JP3946405B2 - Vacuum piping structure - Google Patents

Vacuum piping structure Download PDF

Info

Publication number
JP3946405B2
JP3946405B2 JP2000092921A JP2000092921A JP3946405B2 JP 3946405 B2 JP3946405 B2 JP 3946405B2 JP 2000092921 A JP2000092921 A JP 2000092921A JP 2000092921 A JP2000092921 A JP 2000092921A JP 3946405 B2 JP3946405 B2 JP 3946405B2
Authority
JP
Japan
Prior art keywords
bent portion
single crystal
vapor
opening
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000092921A
Other languages
Japanese (ja)
Other versions
JP2001278698A (en
Inventor
朗 樋口
圭一 草間
哲也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Techno Corp
Original Assignee
Mitsubishi Materials Techno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Techno Corp filed Critical Mitsubishi Materials Techno Corp
Priority to JP2000092921A priority Critical patent/JP3946405B2/en
Publication of JP2001278698A publication Critical patent/JP2001278698A/en
Application granted granted Critical
Publication of JP3946405B2 publication Critical patent/JP3946405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は真空配管構造、特に、半導体用のシリコンなどの単結晶製造装置の真空引きのために配設される真空配管構造に関する。
【0002】
【従来の技術】
シリコンなどの結晶原料を用いた半導体単結晶の製造方法としては、既に種々の方法が提案され実施されているが、主要な方法にあってはいずれも単結晶製造装置の内部を真空引きによって減圧し、アルゴンなどの不活性ガスを注入した雰囲気中で単結晶の析出と成長を図っている。このため、単結晶の製造装置には真空ポンプと結ばれた真空配管の管路が配設されている。
この単結晶製造の方法としては、加熱溶融させた高純度多結晶シリコンなどの融液にシード(種結晶)を浸漬させ、これを回転させながら引き上げて単結晶を析出させて成長させ、所望口径の単結晶インゴットを得るチョクラルスキー法(以下、CZ法と呼ぶ。)が一般的な方法となっている。
図4は、CZ法による単結晶製造に用いられる単結晶引き上げ装置とその真空配管構造の従来例を模式的に示すものである。
単結晶引き上げ装置は、メインチャンバ1とプルチャンバ2からなる炉体に、軸受機構3、巻き上げ機構4を下部から順次積み上げ組立して構成されており、メインチャンバ1の坩堝11内で高温溶融されたシリコンの融液12に、上部の巻き上げ機構4から吊り下げられたワイヤ15下端のシードホルダ16に取り付けたシード17を浸漬し、坩堝11を回転させると共に巻き上げ機構を回転させ、ワイヤ15とシードホルダ16を回転させながら低速でシード17を引き上げることでシリコンの単結晶18を析出させている。
この単結晶引き上げの作業は、前述の通りメインチャンバ1の基部から真空ポンプ10に配設された管路8によって装置内を真空引きして減圧し、装置内にアルゴンなどの不活性ガスを注入して行われる(図5において、装置へのガス注入路は省略した)。
【0003】
【発明が解決しようとする課題】
このように、図示の単結晶引き上げ装置に配設された管路8は、真空引きで装置内を減圧する大気流路として用いるものであるが、併せて装置内に注入されたアルゴンなどの不活性ガスを排出し、このガス流で装置内に発生した結晶原料のヴェーパを排出する管路としても用いられている。
これは、管路設計をできるだけ簡易化して、配管と保守の便を図り経済性にも応えようとするものだが、この結果として、管路8には不活性ガスの排出流量を調整し装置内のガス圧を制御する流量調整バルブであるバタフライ・バルブ81を設けることとなる。
しかし、バタフライバルブ81は、管路8を構成する他のパイプ類83に較べて大きく縮径された流路を形成してしまい、流量調整を必要としない真空引きに対しては大きな流路障害となる。
勿論、バタフライ・バルブを設けない真空引きの管路とバタフライ・バルブを備えた不活性ガス排出用の管路のそれぞれを装置に配設すれば、上記問題それ自体の解消は可能である。しかし、かかる配管構成を採る場合には、配管の施設と保守管理を著しく煩雑なものとし、コストも大きく増大させざるを得ず、現実的な問題解決方法と言うことはできない。
【0004】
また、上記のところで既に触れたように、単結晶製造装置内へ装置上部から不活性ガスを注入しこれを排出しているのは、多結晶シリコンを加熱溶融した融液12と石英製の坩堝11が反応して発生するSiOX(以下、ヴェーパと略称する。)を装置外に排出するためであり、このヴェーパがガス流路である管路8全体に付着してその除去に多大な手間を要している。
ヴェーパは、単結晶引き上げの作業において不可避的に発生するものであり、装置内のシリコン単結晶の表面や装置内壁などに付着・凝縮してシリコン融液に滴下すると、成長中の単結晶に転位を起こさせて製品歩留まりを悪化させる原因となる。このため、装置内に注入した高純度の不活性ガスと共に装置外へ排出しなければならない。
このヴェーパは、排出経路をなす管路8全体に粉状に付着し、真空ポンプ10の性能も劣化させるため、管路8上にダストフィルターを設けるなどの処置が採られている。しかし、ダストフィルターによる捕集には限界があり、管路8全体と真空ポンプ10に対するヴェーパの排出量を低減する方法の提案が望まれている。
【0005】
本発明はかかる問題に鑑みてなされたものであり、その目的とするところは、単結晶製造において、管路に設けられたバタフライ・バルブの流路障害を受けることなく短時間で真空引きを行うことができ、不活性ガスによって装置外に排出されるヴェーパを効率的に捕集・除去することができる真空配管構造を提供するところにある。
【0006】
【課題を解決するための手段】
本発明はこの課題を解決し目的を達成するために、以下に掲げる構成とした。請求項1記載の発明は、半導体用単結晶の製造装置を減圧するために配設された真空配管において、該装置内に注入された不活性ガスの排出量を調整する流量調整バルブによって接続された管路に、開閉バルブを備えたバイパス管路を設け、前記装置近傍の管路に屈曲部を形成すると共に、該屈曲部に開閉自在な扉を備えた開口を設け、かつ該屈曲部に冷却手段を付設した、ことを特徴とする。
このように構成することにより、流量調整バルブによって接続された管路に対して、開閉バルブを備えたバイパス管路を形成し、装置内を減圧する際には流路抵抗の少ない開閉バルブを備えたバイバス管路を用い、不活性ガスを排出する際には排出流量を調整する流量調整バルブを有する管路を用いる。また、装置から排出されるヴェーパを、装置近傍の管路屈曲部に付着させて開口から除去し、真空配管管路全体への付着と真空ポンプの機能劣化を低減させ、装置近傍の管路屈曲部に設けた溜まり部にヴェーパを意図的に付着させて集積する。
請求項記載の発明は、半導体用単結晶の製造装置を減圧するために配設された真空配管において、該装置内に注入された不活性ガスの排出量を調整する流量調整バルブによって接続された管路に、開閉バルブを備えたバイパス管路を設け、前記装置近傍の管路に屈曲部を形成すると共に、該屈曲部に開閉自在な扉を備えた開口を有する溜まり部を設け、
かつ該屈曲部に冷却手段を付設した、ことを特徴とする。
このように構成することにより、装置近傍の管路屈曲部や溜まり部に除去すべき結晶原料のヴェーパを効率的に付着させる。
【0007】
【発明の実施の形態】
以下、本発明係る真空配管構造の一実施形態につき、図面に基づいて説明する。
図1は、実施形態に係る単結晶装置の真空配管構造の概略構成を模式的に示す説明図であり、図2は管路の屈曲部の部分拡大図、図3は他の実施形態に係る管路屈曲部の部分拡大図である。
図1に示す単結晶製造装置は、従来例同様にCZ法による単結晶引き上げ装置であり、坩堝11を備えたメインチャンバ1の基部から真空ポンプ10へと真空配管の管路8が配設されている。
該管路8は、装置内を真空引きして減圧しするために用いられるばかりでなく、装置内に注入した不活性ガスを排出し、これにより装置内で発生したヴェーパを装置外に排出するためにも用いられている。
このため管路8には、不活性ガスの排出流量を調整するためのバタフライ・バルブ81も設けられている。
【0008】
図示の配管構造において従来例と異なる点の一つは、図1に示すように、バタフライ・バルブ81によって接続された管路8に対して、開閉バルブ91を備えたバイパス管路9が形成されているところにある。
両者の管路8,9を比較する場合、バタフライ・バルブ81で接続された管路8の流路が、バタフライ・バルブ81の部分で大きく縮径されて狭くなっているのに対して、開閉バルブ91で接続されたバイパス管路9は、開閉バルブ91自体の流路を含めて、管路8を構成する基本的なパイプ83類の管径と殆ど異なるところがない。
【0009】
次に、図1及び図2に示すように、図示の配管構造においては、単結晶製造装置の直下位置の管路に、装置から排出されるヴェーパが付着し易いように略直角の角度を付けた屈曲部84を形成し、この屈曲部84の開放側正面にはヴェーパを除去するためにフランジを備えた開口85を設けると共に、フランジ外径と同径の扉86を開閉容易に装着している。
また、このように開口85を設けた屈曲部84にはウォータージャケット88が付設されており、通水管89を介してウォータージャケット88に冷媒となる冷却水を供給して管路屈曲部84に冷却処理を施すよう構成している。
また、上記扉86を開くことで開口85から露呈する屈曲部84の内部表面には、フッ素樹脂をコーティングした。
【0010】
図3は、他の実施形態に係る管路8の屈曲部84を示すもので、装置直下位置の管路に略直角の角度を付けた屈曲部84を形成すると共に、この屈曲部84の開放側正面に設けた開口85に、開閉自在な扉86を備えた溜まり部(ヴェーパの集積部)87を連通状態で連設している。
この実施形態に於いても、溜まり部87には通水管89を備えたウォータージャケット88を付設しており、また溜まり部87の内部全面とその開口85を介して連通する屈曲部84の内面に、フッ素樹脂をコーティングした。
【0011】
図示の真空配管構造は以上の構成を有してなるものであり、単結晶引き上げ装置の減圧のために真空引きを行う際には、バイパス管路9の開閉バルブ91を開くことにより、装置内の大気を流路抵抗の極めて少ないバイパス管路9を経て排出することができるから、バタフライ・バルブを設けた管路8だけを用いて真空引きを行う従来例と比較して、真空引きの時間を短縮し単結晶製造の作業性を大きく向上させることができる。
また、真空引きの完了後にバイパス管路9の開閉バルブ91を閉鎖すれば、装置内に注入されたアルゴンガスと装置内で発生したヴェーパとは、バタフライ・バルブ81によって接続された管路8だけを通って排出され、その流量調整とガス圧制御には何の支障も生じない。
【0012】
また、図1及び図2に示す実施形態では、単結晶製造装置の直下に位置する管路に、ヴェーパを付着させる目的で、略直角の角度を付けた屈曲部84を設けると共に、この屈曲部84の開放側正面に開閉自在な扉86を備えた開口85を設けているから、該扉86を開くことで屈曲部84の内部に付着したヴェーパを簡便容易に除去する。
このため、装置内で発生し排出されたヴェーパを、排出直後の管路8始端部分で効果的に除去することができ、これに続く管路8全体に付着し或いは真空ポンプ10の性能を劣化させるヴェーパの排出量を低減させることができる。
しかも、図示実施形態では、を付着させる屈曲部84にウォータージャケット88を付設して冷却するよう構成しているから、屈曲部84でヴェーパを冷却して凝縮させ、屈曲部84への付着量を効果的に増すことができる。
さらに、屈曲部84の内面をフッ素樹脂コーティングして、付着したヴェーパの除去を容易にしている。
【0013】
図3に示された実施形態では、管路8の屈曲部84に設けた開口85に開閉自在な扉86を備えた溜まり部87を連通状態で連設し、この溜まり部にウォータージャケット88を付設しているから、ヴェーパを管路始端部分でより効率的に付着させて除去することができる
【0014】
【発明の効果】
本発明は以上のように構成されているので、以下に掲げる効果を奏する。
(1)請求項1記載の発明によれば、バタフライ・バルブによって接続された管路に対して開閉バルブで接続されたバイパス管路が形成されているから、装置内を減圧する際には、流路抵抗の少ないバイパス管路を用いて短時間に真空引きを行って作業性を向上させることができ、単結晶製造装置の近傍位置の管路始端部分に設けた屈曲部に冷却手段を付設してヴェーパを冷却して凝縮させるとともに、結晶原料のヴェーパを付着させて除去するから、真空配管管路全体への排出量を低減し、ヴェーパに起因する真空ポンプの性能劣化も防ぐことができる。
(2)請求項2記載の発明によれば、ヴェーパを付着させる屈曲部に溜まり部を設け、該溜まり部に冷却手段を付設しているからヴェーパを冷却して凝縮させ、該溜まり部にヴェーパを集積させ効率的に除去することができる。
【図面の簡単な説明】
【図1】 実施形態に係る装置の真空配管構造の概略構成を模式的に示す説明図。
【図2】 実施形態における管路屈曲部の構成を示す一部切り欠き説明図。
【図3】 他の実施形態における管路屈曲部の構成を示す一部切り欠き説明図。
【図4】 従来装置の真空配管構造の概略構成を模式的に示す説明図。
【符号の説明】
1 メインチャンバ
2 プルチャンバ
3 軸受機構
4 巻き上げ機構
8 主管路
9 バイパス管路
10 真空ポンプ
11 坩堝
12 シリコン融液
15 ワイヤ
16 シードホルダ
17 シード
18 単結晶
81 バタフライ・バルブ
83,93 パイプ
84 屈曲部
85 開口
86 扉
87 溜まり部
88 ウォータージャケット
89 通水管
91 開閉バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum piping structure, and more particularly to a vacuum piping structure disposed for evacuation of a single crystal manufacturing apparatus such as silicon for semiconductors.
[0002]
[Prior art]
Various methods have already been proposed and implemented as methods for producing a semiconductor single crystal using a crystal material such as silicon. In any of the main methods, the inside of the single crystal production apparatus is evacuated by evacuation. The single crystal is deposited and grown in an atmosphere in which an inert gas such as argon is injected. For this reason, the single crystal manufacturing apparatus is provided with a vacuum pipe line connected to a vacuum pump.
As a method of manufacturing this single crystal, a seed (seed crystal) is immersed in a melt such as high-purity polycrystalline silicon that has been heated and melted, and the single crystal is precipitated and grown by rotating the seed while rotating it. The Czochralski method (hereinafter referred to as CZ method) for obtaining a single crystal ingot is a common method.
FIG. 4 schematically shows a conventional example of a single crystal pulling apparatus used for manufacturing a single crystal by the CZ method and its vacuum piping structure.
The single crystal pulling apparatus is constructed by stacking and assembling a bearing mechanism 3 and a hoisting mechanism 4 sequentially from a lower part in a furnace body composed of a main chamber 1 and a pull chamber 2, and is melted at a high temperature in a crucible 11 of the main chamber 1. The seed 17 attached to the seed holder 16 at the lower end of the wire 15 suspended from the upper winding mechanism 4 is immersed in the silicon melt 12 to rotate the crucible 11 and the winding mechanism to rotate the wire 15 and the seed holder. A single crystal 18 of silicon is deposited by pulling up the seed 17 at a low speed while rotating 16.
This single crystal pulling operation is performed by evacuating the inside of the apparatus by the pipe 8 provided in the vacuum pump 10 from the base of the main chamber 1 as described above, and injecting an inert gas such as argon into the apparatus. (In FIG. 5, the gas injection path to the apparatus is omitted).
[0003]
[Problems to be solved by the invention]
As described above, the pipe line 8 provided in the illustrated single crystal pulling apparatus is used as an atmospheric flow path for depressurizing the inside of the apparatus by evacuation. It is also used as a conduit for discharging the active gas and discharging the vapor of the crystal raw material generated in the apparatus by this gas flow.
This is intended to simplify piping design as much as possible, to make piping and maintenance convenient, and to respond economically, but as a result, the discharge flow rate of inert gas is adjusted to the pipeline 8 in the device. The butterfly valve 81, which is a flow rate adjusting valve for controlling the gas pressure, is provided.
However, the butterfly valve 81 forms a flow path whose diameter is greatly reduced as compared with other pipes 83 constituting the pipe line 8, and is a large flow path obstruction for vacuuming that does not require flow rate adjustment. It becomes.
Of course, the above problem itself can be solved by providing the apparatus with a vacuum line without a butterfly valve and an inert gas discharge line with a butterfly valve. However, in the case of adopting such a pipe configuration, the piping facility and maintenance management are extremely complicated, and the cost must be greatly increased, which cannot be said as a practical problem solving method.
[0004]
In addition, as already mentioned above, the inert gas is injected into the single crystal manufacturing apparatus from the upper part of the apparatus and discharged from the melt 12 and the crucible made of quartz. This is for discharging SiOX (hereinafter abbreviated as “vapor”) 11 generated by the reaction of 11 to the outside of the apparatus, and this vapor adheres to the entire pipe 8 which is a gas flow path, and it takes a great deal of time to remove it. I need it.
A vapor is inevitably generated in the operation of pulling a single crystal, and when it adheres to and condenses on the surface of the silicon single crystal in the device or the inner wall of the device and drops onto the silicon melt, it dislocations into the growing single crystal Cause product yield to deteriorate. For this reason, it must be discharged out of the apparatus together with a high purity inert gas injected into the apparatus.
Since this vapor adheres in powder form to the entire pipeline 8 forming the discharge path, and the performance of the vacuum pump 10 is deteriorated, measures such as providing a dust filter on the pipeline 8 are taken. However, there is a limit to the collection by the dust filter, and a proposal of a method for reducing the discharge amount of the vapor to the entire pipe line 8 and the vacuum pump 10 is desired.
[0005]
The present invention has been made in view of such a problem, and an object of the present invention is to perform evacuation in a short time without being obstructed by a flow path of a butterfly valve provided in a pipe line in the production of a single crystal. Therefore, it is an object of the present invention to provide a vacuum piping structure capable of efficiently collecting and removing the vapor discharged from the apparatus by the inert gas.
[0006]
[Means for Solving the Problems]
In order to solve this problem and achieve the object, the present invention has the following configurations. The invention described in claim 1 is connected to a vacuum pipe arranged to depressurize a semiconductor single crystal manufacturing apparatus by a flow rate adjusting valve for adjusting a discharge amount of an inert gas injected into the apparatus. A bypass line having an opening / closing valve is provided in the pipe line, a bent part is formed in the pipe line in the vicinity of the device, an opening having an openable / closable door is provided in the bent part, and the bent part is provided in the bent part. A cooling means is additionally provided.
By configuring in this way, a bypass line having an opening / closing valve is formed with respect to the line connected by the flow rate adjusting valve, and an opening / closing valve having a low flow resistance is provided when the pressure in the apparatus is reduced. When the inert gas is discharged, a pipeline having a flow rate adjusting valve for adjusting the discharge flow rate is used. Further, the Vepa discharged from the apparatus, and removed from the opening by attaching the conduit bent portion of the apparatus near reduces the functional deterioration of the adhesion and the vacuum pump to the entire vacuum pipe conduit, conduit device near The vapor is intentionally attached to the pool portion provided in the bent portion and accumulated.
The invention described in claim 2 is connected by a flow rate adjusting valve for adjusting a discharge amount of an inert gas injected into the apparatus in a vacuum pipe arranged to depressurize the semiconductor single crystal manufacturing apparatus. A bypass line provided with an open / close valve is provided in the pipe line, a bent part is formed in the pipe line in the vicinity of the device, and a reservoir part having an opening with an openable / closable door is provided in the bent part,
And annexed to the cooling means to the bending portion, characterized in that.
By comprising in this way, the vapor | steam of the crystal raw material which should be removed is made to adhere efficiently to the pipe line bending part and pool part of an apparatus vicinity.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a vacuum piping structure according to the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view schematically showing a schematic configuration of a vacuum piping structure of a single crystal device according to an embodiment, FIG. 2 is a partially enlarged view of a bent portion of a pipe line, and FIG. 3 according to another embodiment. It is the elements on larger scale of a pipe line bending part.
The single crystal manufacturing apparatus shown in FIG. 1 is a single crystal pulling apparatus using the CZ method as in the conventional example. A vacuum pipe line 8 is provided from the base of the main chamber 1 provided with the crucible 11 to the vacuum pump 10. ing.
The pipe line 8 is not only used for evacuating and depressurizing the inside of the apparatus, but also discharges the inert gas injected into the apparatus, thereby discharging the vapor generated in the apparatus to the outside. It is also used for this purpose.
For this reason, the pipe line 8 is also provided with a butterfly valve 81 for adjusting the discharge flow rate of the inert gas.
[0008]
In the illustrated piping structure, one of the differences from the conventional example is that a bypass line 9 having an opening / closing valve 91 is formed with respect to a line 8 connected by a butterfly valve 81 as shown in FIG. There is.
When comparing the pipes 8 and 9, the flow path of the pipe 8 connected by the butterfly valve 81 is greatly reduced in diameter and narrowed at the butterfly valve 81 portion. The bypass pipe line 9 connected by the valve 91 is almost the same as the pipe diameter of the basic pipe 83 constituting the pipe line 8 including the flow path of the opening / closing valve 91 itself.
[0009]
Next, as shown in FIGS. 1 and 2, in the illustrated piping structure, a substantially right angle is formed on the pipe line immediately below the single crystal manufacturing apparatus so that the vapor discharged from the apparatus is easily attached. The bent portion 84 is formed, and an opening 85 provided with a flange is provided on the front side of the open side of the bent portion 84 so as to remove the paper, and a door 86 having the same diameter as the outer diameter of the flange is easily mounted. Yes.
In addition, a water jacket 88 is attached to the bent portion 84 provided with the opening 85 as described above, and cooling water serving as a coolant is supplied to the water jacket 88 via the water pipe 89 to cool the pipe bent portion 84. It is configured to perform processing.
The inner surface of the bent portion 84 exposed from the opening 85 by opening the door 86 was coated with a fluororesin.
[0010]
FIG. 3 shows a bent portion 84 of the pipe line 8 according to another embodiment. The bent part 84 is formed at a substantially right angle to the pipe line located immediately below the apparatus, and the bent part 84 is opened. In an opening 85 provided on the side front surface, a reservoir portion (vapor collecting portion) 87 having a door 86 that can be opened and closed is continuously provided in a communicating state.
Also in this embodiment, the reservoir 87 is provided with a water jacket 88 having a water pipe 89, and on the inner surface of the bent portion 84 communicating with the entire interior of the reservoir 87 via the opening 85. And coated with fluororesin.
[0011]
The illustrated vacuum piping structure has the above-described configuration, and when vacuuming is performed for depressurization of the single crystal pulling device, the on-off valve 91 of the bypass line 9 is opened to open the inside of the device. Can be discharged through the bypass line 9 having a very low flow resistance, so that the evacuation time is shorter than that in the conventional example in which the evacuation is performed using only the line 8 provided with the butterfly valve. And the workability of single crystal production can be greatly improved.
Further, if the opening / closing valve 91 of the bypass line 9 is closed after the evacuation is completed, the argon gas injected into the apparatus and the vapor generated in the apparatus are only the line 8 connected by the butterfly valve 81. The gas is discharged through the gas, and there is no problem in adjusting the flow rate and controlling the gas pressure.
[0012]
In the embodiment shown in FIGS. 1 and 2, a bent portion 84 having a substantially right angle is provided for the purpose of attaching a vapor to a pipe line located immediately below the single crystal manufacturing apparatus. Since the opening 85 provided with the door 86 which can be opened and closed is provided on the front side of the open side of the 84, the paper attached to the inside of the bent portion 84 can be easily and easily removed by opening the door 86.
For this reason, the vapor generated and discharged in the apparatus can be effectively removed at the start end portion of the pipe line 8 immediately after the discharge, adheres to the entire pipe line 8 following this, or deteriorates the performance of the vacuum pump 10. The amount of vapor discharged can be reduced.
In addition, in the illustrated embodiment, since the water jacket 88 is attached to the bent portion 84 to which the water is attached, the vapor is cooled and condensed by the bent portion 84, and the amount of adhesion to the bent portion 84 is reduced. It can be increased effectively.
Further, the inner surface of the bent portion 84 is coated with a fluororesin to facilitate removal of the attached vapor.
[0013]
In the embodiment shown in FIG. 3, a reservoir 87 having a door 86 that can be opened and closed is connected to an opening 85 provided in the bent portion 84 of the conduit 8 in a communicating state, and a water jacket 88 is provided in the reservoir. Since it is attached, the vapor can be attached and removed more efficiently at the pipe start end. [0014]
【The invention's effect】
Since this invention is comprised as mentioned above, there exists an effect hung up below.
(1) According to the invention described in claim 1, since the bypass line connected by the open / close valve is formed with respect to the line connected by the butterfly valve, when depressurizing the inside of the apparatus, By using a bypass line with low flow resistance, evacuation can be performed in a short time to improve workability, and a cooling means is attached to the bent portion provided at the pipe start end near the single crystal manufacturing apparatus. Then, the vapor is cooled and condensed, and the vapor of the crystal raw material is adhered and removed, so that the discharge amount to the entire vacuum pipe line can be reduced and the performance deterioration of the vacuum pump due to the vapor can be prevented. .
(2) According to the invention described in claim 2 , since the reservoir is provided in the bent portion to which the vapor is adhered, and the cooling means is attached to the reservoir, the vapor is cooled and condensed, and the vapor is added to the reservoir. Can be integrated and removed efficiently .
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a schematic configuration of a vacuum piping structure of an apparatus according to an embodiment.
FIG. 2 is a partially cutaway explanatory view showing a configuration of a pipeline bending portion in the embodiment.
FIG. 3 is a partially cutaway explanatory view showing a configuration of a conduit bending portion in another embodiment.
FIG. 4 is an explanatory view schematically showing a schematic configuration of a vacuum piping structure of a conventional apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main chamber 2 Pull chamber 3 Bearing mechanism 4 Winding mechanism 8 Main pipe line 9 Bypass pipe line 10 Vacuum pump 11 Crucible 12 Silicon melt 15 Wire 16 Seed holder 17 Seed 18 Single crystal 81 Butterfly valve 83, 93 Pipe 84 Bent part 85 Opening 86 Door 87 Reservoir 88 Water jacket 89 Water pipe 91 Open / close valve

Claims (2)

半導体用単結晶の製造装置を減圧するために配設された真空配管において、
該装置内に注入された不活性ガスの排出量を調整する流量調整バルブによって接続された管路に、
開閉バルブを備えたバイパス管路を設け
前記装置近傍の管路に屈曲部を形成すると共に、
該屈曲部に開閉自在な扉を備えた開口を設け、
かつ該屈曲部に冷却手段を付設した、
ことを特徴とする真空配管構造。
In vacuum piping arranged to depressurize the manufacturing equipment for semiconductor single crystals,
In a pipeline connected by a flow rate adjusting valve that adjusts the discharge amount of the inert gas injected into the apparatus,
A bypass line with an open / close valve is provided ,
While forming a bent portion in the conduit near the device,
An opening with an openable / closable door is provided in the bent portion,
And a cooling means is attached to the bent portion,
A vacuum piping structure characterized by that.
半導体用単結晶の製造装置を減圧するために配設された真空配管において、
該装置内に注入された不活性ガスの排出量を調整する流量調整バルブによって接続された管路に、
開閉バルブを備えたバイパス管路を設け
前記装置近傍の管路に屈曲部を形成すると共に、
該屈曲部に開閉自在な扉を備えた開口を有する溜まり部を設け、
かつ該屈曲部に冷却手段を付設した、
ことを特徴とする真空配管構造。
In vacuum piping arranged to depressurize the manufacturing equipment for semiconductor single crystals,
In a pipeline connected by a flow rate adjusting valve that adjusts the discharge amount of the inert gas injected into the apparatus,
A bypass line with an open / close valve is provided ,
While forming a bent portion in the conduit near the device,
A pool part having an opening with an openable / closable door is provided in the bent part,
And a cooling means is attached to the bent portion,
A vacuum piping structure characterized by that.
JP2000092921A 2000-03-30 2000-03-30 Vacuum piping structure Expired - Lifetime JP3946405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000092921A JP3946405B2 (en) 2000-03-30 2000-03-30 Vacuum piping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000092921A JP3946405B2 (en) 2000-03-30 2000-03-30 Vacuum piping structure

Publications (2)

Publication Number Publication Date
JP2001278698A JP2001278698A (en) 2001-10-10
JP3946405B2 true JP3946405B2 (en) 2007-07-18

Family

ID=18608179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000092921A Expired - Lifetime JP3946405B2 (en) 2000-03-30 2000-03-30 Vacuum piping structure

Country Status (1)

Country Link
JP (1) JP3946405B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186684B2 (en) * 2007-08-02 2013-04-17 Sumco Techxiv株式会社 Semiconductor single crystal manufacturing equipment
KR101229198B1 (en) * 2010-02-04 2013-02-01 주식회사 엘지실트론 Exhausting System for Single Crystal Grower and Single Crystal Grower including the same
JP6249757B2 (en) * 2013-12-17 2017-12-20 三菱マテリアルテクノ株式会社 Single crystal silicon pulling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686447B2 (en) * 1988-02-26 1997-12-08 東京エレクトロン株式会社 Reactor
JPH0777995B2 (en) * 1989-11-16 1995-08-23 信越半導体株式会社 Single crystal resistivity control method
JPH0435754A (en) * 1990-05-29 1992-02-06 Mitsubishi Heavy Ind Ltd Collecting device for magnetic iron oxide
JP3526908B2 (en) * 1994-03-31 2004-05-17 コマツ電子金属株式会社 Vacuum pump system and semiconductor single crystal pulling device
JP3928245B2 (en) * 1998-03-05 2007-06-13 日産自動車株式会社 Chemical vapor deposition equipment

Also Published As

Publication number Publication date
JP2001278698A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US5904768A (en) Process for controlling the oxygen content in silicon wafers heavily doped with antimony or arsenic
JP2008511753A (en) Cleaning process and operation process of CVD reactor
KR101005988B1 (en) Cooling module for manufacturing apparatus for crystal ingot and cooling method using the cooling module
CN100415944C (en) Method and apparatus of clearing SiO in straight pulling silicon single crystal furnace
JPH09202694A (en) Rapid cooling of cz silicon crystal growth system
JP3838013B2 (en) Method for producing silicon single crystal
JP3946405B2 (en) Vacuum piping structure
US10378121B2 (en) Crystal pulling system and method for inhibiting precipitate build-up in exhaust flow path
TWI727410B (en) Method for producing single crystal silicon ingot and apparatus for pulling silicon single crystal
WO2005073439A1 (en) Silicon single crystal, silicon wafer, production apparatus therefor and process for producing the same
JP3922074B2 (en) Method and apparatus for producing silicon carbide single crystal
KR101044124B1 (en) Cleaning method and cleaning module for manufacturing apparatus for crystal ingot
JP3856397B2 (en) Wafer processing method for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JP3846620B2 (en) Disassembly method of silicon single crystal pulling apparatus and exhaust gas piping
CN101717991B (en) Improved czochralski silicon monocrystalline furnace
JPH092892A (en) Pull up apparatus for semiconductor single crystal
KR101546679B1 (en) The method of cleaning exhaust pipe for ingot grower
JP3760680B2 (en) Single crystal pulling device
JP2710433B2 (en) Single crystal pulling device
JP3288786B2 (en) Method and apparatus for cooling silicon single crystal
JPH021117B2 (en)
JP3750172B2 (en) Single crystal pulling method
JP2533686B2 (en) Semiconductor single crystal manufacturing equipment
CN214458433U (en) Exhaust cylinder of single crystal furnace
KR100749937B1 (en) Continuous Crystal Growing Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3946405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term