JP3946619B2 - Copper alloy powder for overlaying - Google Patents

Copper alloy powder for overlaying Download PDF

Info

Publication number
JP3946619B2
JP3946619B2 JP2002327685A JP2002327685A JP3946619B2 JP 3946619 B2 JP3946619 B2 JP 3946619B2 JP 2002327685 A JP2002327685 A JP 2002327685A JP 2002327685 A JP2002327685 A JP 2002327685A JP 3946619 B2 JP3946619 B2 JP 3946619B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy powder
overlaying
hard phase
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002327685A
Other languages
Japanese (ja)
Other versions
JP2004162100A (en
Inventor
哲智 桝田
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Sanyo Special Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Sanyo Special Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002327685A priority Critical patent/JP3946619B2/en
Publication of JP2004162100A publication Critical patent/JP2004162100A/en
Application granted granted Critical
Publication of JP3946619B2 publication Critical patent/JP3946619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐摩耗性、肉盛性に優れた肉盛用銅合金粉末に関し、特にレーザ、プラズマ、ガスなどを熱源とした一般的な肉盛溶接方法に好適な肉盛用銅合金粉末に関するものである。
【0002】
【従来の技術】
従来、銅合金よりなる肉盛用粉末素材としては、例えば特許文献1に開示されているような、重量%で、Ni:10〜30%、Si:0.5〜5.0%、およびMo、W、Ta、Nb、Vの少なくとも1種:2.0〜15.0%、残部Cuおよび不純物からなる基本組成を有し、その他、Fe:2.0〜15.0%、Cr:1.0〜10.0%、Mm:0.01〜0.1%、P:0.1〜1.0%、Mn:1.0〜10.0%、B:0.5〜3.0%を適宜添加したCu合金が開示されている。
【0003】
また、特許文献2には、レーザ肉盛用Cu基合金粉末として、Ni:10〜40%、Si:0.1〜6%を必須成分とし、Al、Y、ミッシュメタル、Ti、Zr、Hfのうちの1種又は2種以上の合計が0.01〜0.1%、O:0.01〜0.1%、残部Cuおよび不純物からなる基本組成を有し、その他、Co:20%以下、Mo又は/及びWの合計が20%以下、Fe:20%以下、Cr:10%以下、B:0.5%以下を適宜添加したCu合金が開示されている。
【0004】
【引用文献】
(1)特許文献1(特開平10−96037号公報)
(2)特許文献2(特許第2984344号公報)
【0005】
【発明が解決しようとする課題】
上述した、従来の特許文献は、いずれも溶湯の流動性が悪いために、均一な肉盛部形状を形成することが困難であり、また、アトマイズ時に溶湯ノズルが閉塞しやすく製造歩留りが悪いなどの問題があった。さらには、硬質相が粗大に析出する合金系では、切削性に問題があった。
【0006】
【課題を解決するための手段】
上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、溶湯の流動性を改善し、均一な肉盛部形状を形成し、かつ、アトマイズ時に溶湯ノズル閉塞を防ぎ歩留り向上を図るために、肉盛合金の成分組成として、Cuリッチのマトリックス中に、Co、Ni、Cr等を主体とする珪化物、硼化物がデンドライト状Ni−Si固溶体中に分布した状態で析出した組織とする。この析出相は、凝固過程の初期の段階で析出するが、Mm(ミッシュメタル)、P、Tiの少なくとも1種を添加することによりデンドライト状に析出するNi−Si固溶体中の高硬度硬質相分布状態を、より一層偏析させる。また、液相分離傾向を強めるFe、Co、Cr量の上限を規制することにより、粗大な硬質相を析出させない微細な組織としたことにある。
【0007】
その発明の要旨とするところは、
(1)質量%で、Ni:8.0〜20.0%、Si:1.5〜4.5%、および、Fe、Co、Crの少なくとも1種を合計で、2.0〜15.0%、さらに、Mm、P、Tiの少なくとも1種を合計で、0.1〜1.5%を含み、残部Cuおよび不可避的不純物からなることを特徴とする肉盛用銅合金粉末。
(2)前記(1)に加えて、さらに、B:0.02〜0.2%含有することを特徴とする肉盛用銅合金粉末。
【0008】
(3)前記(1)または(2)に加えて、さらに、C:0.005〜0.200%を含有することを特徴とする肉盛用銅合金粉末。
(4)直径15μm以上の粗大な硬質相が存在しない微細な組織を有する前記(1)〜(3)記載の肉盛用銅合金粉末。
(5)粉末での硬さがビッカース硬度で200以上である前記(1)〜(3)記載の肉盛用銅合金粉末にある。
【0009】
【発明の実施の形態】
以下、本発明に係る成分組成の限定理由を説明する。
Ni:8.0〜20.0%
Niは、耐摩耗性の向上に有効な元素であり、Cuリッチのマトリックス中に、Co、Fe、Cr等を主体とする珪化物、硼化物がデンドライト状Ni−Si固溶体中に分布した状態で析出し、マトリックスを強化すると共に、耐摩耗性の向上に必要な元素である。しかし、8.0%未満では、その効果が十分に得られず、20.0%を超えると合金の融点が高くなり、クラックが発生し易くなる。従って、その範囲を8.0〜20.0%とした。
【0010】
Si:1.5〜4.5%
Siは、珪化物を形成し耐摩耗性を向上させる。また、自溶性を付与する元素である。しかし、1.5%未満ではその効果が十分に得られず、4.5%を超えるとクラックが発生し易くなる。従って、その範囲を1.5〜4.5%とした。
Fe、Co、Crの少なくとも1種を合計で、2.0〜15.0%
Fe、Co、Crは、耐摩耗性を向上させる元素である。しかし、これら元素の合計で、2.0%未満では、その効果が十分に得られず、15.0%を超えると液相分離傾向が強まり、粗大硬質相が形成される。従って、その範囲を2.0〜15.0%とした。好ましくは、Coは0.5〜8.0%、Crは0.5〜2.0%とする。
【0011】
Mm(ミッシュメタル)、P、Tiの少なくとも1種を合計で、0.1〜1.5%
Mm、P、Tiは、Cuと共晶反応し易く、析出相中の高硬度硬質相分布をより偏析させた状態に析出させる。それにより、凝固初期段階の析出相晶出時(固液共存状態)に肉盛層の流動性を保ち、かつ凝固終了後も変形し易い組織となるため、クラックが発生しにくくなる。しかし、0.1%未満では、その効果が十分に得られず、また、1.5%を超えると上記の実質的な効果がなくなり、目的の組織が得られなくなる。従って、その範囲を合計で、0.1〜1.5%とする。好ましくは0.2〜0.6%とする。
【0012】
C:0.005〜0.200%
Cは、溶湯の流動性を向上させ、炭化物を形成し耐摩耗性を向上させる元素である。しかし、0.005%未満では、その効果が十分得られず、また、0.200%を超えるとクラックが発生し易くなる。従って、その範囲を0.005〜0.200%とした。
【0013】
B:0.02〜0.2
Bは、自溶性の付与、および硼化物形成による耐摩耗性を向上させる元素である。しかし、0.02%未満ではその効果が十分得られず、また、0.2%を超えると硼化物の晶出が多くなり粗大硬質相を形成する。従って、その範囲を0.02〜0.2%とした。好ましくは0.05〜0.2%とする。
【0014】
直径15μm以上の粗大な硬質相が存在しない微細な組織を有することにより切削性の改善を図った。望ましくは直径10μm以上の粗大な硬質相が存在しない微細な組織を有することがより好ましい。そのためには、高融点の硬質相形成元素の上限を規定することにより、硬質相の凝集を避け、液相分離傾向の強いFe、Co、Crの上限を規定することにより、液相分離により生じる粗大硬質相を析出しないようにした。また、粉末での硬さがビッカース硬度で200以上を必要とする。しかし、ビッカース硬度が200未満では、強度、耐摩耗性の点で肉盛用銅合金として要求されているレベルを満たさない。従って、その下限値を200とした。
【0015】
【実施例】
以下、本発明について実施例によって具体的に説明する。
表1に成分の銅合金を30kgアトマイザで真空誘導溶解し、溶湯ノズル径φ3mm、コンファインド型噴霧ノズルを用いて出湯温度1520℃、噴霧圧4MPaにてガスアトマイズ法にてアルゴンガスを使用して粉末を作製した。この粉末を38〜150μmに分級した後、Al板(JIS記号:AC2A材)上に一般的なレーザ肉盛により肉盛し、評価した。レーザ肉盛はCO2 レーザを用い、4kwのレーザ出力、ビーム径2mm、処理速度500mm/minで行った。その結果を表2に示す。
【0016】
【表1】

Figure 0003946619
【0017】
表2に示す形状、クラックの有無、アトマイズ時の閉塞状況および粗大硬質相の有無に関して、以下のような基準で評価した。形状は直線上に肉盛した時の頂点の直線上で評価した。
〔形状(表面粗さ計で測定JIS B 0601に準拠)〕
〇:断面曲線の最大の高さRy≦0.5mm
×:Ry≧0.5mm、
〔クラックの有無(目視)〕
〇:肉盛後クラックなし
×:クラック発生
【0018】
〔アトマイズ時の閉塞〕
〇:ノズル閉塞なし
×:アトマイズ中にノズル閉塞発生
〔粗大硬質相の有無〕
◎:直径10μm以上の粗大な硬質相なし
〇:直径15μm以上の粗大な硬質相なし
×:直径15μm以上の粗大な硬質相あり、でそれぞれ評価した。
【0019】
【表2】
Figure 0003946619
【0020】
表2に示すように、No.1〜は本発明例であり、No.は比較例である。No.はNi、Moが高いために平均硬さHVは高いが、しかし、形状が悪く、クラック発生し、また、高融点となり溶湯の粘性が低下するために、アトマイズ時の閉塞が発生し、かつ、直径15μm以上の粗大な硬質相が見られた。No.はFeとCoの合計量が高いために、形状が悪く、かつ、直径15μm以上の粗大な硬質相が見られた。No.はNi、Si、CおよびFe、Co、Crの合計量のいずれもが低いために、平均硬さHVの値が200未満と低い。
【0021】
No.はSi、Cが高いために、クラック発生し、溶湯中の炭化物および珪化物が多過ぎると凝集しやすく、ノズル閉塞が発生しアトマイズ時の閉塞が発生し、かつ、直径15μm以上の粗大な硬質相が見られた。No.はMm、P、Tiのいずれかが含有しないために、クラック発生し、かつノズル閉塞が発生しアトマイズ時の閉塞が発生が見られた。No.はFe、Co、Crのいずれかが含有しないために、形状が悪く、クラック発生し、かつノズル閉塞が発生しアトマイズ時の閉塞が発生し、かつ、粗大な硬質相が見られた。これに対し、本発明例No.1〜のいずれの特性も優れていることが判る。
【0022】
【発明の効果】
以上述べたように、本発明によるCu基合金粉末は耐摩耗性に優れ、かつ、表面形状に優れ、クラックの発生がなく、しかもアトマイズ時の閉塞、直径15μm以上の粗大な硬質相が見られず、硬さHV200以上の極めて優れた肉盛用銅合金粉末を得ることが出来、特に自動車エンジンの高性能のバブルシートとして適用できる極めて優れた効果を奏するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper alloy powder for build-up excellent in wear resistance and build-up, and more particularly to a copper alloy powder for build-up suitable for a general build-up welding method using a laser, plasma, gas or the like as a heat source. Is.
[0002]
[Prior art]
Conventionally, as a powder material for overlaying made of a copper alloy, for example, disclosed in Patent Document 1, in wt%, Ni: 10-30%, Si: 0.5-5.0%, and Mo , W, Ta, Nb, at least one of V: 2.0 to 15.0%, remaining Cu and basic composition consisting of impurities, Fe: 2.0 to 15.0%, Cr: 1 0.0-10.0%, Mm: 0.01-0.1%, P: 0.1-1.0%, Mn: 1.0-10.0%, B: 0.5-3.0 A Cu alloy to which% is appropriately added is disclosed.
[0003]
In addition, Patent Document 2 discloses that Ni: 10 to 40%, Si: 0.1 to 6% as essential components, and Al, Y, Misch metal, Ti, Zr, Hf as Cu-based alloy powder for laser cladding. The total of one or more of them has a basic composition of 0.01 to 0.1%, O: 0.01 to 0.1%, the balance Cu and impurities, and Co: 20% Hereinafter, a Cu alloy in which the total of Mo or / and W is 20% or less, Fe: 20% or less, Cr: 10% or less, and B: 0.5% or less is appropriately added is disclosed.
[0004]
[Cited document]
(1) Patent Document 1 (Japanese Patent Laid-Open No. 10-96037)
(2) Patent Document 2 (Japanese Patent No. 2984344)
[0005]
[Problems to be solved by the invention]
In all of the above-mentioned conventional patent documents, since the flowability of the molten metal is poor, it is difficult to form a uniform built-up portion shape, and the molten metal nozzle is easily blocked during atomization, and the production yield is poor. There was a problem. Furthermore, the alloy system in which the hard phase is coarsely precipitated has a problem in machinability.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have made extensive developments, and as a result, improved the fluidity of the molten metal, formed a uniform build-up part shape, and prevented the molten metal nozzle from clogging during atomization. in order to improve, the composition of the cladding alloy, in a matrix of Cu-rich, C o, Ni, silicide composed mainly of Cr or the like, with the boride is distributed in the form of dendrite Ni-Si solid solution Let it be a deposited structure. This precipitated phase precipitates in the initial stage of the solidification process, but the hard-hard phase distribution in the Ni-Si solid solution that precipitates in a dendrite form by adding at least one of Mm (Misch metal), P, and Ti. The state is further segregated. Further, by restricting the upper limit of the amount of Fe, Co, and Cr that enhances the liquid phase separation tendency, a fine structure that does not precipitate a coarse hard phase is obtained.
[0007]
The gist of the invention is that
(1) By mass%, Ni: 8.0 to 20.0%, Si: 1.5 to 4.5%, and at least one of Fe, Co, and Cr in total, 2.0 to 15. A copper alloy powder for building-up, characterized by comprising 0%, further including at least one of Mm, P, and Ti in a total amount of 0.1 to 1.5%, and the balance being Cu and inevitable impurities.
(2) A copper alloy powder for building-up, further containing B : 0.02 to 0.2 % in addition to (1).
[0008]
(3) A copper alloy powder for building-up, which further contains C: 0.005 to 0.200% in addition to (1) or (2).
(4) The copper alloy powder for overlaying according to the above (1) to (3), which has a fine structure in which a coarse hard phase having a diameter of 15 μm or more does not exist.
(5) the powder is more than 200 hard Saga Vickers hardness is at (1) to (3) in the copper alloy powder for cladding according.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
Ni: 8.0 to 20.0%
State Ni is an element effective in improving the abrasion resistance, in a matrix of Cu-rich, the C o, Fe, silicide composed mainly of Cr or the like, boride is distributed in the form of dendrite Ni-Si solid solution It is an element necessary for precipitation and strengthening the matrix and improving wear resistance. However, if it is less than 8.0%, the effect is not sufficiently obtained, and if it exceeds 20.0%, the melting point of the alloy becomes high and cracks are likely to occur. Therefore, the range was made 8.0 to 20.0%.
[0010]
Si: 1.5-4.5%
Si forms silicide and improves wear resistance. Moreover, it is an element which imparts self-solubility. However, if it is less than 1.5%, the effect cannot be sufficiently obtained, and if it exceeds 4.5%, cracks are likely to occur. Therefore, the range was made 1.5 to 4.5%.
Total of at least one of Fe, Co and Cr, 2.0 to 15.0%
Fe, Co, and Cr are elements that improve wear resistance. However, if the total of these elements is less than 2.0%, the effect is not sufficiently obtained, and if it exceeds 15.0%, the tendency of liquid phase separation is increased and a coarse hard phase is formed. Therefore, the range was made 2.0 to 15.0%. Preferably, Co is 0.5 to 8.0% and Cr is 0.5 to 2.0%.
[0011]
0.1 to 1.5% in total of at least one of Mm (Misch metal), P, and Ti
Mm, P, and Ti are easily eutectic-reacted with Cu, and are precipitated in a state in which the distribution of the hard hard phase in the precipitated phase is further segregated. As a result, the deposited layer maintains fluidity during precipitation phase crystallization at the initial stage of solidification (solid-liquid coexistence state), and becomes a structure that is easily deformed after completion of solidification, so that cracks are less likely to occur. However, if it is less than 0.1%, the effect cannot be sufficiently obtained, and if it exceeds 1.5%, the above-mentioned substantial effect is lost, and the target structure cannot be obtained. Therefore, the range is 0.1 to 1.5% in total. Preferably it is 0.2 to 0.6%.
[0012]
C: 0.005 to 0.200%
C is an element that improves the fluidity of the molten metal, forms carbides, and improves wear resistance. However, if it is less than 0.005%, the effect cannot be obtained sufficiently, and if it exceeds 0.200%, cracks are likely to occur. Therefore, the range was made 0.005 to 0.200%.
[0013]
B: 0.02~ 0.2%
B is an element that improves self-fluxing and wear resistance due to boride formation. However, if it is less than 0.02%, the effect cannot be sufficiently obtained, and if it exceeds 0.2 %, crystallization of boride increases and a coarse hard phase is formed. Therefore, the range was made 0.02 to 0.2 %. Preferably it is 0.05 to 0.2%.
[0014]
The machinability was improved by having a fine structure having no coarse hard phase with a diameter of 15 μm or more. Desirably, it has a fine structure in which a coarse hard phase having a diameter of 10 μm or more does not exist. Therefore, by defining the upper limit of the high melting point of the hard phase forming elemental avoid agglomeration of the hard phase, strong Fe of liquid phase separation tendency, Co, by defining the upper limit of the Cr, the liquid phase separation The resulting coarse hard phase was not precipitated. Further, the hardness of the powder needs to be 200 or more in terms of Vickers hardness. However, when the Vickers hardness is less than 200, the level required as a copper alloy for overlaying is not satisfied in terms of strength and wear resistance. Therefore, the lower limit is set to 200.
[0015]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
Table 1 Inductive copper alloy is melted by vacuum induction with a 30kg atomizer, and powder is melted using a gas atomizing method at a molten metal nozzle diameter of 3mm, using a confined spray nozzle at a tapping temperature of 1520 ° C and a spray pressure of 4MPa. Was made. After this powder was classified into 38 to 150 μm, it was built up on an Al plate (JIS symbol: AC2A material) by general laser overlaying and evaluated. Laser overlaying was performed using a CO 2 laser at a 4 kW laser output, a beam diameter of 2 mm, and a processing speed of 500 mm / min. The results are shown in Table 2.
[0016]
[Table 1]
Figure 0003946619
[0017]
The shape shown in Table 2, presence / absence of cracks, blockage during atomization, and presence / absence of a coarse hard phase were evaluated according to the following criteria. The shape was evaluated on the straight line at the apex when overlaying on the straight line.
[Shape (measured with a surface roughness meter according to JIS B 0601)]
○: Maximum height of the cross-sectional curve Ry ≦ 0.5 mm
X: Ry ≧ 0.5 mm
[Presence of cracks (visual)]
○: No crack after overlaying ×: Crack generation
[0018]
[Blockage during atomization]
○: No nozzle clogging ×: Nozzle clogging during atomization [presence of coarse hard phase]
A: No coarse hard phase with a diameter of 10 μm or more. O: No coarse hard phase with a diameter of 15 μm or more. X: With a coarse hard phase with a diameter of 15 μm or more.
[0019]
[Table 2]
Figure 0003946619
[0020]
As shown in Table 2, no. 1-3 are examples of the present invention. 4 to 9 are comparative examples. No. No. 4 has high average hardness HV due to high Ni and Mo, however, the shape is poor, cracks occur, and the melting point of the molten metal decreases due to the high melting point, resulting in clogging during atomization, and A coarse hard phase having a diameter of 15 μm or more was observed. No. Since No. 5 had a high total amount of Fe and Co, the shape was poor and a coarse hard phase having a diameter of 15 μm or more was observed. No. Since the total amount of Ni, Si, C, and Fe, Co, and Cr is low, the average hardness HV is as low as less than 200.
[0021]
No. No. 7 is high in Si and C, so that cracks are generated, and if there are too many carbides and silicides in the molten metal, it is easy to agglomerate, nozzle clogging occurs and clogging during atomization occurs, and the diameter is 15 μm or larger. A hard phase was seen. No. Since 8 does not contain any of Mm, P, and Ti, cracks occurred, nozzle clogging occurred, and clogging during atomization was observed. No. No. 9 contained no Fe, Co, or Cr, so the shape was poor, cracks occurred, nozzle clogging occurred, clogging during atomization occurred, and a coarse hard phase was observed. In contrast, the present invention example No. It turns out that all the characteristics of 1-3 are excellent.
[0022]
【The invention's effect】
As described above, the Cu-based alloy powder according to the present invention has excellent wear resistance, excellent surface shape, no generation of cracks, blockage during atomization, and a coarse hard phase with a diameter of 15 μm or more. Therefore, it is possible to obtain an extremely excellent copper alloy powder for build-up having a hardness of HV 200 or more, and in particular, an extremely excellent effect that can be applied as a high-performance bubble sheet for an automobile engine.

Claims (5)

質量%で、
Ni:8.0〜20.0%、
Si:1.5〜4.5%、
および、Fe、Co、Crの少なくとも1種を合計で、2.0〜15.0%、さらに、Mm、P、Tiの少なくとも1種を合計で、0.1〜1.5%を含み、残部Cuおよび不可避的不純物からなることを特徴とする肉盛用銅合金粉末。
% By mass
Ni: 8.0 to 20.0%,
Si: 1.5 to 4.5%,
And a total of at least one of Fe, Co, and Cr, 2.0 to 15.0%, and a total of at least one of Mm, P, and Ti, including 0.1 to 1.5%, A copper alloy powder for building-up, comprising the balance Cu and inevitable impurities.
請求項1に加えて、さらに、B:0.02〜0.2%含有することを特徴とする肉盛用銅合金粉末。In addition to claim 1, further containing B : 0.02 to 0.2 %, copper alloy powder for overlaying. 請求項1または2に加えて、さらに、C:0.005〜0.200%を含有することを特徴とする肉盛用銅合金粉末。  In addition to Claim 1 or 2, C: 0.005-0.200% is further contained, The copper alloy powder for overlaying characterized by the above-mentioned. 直径15μm以上の粗大な硬質相が存在しない微細な組織を有する請求項1〜3記載の肉盛用銅合金粉末。  The copper alloy powder for overlaying according to claims 1 to 3, which has a fine structure in which a coarse hard phase having a diameter of 15 µm or more does not exist. 粉末での硬さがビッカース硬度で200以上である請求項1〜3記載の肉盛用銅合金粉末。The copper alloy powder for overlaying according to claim 1, wherein the hardness of the powder is 200 or more in terms of Vickers hardness.
JP2002327685A 2002-11-12 2002-11-12 Copper alloy powder for overlaying Expired - Fee Related JP3946619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327685A JP3946619B2 (en) 2002-11-12 2002-11-12 Copper alloy powder for overlaying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327685A JP3946619B2 (en) 2002-11-12 2002-11-12 Copper alloy powder for overlaying

Publications (2)

Publication Number Publication Date
JP2004162100A JP2004162100A (en) 2004-06-10
JP3946619B2 true JP3946619B2 (en) 2007-07-18

Family

ID=32806198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327685A Expired - Fee Related JP3946619B2 (en) 2002-11-12 2002-11-12 Copper alloy powder for overlaying

Country Status (1)

Country Link
JP (1) JP3946619B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7757396B2 (en) * 2006-07-27 2010-07-20 Sanyo Special Steel Co., Ltd. Raw material powder for laser clad valve seat and valve seat using the same
CN103074517B (en) * 2013-02-21 2014-07-30 南昌航空大学 Special copper alloy powder for laser-sensing composite fusion-covering high-strength high-conductivity copper alloy coating
CN109971988B (en) * 2019-04-02 2020-09-08 东北大学 Ultrahigh-strength copper-titanium alloy and preparation method thereof
CN109971987B (en) * 2019-04-02 2020-09-08 东北大学 Copper-titanium alloy for grinding wheel matrix and preparation method thereof
CN109971995B (en) * 2019-04-02 2020-09-22 东北大学 High-hardness brittle copper-titanium alloy and preparation method thereof
JP2021095589A (en) * 2019-12-13 2021-06-24 福田金属箔粉工業株式会社 Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED POWDER
KR20210077045A (en) 2019-12-16 2021-06-25 현대자동차주식회사 Copper alloy for laser cladding valve sheet
CN113996968B (en) * 2021-11-08 2023-04-28 绍兴十目科技有限公司 Exothermic welding flux based on copper-iron alloy
CN118591658A (en) * 2022-01-26 2024-09-03 日产自动车株式会社 Sliding member and internal combustion engine provided with same

Also Published As

Publication number Publication date
JP2004162100A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
CN1109123C (en) Nickel base self-fluxing alloy powder
US7803223B2 (en) Formation of metallic thermal barrier alloys
US4381943A (en) Chemically homogeneous microcrystalline metal powder for coating substrates
CN112368407A (en) Method for manufacturing aluminum alloy parts
EP0727501A1 (en) Wear-resistant copper-based alloy
JP3946619B2 (en) Copper alloy powder for overlaying
JP2009293108A (en) METHOD FOR PRODUCING Al-BASED ALLOY SPUTTERING TARGET MATERIAL
CN113412172B (en) Method for manufacturing aluminum alloy parts
JP2678804B2 (en) Method for forming pure Cu build-up layer on iron alloy substrate
CN112384636A (en) Method for manufacturing aluminum alloy parts
JP5079381B2 (en) Raw material powder for laser overlay valve seat and valve seat using the same
CN103189533A (en) High-toughness cobalt-based alloy and engine valve coated with same
CN114829655A (en) Method for additive manufacturing of maraging steel
JP4943080B2 (en) Raw material powder for laser overlay valve seat and valve seat using the same
JPH10158766A (en) Copper alloy with heat resistance and wear resistance
JP4762583B2 (en) Ni-based self-fluxing alloy powder and corrosion and wear resistant parts using the powder
JP2005199278A (en) Overlaying copper alloy powder excellent in cladding and wear resistance
US6776728B1 (en) Weight member for a golf club head
JP2006206966A (en) Method for producing sputtering target material
KR101388922B1 (en) Aluminum alloys including Fe-Mn solid solution and method of manufacturing the same
US6758764B1 (en) Weight member for a golf club head
JP2021080542A (en) Sintered material and method for producing the same
JP7406329B2 (en) Ni-Cr-Mo precipitation hardening alloy
JP4279029B2 (en) Ni-based boride dispersion anti-corrosion and wear-resistant alloy composite method
JP2023130647A (en) Ni-based self-fluxing alloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees