため、触媒温度に応じた還元効率を考慮して行われる添加剤の噴射制御を精度良く行なえるようになる。
 
As described above, the stop time Tstop is counted during the automatic stop of the internal combustion engine by idling stop control, and the change in the temperature T (i) of each brick B (i) during the automatic stop is calculated when the operation of the internal combustion engine is resumed. By doing so, the spread of the deviation between the estimated value of the catalyst temperature and the actual catalyst temperature can be suppressed. In addition, when the automatic stop time Tstop of the internal combustion engine by the idling stop control exceeds the reference time Tstop0, the count of the stop time Tstop is stopped, thereby causing a deviation between the estimated value of the catalyst temperature and the actual catalyst temperature. This also saves battery power.
As described above, even in the method for estimating the catalyst temperature according to the present embodiment, the difference between the estimated value of the catalyst temperature and the actual catalyst temperature is extremely small. Therefore, the reduction efficiency according to the catalyst temperature is considered. The injection control of the additive can be performed with high accuracy.

Claims (7)

  1.  内燃機関の排気通路中に配設された触媒の温度を推定する触媒温度推定方法において、
     前記触媒の温度は、前記内燃機関から排出される排気ガスの温度と、前記排気ガスの流速と、外気の温度と、前記外気の流速と、をもとにして演算を行うことにより推定され、
     前記内燃機関を自動停止させるアイドリングストップ制御による前記内燃機関の停止中の前記触媒の温度変化も考慮して前記演算を行うことを特徴とする触媒温度推定方法。
    In a catalyst temperature estimation method for estimating the temperature of a catalyst disposed in an exhaust passage of an internal combustion engine,
    The temperature of the catalyst is estimated by performing a calculation based on the temperature of the exhaust gas discharged from the internal combustion engine, the flow rate of the exhaust gas, the temperature of the outside air, and the flow rate of the outside air,
    A method for estimating a catalyst temperature, wherein the calculation is performed in consideration of a temperature change of the catalyst while the internal combustion engine is stopped by idling stop control for automatically stopping the internal combustion engine.
  2.  前記内燃機関の停止中に前記演算を継続することを特徴とする請求の範囲の第1項に記載の触媒温度推定方法。 The catalyst temperature estimation method according to claim 1, wherein the calculation is continued while the internal combustion engine is stopped.
  3.  前記内燃機関の停止中に前記演算を継続し、前記演算によって算出される前記触媒の温度と、前記触媒の上流側の前記排気ガスの温度と、の差が所定範囲内になったときには前記演算を中断し、前記内燃機関の運転再開時に前記演算を再開することを特徴とする請求の範囲の第2項に記載の触媒温度推定方法。 The calculation is continued while the internal combustion engine is stopped, and the calculation is performed when the difference between the temperature of the catalyst calculated by the calculation and the temperature of the exhaust gas upstream of the catalyst falls within a predetermined range. The catalyst temperature estimation method according to claim 2, wherein the calculation is resumed when the operation of the internal combustion engine is resumed.
  4.  前記内燃機関の停止中に前記演算を継続し、前記内燃機関の停止から所定時間経過したときには前記演算を中断し、前記内燃機関の運転再開時に、前記触媒の温度を前記触媒の上流側の前記排気ガスの温度に設定した後、前記演算を再開することを特徴とする請求の範囲の第2項に記載の触媒温度推定方法。 The calculation is continued while the internal combustion engine is stopped, the calculation is interrupted when a predetermined time has elapsed from the stop of the internal combustion engine, and when the operation of the internal combustion engine is resumed, the temperature of the catalyst is changed to the upstream side of the catalyst. 3. The catalyst temperature estimation method according to claim 2, wherein the calculation is restarted after the exhaust gas temperature is set.
  5.  前記内燃機関の停止時に前記演算を中断し、前記内燃機関の運転再開時に、前記内燃機関の停止中の前記触媒の温度変化を推定した後、前記演算を再開することを特徴とする請求の範囲の第1項に記載の触媒温度推定方法。 The calculation is interrupted when the internal combustion engine is stopped, and when the operation of the internal combustion engine is resumed, the calculation is resumed after estimating a temperature change of the catalyst during the stop of the internal combustion engine. The catalyst temperature estimation method according to item 1 of the above.
  6.  前記内燃機関の停止時に前記演算を中断するとともに停止時間の計測を開始し、前記内燃機関の運転再開時に、前記停止時間に応じた前記触媒の温度変化を推定することを特徴とする請求の範囲の第5項に記載の触媒温度推定方法。 The calculation is interrupted when the internal combustion engine is stopped and measurement of a stop time is started, and when the operation of the internal combustion engine is resumed, a temperature change of the catalyst according to the stop time is estimated. 6. The catalyst temperature estimation method according to item 5.
  7.  前記内燃機関の停止時に前記演算を中断するとともに停止時間の計測を開始し、前記停止時間が所定時間を越えたときには前記停止時間の計測を中止し、前記内燃機関の運転再開時に、前記触媒の温度を前記触媒の上流側の前記排気ガスの温度に設定した後、前記演算を再開することを特徴とする請求の範囲の第6項に記載の触媒温度推定方法。 When the internal combustion engine is stopped, the calculation is interrupted and measurement of the stop time is started. When the stop time exceeds a predetermined time, the measurement of the stop time is stopped, and when the operation of the internal combustion engine is resumed, The catalyst temperature estimation method according to claim 6, wherein the calculation is resumed after the temperature is set to the temperature of the exhaust gas upstream of the catalyst.
PCT/JP2008/072738 2008-08-01 2008-12-15 Catalyst temperature estimation method WO2010013365A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008199540 2008-08-01
JP2008-199540 2008-08-01

Publications (1)

Publication Number Publication Date
WO2010013365A1 true WO2010013365A1 (en) 2010-02-04

Family

ID=41610082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072738 WO2010013365A1 (en) 2008-08-01 2008-12-15 Catalyst temperature estimation method

Country Status (1)

Country Link
WO (1) WO2010013365A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209774A (en) * 2014-04-24 2015-11-24 三菱自動車工業株式会社 Vehicle engine control device
WO2016152391A1 (en) * 2015-03-25 2016-09-29 いすゞ自動車株式会社 Exhaust purification system and catalyst control method
US10067005B2 (en) 2014-03-20 2018-09-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Apparatus for estimating temperatures of vehicle
US11047288B2 (en) 2018-12-25 2021-06-29 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11199119B2 (en) 2018-12-25 2021-12-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN114856779A (en) * 2022-04-18 2022-08-05 东风柳州汽车有限公司 Catalyst temperature detection method, device, equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182143A (en) * 1997-09-10 1999-03-26 Toyota Motor Corp Catalyst temperature estimating device for internal combustion engine
JP2001173504A (en) * 1999-12-17 2001-06-26 Honda Motor Co Ltd Estimating device for catalyst temperature
JP2003148201A (en) * 2001-11-12 2003-05-21 Denso Corp Exhaust emission control device for internal combustion engine
JP2005273530A (en) * 2004-03-24 2005-10-06 Toyota Motor Corp Control device for internal combustion engine and automobile equipped therewith
JP2007303300A (en) * 2006-05-09 2007-11-22 Toyota Motor Corp Control device for internal combustion engine
JP2007309208A (en) * 2006-05-18 2007-11-29 Toyota Motor Corp Device for estimating catalyst temperature and vehicle including same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182143A (en) * 1997-09-10 1999-03-26 Toyota Motor Corp Catalyst temperature estimating device for internal combustion engine
JP2001173504A (en) * 1999-12-17 2001-06-26 Honda Motor Co Ltd Estimating device for catalyst temperature
JP2003148201A (en) * 2001-11-12 2003-05-21 Denso Corp Exhaust emission control device for internal combustion engine
JP2005273530A (en) * 2004-03-24 2005-10-06 Toyota Motor Corp Control device for internal combustion engine and automobile equipped therewith
JP2007303300A (en) * 2006-05-09 2007-11-22 Toyota Motor Corp Control device for internal combustion engine
JP2007309208A (en) * 2006-05-18 2007-11-29 Toyota Motor Corp Device for estimating catalyst temperature and vehicle including same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10067005B2 (en) 2014-03-20 2018-09-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Apparatus for estimating temperatures of vehicle
JP2015209774A (en) * 2014-04-24 2015-11-24 三菱自動車工業株式会社 Vehicle engine control device
WO2016152391A1 (en) * 2015-03-25 2016-09-29 いすゞ自動車株式会社 Exhaust purification system and catalyst control method
JP2016180401A (en) * 2015-03-25 2016-10-13 いすゞ自動車株式会社 Exhaust emission control system
US20180051615A1 (en) 2015-03-25 2018-02-22 Isuzu Motors Limited Exhaust purification system and catalyst control method
US10260398B2 (en) 2015-03-25 2019-04-16 Isuzu Motors Limited Exhaust purification system and catalyst control method
US11105247B2 (en) 2018-12-25 2021-08-31 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11105248B2 (en) 2018-12-25 2021-08-31 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11047288B2 (en) 2018-12-25 2021-06-29 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11149616B2 (en) 2018-12-25 2021-10-19 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11149615B2 (en) 2018-12-25 2021-10-19 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11199119B2 (en) 2018-12-25 2021-12-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11215103B2 (en) * 2018-12-25 2022-01-04 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11236658B2 (en) 2018-12-25 2022-02-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11255246B2 (en) 2018-12-25 2022-02-22 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11261777B2 (en) 2018-12-25 2022-03-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US11286837B2 (en) * 2018-12-25 2022-03-29 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN114856779A (en) * 2022-04-18 2022-08-05 东风柳州汽车有限公司 Catalyst temperature detection method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
KR101136767B1 (en) Exhaust emission control system of internal combustion engine and exhaust emission control method
JP5170324B2 (en) Control device for internal combustion engine
WO2010013365A1 (en) Catalyst temperature estimation method
JP6206448B2 (en) Reducing agent supply device
JP2006090312A (en) Operation method for internal combustion engine and device for performing its method
JP4661814B2 (en) Exhaust gas purification device for internal combustion engine
US8540953B2 (en) Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
JP2014088800A (en) Device and method for controlling exhaust emission of internal combustion engine
EP2889462A1 (en) Liquid quantity detecting system for internal combustion engine
KR102406226B1 (en) Method for detecting an error in an scr system by means of an ammonia slip
JP5126103B2 (en) Heater control device
CN109958513B (en) Abnormality diagnosis system for exhaust gas purification device
CN102116189B (en) Method and system for controlling an engine during diesel particulate filter regeneration warm-up
SE1150789A1 (en) A method of detecting reducing agent crystals in an SCR system and corresponding SCR system
JP2010265786A (en) Catalyst bed temperature estimation device
US9938876B2 (en) Abnormality diagnosis device for exhaust gas purification apparatus in internal combustion engine
JP2009209788A (en) Exhaust emission control device
JP6631479B2 (en) Abnormal diagnosis device for exhaust gas purification device of internal combustion engine
AU2022200864B2 (en) Cooling system and method for controlling cooling system
US10100696B2 (en) Method for operating an exhaust gas purification system connected to an internal combustion engine of a motor-vehicle comprising an SCR catalyst
JP6972878B2 (en) Abnormality diagnosis device for exhaust gas purification device of internal combustion engine
JP5949918B2 (en) Exhaust gas purification device for internal combustion engine
CN103797222A (en) Exhaust purification device for internal combustion engine
JP2009299597A (en) Exhaust emission control device for vehicular internal combustion engine
WO2013190657A1 (en) Exhaust purification device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08876663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP