JP3922074B2 - Method and apparatus for producing silicon carbide single crystal - Google Patents

Method and apparatus for producing silicon carbide single crystal Download PDF

Info

Publication number
JP3922074B2
JP3922074B2 JP2002106328A JP2002106328A JP3922074B2 JP 3922074 B2 JP3922074 B2 JP 3922074B2 JP 2002106328 A JP2002106328 A JP 2002106328A JP 2002106328 A JP2002106328 A JP 2002106328A JP 3922074 B2 JP3922074 B2 JP 3922074B2
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
carbide single
reaction vessel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002106328A
Other languages
Japanese (ja)
Other versions
JP2003306398A (en
Inventor
一都 原
幸樹 二ッ山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002106328A priority Critical patent/JP3922074B2/en
Publication of JP2003306398A publication Critical patent/JP2003306398A/en
Application granted granted Critical
Publication of JP3922074B2 publication Critical patent/JP3922074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素単結晶の製造方法および製造装置に関するものである。
【0002】
【従来の技術】
炭化珪素単結晶は、高耐圧、高電子移動度という特徴を有するため、パワーデバイス用半導体基板として期待されている。炭化珪素単結晶には、一般に昇華法(改良レーリー法)と呼ばれる単結晶成長方法が用いられる。改良レーリー法は、黒鉛製ルツボ内に炭化珪素原料を挿入するとともに、この原料部と対向するように種結晶を配置し、原料部を2200〜2400℃に加熱して昇華ガスを発生させ、原料部より数十〜数百℃低温にした種結晶に再結晶化させることで炭化珪素単結晶を成長させるものである。この改良レーリー法では、炭化珪素単結晶の成長に伴って炭化珪素原料が減少するため、成長させることができる量に限界がある。たとえ、成長途中に原料を追加する手段をとったとしても、SiCが昇華する際にSi/C比が1を超える比で昇華するため、成長中に原料を追加するとルツボ内の昇華ガスの濃度が揺らぎ、結晶を連続的に高品質に作製することの障害となってしまう。
【0003】
一方、CVDによって炭化珪素をエピタキシャル成長させる技術が、特表平11−508531号公報に開示されている。図4はこの技術を用いた製造装置の概略断面図である。図4に示すように、円筒形状のケース100の中央付近に円筒形状のサセプタ101を配置している。このサセプタ101は高純度の黒鉛等からなる。サセプタ101の上端面には種結晶となる炭化珪素単結晶基板102が配置されている。ケース100の外部におけるサセプタ101の外周に相当する位置には、サセプタ101内の気体を加熱するための加熱手段103が配置されている。サセプタ101の周囲は断熱材である多孔質の黒鉛104により充填されている。そして、サセプタ101の下端において、この断熱材104によって漏斗状の通路105が形成されている。ケース100の下端には、炭化珪素単結晶の成長に必要なSiやCを含有する混合ガスを供給する混合ガス導入管106が配置されている。また、サセプタ101の上端面には混合ガスが排気される通路107が形成されており、ケース100の上部にはケース100の外部に繋がるガス通路108が形成されている。このような構成の製造装置では、混合ガス導入管106から供給された混合ガスが断熱材104により形成された通路105を通ってサセプタ101内に移動し、混合ガスが加熱手段103により加熱されて種結晶102から炭化珪素単結晶がエピタキシャル成長される。そして、残留した混合ガスは、サセプタ101の上端面の通路107を通り、ケース100の上部に形成された通路108を通って排気される。
【0004】
ところが、このCVDによる炭化珪素単結晶の製造では、サセプタ101に導入した混合ガスがサセプタ101内で加熱され、その一部が結晶成長により消費されるが、成長に寄与しなかったガスはサセプタ101の内壁で異物(パーティクル等)となり、サセプタ101内で舞い上がり成長結晶表面に付着し、成長結晶の品質を著しく低下させる。また、排出口では混合ガスが冷却されるため排出口がSiC多結晶や前述の異物(パーティクル等)により塞がれ、サセプタ101内の圧力を上昇させ結晶成長を続けることが困難となる。
【0005】
【発明が解決しようとする課題】
本発明はこのような背景の下になされたものであり、その目的は、混合ガスの導入に伴なう異物の混入や反応容器の出口の詰まりによる不具合を解消して高品質な炭化珪素単結晶を製造することができるようにすることにある。
【0006】
【課題を解決するための手段】
請求項1および2に記載の炭化珪素単結晶の製造方法においては、種結晶となる炭化珪素単結晶基板に向かう混合ガスの流れに対し逆向きの排出流路を反応容器の内壁に沿うように形成するとともに、この排出流路を通してガスを強制的に排気するようにしたことを特徴としている。よって、排出流路を介して、反応容器内で発生した異物(反応容器内で発生したパーティクル、反応容器の内面の剥がれ物など)が炭化珪素単結晶基板に向かうのではなくガスにより真空容器の外部に押し流される。これにより、異物が炭化珪素単結晶基板に至ることが抑制される。また、排出流路を通してガスが強制的に排気され、異物による詰まりが抑制される。
【0007】
その結果、混合ガスの導入に伴なう異物の混入や反応容器の出口の詰まりによる不具合を解消して高品質な炭化珪素単結晶を製造することができる。
そのための製造装置として、請求項6および7に記載のように、反応容器の下面に、当該反応容器の内外を連通する透孔を設けるとともに、真空容器の下面に排気管を接続し、さらに、当該排気管に、反応容器内のガスを透孔を通して真空容器の外部に排出するための排気ポンプを設けることにより具現化することが可能となる。
【0008】
特に、請求項に記載の発明によれば、種結晶を下向きにして取り付けたので異物(パーティクル等)がより結晶表面に付着しにくくすることができ、高品質な炭化珪素単結晶が製造できる。
【0009】
また、請求項に記載の発明によれば、ガス排出口の温度が種結晶より高温のため原料ガスが再結晶化することがない。そのため、ガス排出口で詰まるといったことを抑制することができ、高品質な炭化珪素単結晶が製造できる。
【0010】
請求項に記載の発明によれば、不活性ガスを流すことにより、異物(パーティクル等)が巻き上がることを抑制することができる。つまり、一度、反応容器から排出された異物が、再度、反応容器内の種結晶となる炭化珪素単結晶基板に向かうことを抑制することができる。これにより、高品質な炭化珪素単結晶が製造できる。
【0011】
請求項に記載の発明によれば、真空容器の外部において排出流路からのガス中の異物を捕捉することにより、異物(パーティクル等)が反応容器内に舞い上げられ混入することがなく、高品質な炭化珪素単結晶が製造できる。
【0012】
請求項10に記載の発明によれば、排出ガスが一時的に貯留室に貯められ、異物が貯留室に堆積して反応容器内に戻ろうとするのを防止することができる。よって、異物(パーティクル等)が反応容器内に舞い上げられ混入することがなく、高品質な炭化珪素単結晶が製造できる。
【0013】
【発明の実施の形態】
以下、この発明を具体化した一実施の形態を図面に従って説明する。
図1には、本実施形態における炭化珪素単結晶の製造装置の概略断面図を示す。
【0014】
図1において、本装置には真空容器1が備えられ、円筒形をなす容器本体2が立設した状態で配設されている。つまり、容器本体2の両端開口部が上下に位置する状態で固定されている。容器本体2は、例えば石英からなる。容器本体2の上面開口部は上部蓋材(フランジ)3にて塞がれるとともに、容器本体2の下面開口部は下部蓋材(フランジ)4にて塞がれている。
【0015】
真空容器1の内部には、円筒状をなす断熱材5が容器本体2の内壁に沿うように配置されている。断熱材5の内方には、円筒状をなす反応容器6が断熱材5の内壁に沿うように配置されている。反応容器6の上面は塞がれるとともに下面は開口している。反応容器6内の上部には(詳しくは、反応容器6内での天井面には)、種結晶となる炭化珪素単結晶基板7が下向きにして配置されている。断熱材5と反応容器6に関して、反応容器6の側面および上面において断熱材5が所定の間隔をおいて離間して配置されている。
【0016】
反応容器6の材料としては、例えば高温(2400℃程度)に耐え得る高純度の黒鉛を用いることができる。このような高純度の黒鉛を用いることにより、加熱された反応容器6から不純物が発生して結晶成長中に結晶内に不純物が取り込まれることを低減することができる。
【0017】
前述の下部蓋材(フランジ)4の中央部には、下方に突出する形で凹部8が形成されている。凹部8の内方が貯留室R1であり、真空容器1内での下部に貯留室R1を有する構造となっている。凹部8の底面部には混合ガス導入管9が形成され、この混合ガス導入管9は上下方向に延びている。混合ガス導入管9の上端側は真空容器1の内部に延設され、さらに混合ガス導入管9の上端から混合ガス導入管10が上方に延びている。混合ガス導入管10は反応容器6の下面開口部6aから反応容器6の内部に延設されている。下部蓋材(フランジ)4と凹部8と混合ガス導入管9とは一体化されており、例えばステンレス鋼板材(SUS材)よりなる。
【0018】
このようにして、反応容器6の下方から反応容器6内の炭化珪素単結晶基板7に向かって混合ガス導入管9,10が延設され、種結晶7の表面に混合ガスが供給できるようになっている。この混合ガスとしては、具体的には例えば、モノシラン(Siを含有するガス)とプロパン(Cを含有するガス)とキャリアガス、例えばアルゴンを所定の割合で混合したものが使用される。
【0019】
前述の凹部8の側面部には排気管11が接続されている。即ち、排気管11は貯留室R1と連通している。排気管11にはパーティクルコレクタ12を介して排気ポンプ13が接続されている。つまり、真空容器1と排気ポンプ13の間に、ガス中のパーティクル等の異物を捕捉するための装置としてパーティクルコレクタ12が設けられている。
【0020】
このようにして、反応容器6の下面に、反応容器6の内外を連通する透孔6aが設けられるとともに、真空容器1の下部に排気管11が接続され、さらに、排気管11に、反応容器6内のガスを透孔6aを通して真空容器1の外部に排出するための排気ポンプ13が設けられている。
【0021】
一方、前述の上部蓋材(フランジ)3の中央部には、不活性ガス導入管14が形成されている。不活性ガス導入管14の下端は、真空容器1内において断熱材5での切り欠き部5aまで延設されている。この不活性ガス導入管14から不活性ガス(例えばアルゴンガス)が導入され、真空容器1内において反応容器6の上面から側面を通り下方に移動する。つまり、不活性ガス導入管14により上部蓋材3の中央付近から不活性ガスが下方向に流れ、反応容器6の周囲を通って反応容器6の下方に向かって流れる。このように真空容器1内において反応容器6の上方から反応容器6に対し不活性ガスを導入して反応容器6内のガス(異物)を透孔6aを通して真空容器1の外部に向かわせる気流を作ることができる。上部蓋材(フランジ)3と不活性ガス導入管14は一体化されており、例えばステンレス鋼板材(SUS材)よりなる。
【0022】
真空容器1の容器本体2での外周部には、加熱手段としての加熱コイル(RFコイル)15が巻回されている。加熱コイル15は上側コイル15aと下側コイル15bからなり、上側コイル15aにて反応容器6の上部を加熱し、また、下側コイル15bにて反応容器6の下部を加熱することができる。また、各コイル15a,15bに印加する交流電流の周波数は異なっており、反応容器6の上部と下部をそれぞれ独立に温度制御できるようになっている。詳しくは、加熱コイル15(上側コイル15a、下側コイル15b)は、反応容器6での透孔6aの形成部分を、種結晶となる炭化珪素単結晶基板7に比べ高温に加熱する。
【0023】
反応容器6内に導入されたガスは反応容器6内で加熱され、炭化珪素単結晶基板7においてガスのうち一部が結晶化し、未反応ガスは反応容器6の下側へ流れる。
【0024】
次に、炭化珪素単結晶の製造方法について説明する。
真空容器1内に種結晶となる炭化珪素単結晶基板7を配置する。そして、混合ガス導入管9,10から真空容器1(反応容器6)内に、混合ガス(少なくとも、Siを含有するガスと、Cを含有するガスとを含むガス)を導入する。これにより、炭化珪素単結晶基板7から炭化珪素単結晶20が成長する。つまり、反応容器6内に種結晶となる炭化珪素単結晶基板7を配置し、反応容器6内に、少なくともSiを含有するガスとCを含有するガスとを含む混合ガスを下方から導入することにより、炭化珪素単結晶基板7から炭化珪素単結晶20を成長させる。
【0025】
また、排気ポンプ13が駆動され、反応容器6内のガスは透孔6aを介して排気管11から排出される。このようにして、種結晶となる炭化珪素単結晶基板7に向かう混合ガスの流れに対し逆向きの排出流路を反応容器6の内壁に沿うように形成するとともに、この排出流路を通してガスを強制的に排気する。よって、排出流路を介して、反応容器6内で発生した異物(反応容器6内で発生したパーティクル、反応容器6の内面の剥がれ物など)が炭化珪素単結晶基板7に向かうのではなくガスにより真空容器1の外部に押し流される。これにより、異物が炭化珪素単結晶基板7に至ることが抑制される。また、排出流路を通してガスが強制的に排気され、異物による詰まりが抑制される。その結果、混合ガスの導入に伴なう異物の混入や反応容器6の出口の詰まりによる不具合を解消して高品質な炭化珪素単結晶を製造することができる。
【0026】
また、加熱コイル15の駆動、詳しくは、下側コイル15bの駆動(加熱動作)により、反応容器6におけるガス排出口(透孔6aの形成部分)を反応容器6の上部、即ち、炭化珪素単結晶基板7に比べ高温に加熱する。よって、排出口の温度が種結晶7より高温のため原料ガスが再結晶化することがなく、そのため、排出口で多結晶を詰まらせることもなく高品質な炭化珪素単結晶20が製造できる。詳しくは、一度、反応容器6内で高温に加熱された混合ガスが反応容器6の排出口付近で冷却されることに伴なう過剰な多結晶成長の発生による詰まりを防止することができる。また、反応容器6のガス排出口以降ではガスは冷却されパーティクルを発生させるが、(i)排出口6aを反応容器6の下側に配置したことと、(ii)重力方向にガスの流れができるように排気管11を真空容器1の下側に設けたことにより、反応容器6にパーティクルが巻き上げられ混入することを防止でき、高品質な炭化珪素単結晶20を成長できる。
【0027】
また、種結晶7を下向きにして取り付けたので、異物(パーティクル等)がより結晶表面に付着しにくくすることができ、高品質な炭化珪素単結晶が製造できる。
【0028】
さらに、真空容器1内においてガス排出流路に沿って不活性ガスを反応容器6の上方より下方向に流す。これにより、反応容器6から排出された異物が再び反応容器6内に戻ろうとするのを防止する。このように異物(パーティクル等)が巻き上がることを抑制することができる。つまり、一度、反応容器6から排出された異物が、再度、反応容器6内の種結晶となる炭化珪素単結晶基板7に向かうことを抑制することができる。これによっても、高品質な炭化珪素単結晶が製造できる。
【0029】
また、発生したパーティクルは反応容器6の下流へ流れるが、真空容器1の下面での外壁部に排出流路からのガス(異物)を一時的に貯める貯留室R1を形成し、ここから真空容器1の外部にガスを排出することにより、異物が貯留室R1に堆積して反応容器6内に戻ろうとするのを防止することができる。よって、異物(パーティクル等)が反応容器6内に舞い上げられ混入することがなく、高品質な炭化珪素単結晶が製造できる。さらに、真空容器1の外部においてガス排出流路からのガス中の異物をパーティクルコレクタ12にて捕捉することにより、異物(パーティクル等)が反応容器6内に舞い上げられ混入することがなく、高品質な炭化珪素単結晶が製造できる。
【0030】
また、パーティクルコレクタ12や貯留室R1を設けたので、反応容器6内の種結晶7の取り付け作業等により真空容器1内の圧力を大気圧まで開放してから、再度、真空排気してもパーティクルが容易に回収できる。そのため、反応容器6内に舞い上げられ混入することがなく、高品質な炭化珪素単結晶が製造できる。
【0031】
以下、応用例を説明する。
図1における反応容器6の上部は塞がっているが、これに代わり、図2に示すように、反応容器6の天井面において種結晶7を固定する部位の周りに透孔6bを設ける。そして、不活性ガス導入管14より導入された不活性ガスが、不活性ガス導入口6bより反応容器6内に導入されるようにする。こうすると、反応容器6の排出口6aでの混合ガスの原料ガス濃度を下げることができ、排出口6aの詰まりを防止できるとともにパーティクルの発生を抑えることができる。
【0032】
あるいは、図3に示すように、炭化珪素単結晶基板7を取り付けた台座30をシャフト31に固定する。シャフト31は回転・上下動機構32により回転および上下動できる。また、シャフト31の内部から不活性ガスを導入し、透孔31aからシャフト31の外部に出す。透孔31aはシャフト31において円周上に多数形成されている。さらに、不活性ガスは台座30の外周面と反応容器6の内周面との間の隙間を通して反応容器6の内周面に沿って下方に移動する。このようにすることにより、不活性ガスを反応容器6内に対し円周方向に均等に導入することができる。また、結晶の引き上げ及び回転が可能となるので、より長尺な結晶を高品質に作製することができる。
【図面の簡単な説明】
【図1】実施形態における炭化珪素単結晶の製造装置の概略断面図。
【図2】別例の炭化珪素単結晶の製造装置の概略断面図。
【図3】別例の炭化珪素単結晶の製造装置の概略断面図。
【図4】従来技術を説明するための断面図。
【符号の説明】
1…真空容器、2…容器本体、3…上部蓋材(フランジ)、4…下部蓋材(フランジ)、5…断熱材、5a…切り欠き部、6…反応容器、6a…透孔、7…種結晶となる炭化珪素単結晶基板、8…凹部、9…混合ガス導入管、10…混合ガス導入管、11…排気管、12…パーティクルコレクタ、13…排気ポンプ、14…不活性ガス導入管、15…加熱コイル、15a…上側コイル、15b…下側コイル。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a silicon carbide single crystal.
[0002]
[Prior art]
Since silicon carbide single crystal has characteristics of high breakdown voltage and high electron mobility, it is expected as a semiconductor substrate for power devices. A single crystal growth method generally called a sublimation method (improved Rayleigh method) is used for the silicon carbide single crystal. In the modified Rayleigh method, a silicon carbide raw material is inserted into a graphite crucible, a seed crystal is disposed so as to face the raw material portion, and the raw material portion is heated to 2200 to 2400 ° C. to generate sublimation gas. A silicon carbide single crystal is grown by recrystallizing into a seed crystal cooled to several tens to several hundreds of degrees C. from the part. In this improved Rayleigh method, the amount of silicon carbide raw material decreases as the silicon carbide single crystal grows, so that the amount that can be grown is limited. Even if the raw material is added during the growth, the sublimation gas concentration in the crucible is increased if the raw material is added during the growth because the Si / C ratio sublimates when SiC sublimates. Fluctuates and becomes an obstacle to the continuous production of crystals of high quality.
[0003]
On the other hand, a technique for epitaxially growing silicon carbide by CVD is disclosed in Japanese Patent Laid-Open No. 11-508531. FIG. 4 is a schematic sectional view of a manufacturing apparatus using this technique. As shown in FIG. 4, a cylindrical susceptor 101 is disposed near the center of the cylindrical case 100. The susceptor 101 is made of high purity graphite or the like. A silicon carbide single crystal substrate 102 serving as a seed crystal is disposed on the upper end surface of susceptor 101. A heating means 103 for heating the gas in the susceptor 101 is disposed at a position corresponding to the outer periphery of the susceptor 101 outside the case 100. The periphery of the susceptor 101 is filled with porous graphite 104 which is a heat insulating material. A funnel-shaped passage 105 is formed by the heat insulating material 104 at the lower end of the susceptor 101. A mixed gas introduction pipe 106 for supplying a mixed gas containing Si and C necessary for the growth of the silicon carbide single crystal is disposed at the lower end of the case 100. Further, a passage 107 through which the mixed gas is exhausted is formed at the upper end surface of the susceptor 101, and a gas passage 108 connected to the outside of the case 100 is formed at the upper portion of the case 100. In the manufacturing apparatus having such a configuration, the mixed gas supplied from the mixed gas introduction pipe 106 moves into the susceptor 101 through the passage 105 formed by the heat insulating material 104, and the mixed gas is heated by the heating means 103. A silicon carbide single crystal is epitaxially grown from seed crystal 102. The remaining mixed gas passes through the passage 107 on the upper end surface of the susceptor 101 and is exhausted through the passage 108 formed in the upper portion of the case 100.
[0004]
However, in the manufacture of the silicon carbide single crystal by this CVD, the mixed gas introduced into the susceptor 101 is heated in the susceptor 101 and a part thereof is consumed by crystal growth, but the gas that has not contributed to the growth is the susceptor 101. It becomes a foreign substance (particles etc.) on the inner wall of the glass, and rises in the susceptor 101 and adheres to the surface of the grown crystal, which significantly deteriorates the quality of the grown crystal. Further, since the mixed gas is cooled at the discharge port, the discharge port is blocked by SiC polycrystal or the above-described foreign matter (particles, etc.), and it becomes difficult to increase the pressure in the susceptor 101 and continue crystal growth.
[0005]
[Problems to be solved by the invention]
The present invention has been made under such a background. The purpose of the present invention is to eliminate defects caused by the introduction of mixed gas and the clogging of the reaction vessel outlet and the high quality silicon carbide single unit. It is to be able to produce crystals.
[0006]
[Means for Solving the Problems]
In the method for producing a silicon carbide single crystal according to claim 1 or 2 , the discharge flow path opposite to the flow of the mixed gas toward the silicon carbide single crystal substrate to be a seed crystal is along the inner wall of the reaction vessel. It is characterized in that it is formed and gas is forcibly exhausted through this discharge channel. Therefore, foreign substances generated in the reaction vessel (particles generated in the reaction vessel, exfoliation of the inner surface of the reaction vessel, etc.) generated in the reaction vessel are not directed to the silicon carbide single crystal substrate through the discharge channel, but by the gas. It is washed away to the outside. Thereby, it is suppressed that a foreign material reaches a silicon carbide single crystal substrate. Further, the gas is forcibly exhausted through the discharge channel, and clogging due to foreign matters is suppressed.
[0007]
As a result, it is possible to manufacture a high-quality silicon carbide single crystal by eliminating the problems caused by the introduction of the mixed gas and the introduction of foreign substances and clogging of the outlet of the reaction vessel.
As a manufacturing apparatus therefor, as described in claims 6 and 7 , a bottom surface of the reaction vessel is provided with a through hole that communicates the inside and outside of the reaction vessel, and an exhaust pipe is connected to the bottom surface of the vacuum vessel. This can be realized by providing the exhaust pipe with an exhaust pump for exhausting the gas in the reaction container to the outside of the vacuum container through the through hole.
[0008]
In particular, according to the first and sixth aspects of the invention, since the seed crystal is attached with the seed crystal facing downward, foreign matter (particles, etc.) can be made less likely to adhere to the crystal surface, and a high-quality silicon carbide single crystal can be obtained. Can be manufactured.
[0009]
Further , according to the inventions of claims 2 and 7 , since the temperature of the gas discharge port is higher than that of the seed crystal, the source gas is not recrystallized. Therefore, clogging at the gas discharge port can be suppressed, and a high-quality silicon carbide single crystal can be manufactured.
[0010]
According to the invention of Claims 3 and 8 , it can suppress that a foreign material (particles etc.) rolls up by flowing an inert gas. That is, once the foreign matter discharged from the reaction vessel can be prevented from moving again toward the silicon carbide single crystal substrate serving as a seed crystal in the reaction vessel. Thereby, a high quality silicon carbide single crystal can be manufactured.
[0011]
According to the inventions described in claims 4 and 9 , foreign substances (particles, etc.) can be swept up and mixed into the reaction container by capturing the foreign substances in the gas from the discharge channel outside the vacuum container. Therefore, a high-quality silicon carbide single crystal can be manufactured.
[0012]
According to the inventions described in claims 5 and 10 , it is possible to prevent exhaust gas from being temporarily stored in the storage chamber and foreign matter from being accumulated in the storage chamber and returning to the reaction vessel. Therefore, foreign substances (particles or the like) are not lifted and mixed in the reaction vessel, and a high quality silicon carbide single crystal can be manufactured.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, the schematic sectional drawing of the manufacturing apparatus of the silicon carbide single crystal in this embodiment is shown.
[0014]
In FIG. 1, the apparatus is provided with a vacuum vessel 1 and a cylindrical vessel body 2 is arranged in an upright state. That is, the opening portions at both ends of the container body 2 are fixed in a state where they are positioned vertically. The container body 2 is made of, for example, quartz. The upper surface opening of the container body 2 is closed by an upper lid member (flange) 3, and the lower surface opening of the container body 2 is closed by a lower lid member (flange) 4.
[0015]
Inside the vacuum vessel 1, a cylindrical heat insulating material 5 is arranged along the inner wall of the vessel body 2. Inside the heat insulating material 5, a cylindrical reaction vessel 6 is arranged along the inner wall of the heat insulating material 5. The upper surface of the reaction vessel 6 is closed and the lower surface is opened. A silicon carbide single crystal substrate 7 serving as a seed crystal is disposed facing downward in the upper part of reaction container 6 (specifically, on the ceiling surface in reaction container 6). With respect to the heat insulating material 5 and the reaction vessel 6, the heat insulating material 5 is arranged at a predetermined interval on the side surface and the upper surface of the reaction vessel 6.
[0016]
As a material of the reaction vessel 6, for example, high-purity graphite that can withstand high temperatures (about 2400 ° C.) can be used. By using such high purity graphite, it is possible to reduce the generation of impurities from the heated reaction vessel 6 and the incorporation of impurities into the crystal during crystal growth.
[0017]
A concave portion 8 is formed in a central portion of the lower lid member (flange) 4 so as to protrude downward. The inner side of the recess 8 is the storage chamber R1, and has a structure having the storage chamber R1 in the lower part in the vacuum vessel 1. A mixed gas introduction pipe 9 is formed on the bottom surface of the recess 8, and the mixed gas introduction pipe 9 extends in the vertical direction. The upper end side of the mixed gas introduction tube 9 extends inside the vacuum vessel 1, and the mixed gas introduction tube 10 extends upward from the upper end of the mixed gas introduction tube 9. The mixed gas introduction pipe 10 extends from the lower surface opening 6 a of the reaction vessel 6 into the reaction vessel 6. The lower lid member (flange) 4, the recessed portion 8, and the mixed gas introduction pipe 9 are integrated, and are made of, for example, a stainless steel plate material (SUS material).
[0018]
In this way, the mixed gas introduction pipes 9 and 10 are extended from below the reaction vessel 6 toward the silicon carbide single crystal substrate 7 in the reaction vessel 6 so that the mixed gas can be supplied to the surface of the seed crystal 7. It has become. Specifically, for example, a mixture of monosilane (a gas containing Si), propane (a gas containing C), and a carrier gas such as argon in a predetermined ratio is used as the mixed gas.
[0019]
An exhaust pipe 11 is connected to the side surface portion of the recess 8 described above. That is, the exhaust pipe 11 communicates with the storage chamber R1. An exhaust pump 13 is connected to the exhaust pipe 11 via a particle collector 12. That is, a particle collector 12 is provided between the vacuum vessel 1 and the exhaust pump 13 as a device for capturing foreign substances such as particles in the gas.
[0020]
In this manner, the bottom surface of the reaction vessel 6 is provided with a through hole 6a that communicates the inside and outside of the reaction vessel 6, the exhaust pipe 11 is connected to the lower portion of the vacuum vessel 1, and the exhaust pipe 11 is further connected to the reaction vessel An exhaust pump 13 is provided for exhausting the gas in 6 to the outside of the vacuum vessel 1 through the through-hole 6a.
[0021]
On the other hand, an inert gas introduction pipe 14 is formed at the center of the above-described upper lid member (flange) 3. The lower end of the inert gas introduction pipe 14 extends to the notch 5 a in the heat insulating material 5 in the vacuum vessel 1. An inert gas (for example, argon gas) is introduced from the inert gas introduction pipe 14 and moves downward from the upper surface of the reaction vessel 6 through the side surface in the vacuum vessel 1. That is, an inert gas flows downward from the vicinity of the center of the upper lid member 3 through the inert gas introduction pipe 14, and flows downward around the reaction vessel 6 through the periphery of the reaction vessel 6. In this manner, an inert gas is introduced into the reaction vessel 6 from above the reaction vessel 6 in the vacuum vessel 1, and an air flow that directs the gas (foreign matter) in the reaction vessel 6 to the outside of the vacuum vessel 1 through the through holes 6 a. Can be made. The upper lid member (flange) 3 and the inert gas introduction pipe 14 are integrated, and are made of, for example, a stainless steel plate material (SUS material).
[0022]
A heating coil (RF coil) 15 as a heating means is wound around the outer peripheral portion of the vacuum vessel 1 in the vessel body 2. The heating coil 15 includes an upper coil 15a and a lower coil 15b. The upper coil 15a can heat the upper portion of the reaction vessel 6, and the lower coil 15b can heat the lower portion of the reaction vessel 6. Moreover, the frequency of the alternating current applied to each coil 15a, 15b is different, and the temperature of the upper part and the lower part of the reaction vessel 6 can be controlled independently. Specifically, heating coil 15 (upper coil 15a, lower coil 15b) heats a portion where through hole 6a is formed in reaction vessel 6 to a higher temperature than silicon carbide single crystal substrate 7 that serves as a seed crystal.
[0023]
The gas introduced into the reaction vessel 6 is heated in the reaction vessel 6, part of the gas is crystallized in the silicon carbide single crystal substrate 7, and the unreacted gas flows to the lower side of the reaction vessel 6.
[0024]
Next, a method for producing a silicon carbide single crystal will be described.
A silicon carbide single crystal substrate 7 to be a seed crystal is placed in the vacuum vessel 1. Then, a mixed gas (a gas containing at least a gas containing Si and a gas containing C) is introduced into the vacuum vessel 1 (reaction vessel 6) from the mixed gas introduction pipes 9 and 10. Thereby, silicon carbide single crystal 20 grows from silicon carbide single crystal substrate 7. That is, the silicon carbide single crystal substrate 7 to be a seed crystal is disposed in the reaction vessel 6, and a mixed gas containing at least Si-containing gas and C-containing gas is introduced into the reaction vessel 6 from below. Thus, silicon carbide single crystal 20 is grown from silicon carbide single crystal substrate 7.
[0025]
Further, the exhaust pump 13 is driven, and the gas in the reaction vessel 6 is discharged from the exhaust pipe 11 through the through hole 6a. In this way, a discharge flow path that is opposite to the flow of the mixed gas toward the silicon carbide single crystal substrate 7 serving as a seed crystal is formed along the inner wall of the reaction vessel 6, and the gas is passed through the discharge flow path. Force exhaust. Therefore, the foreign matter generated in the reaction vessel 6 (particles generated in the reaction vessel 6, peeled material on the inner surface of the reaction vessel 6, etc.) generated in the reaction vessel 6 does not go to the silicon carbide single crystal substrate 7 through the discharge channel. Is pushed away to the outside of the vacuum vessel 1. Thereby, it is suppressed that a foreign material reaches silicon carbide single crystal substrate 7. Further, the gas is forcibly exhausted through the discharge channel, and clogging due to foreign matters is suppressed. As a result, it is possible to produce a high-quality silicon carbide single crystal by eliminating problems caused by the introduction of mixed gas and the introduction of foreign substances and clogging of the outlet of the reaction vessel 6.
[0026]
In addition, by driving the heating coil 15, more specifically, by driving the lower coil 15b (heating operation), the gas discharge port (the portion where the through hole 6a is formed) in the reaction vessel 6 is placed above the reaction vessel 6, that is, a silicon carbide single unit. Heat to a higher temperature than the crystal substrate 7. Therefore, since the temperature of the discharge port is higher than that of the seed crystal 7, the source gas is not recrystallized. Therefore, the high-quality silicon carbide single crystal 20 can be manufactured without clogging the polycrystal at the discharge port. Specifically, clogging due to excessive polycrystalline growth accompanying the once the mixed gas heated to a high temperature in the reaction vessel 6 is cooled in the vicinity of the outlet of the reaction vessel 6 can be prevented. Further, after the gas discharge port of the reaction vessel 6, the gas is cooled to generate particles, but (i) the discharge port 6 a is arranged on the lower side of the reaction vessel 6, and (ii) the flow of gas in the direction of gravity. By providing the exhaust pipe 11 on the lower side of the vacuum vessel 1 so as to be able to prevent particles from being rolled up and mixed into the reaction vessel 6, a high quality silicon carbide single crystal 20 can be grown.
[0027]
In addition, since the seed crystal 7 is mounted face down, foreign substances (particles, etc.) can be made less likely to adhere to the crystal surface, and a high-quality silicon carbide single crystal can be manufactured.
[0028]
Further, an inert gas is allowed to flow downward from above the reaction vessel 6 along the gas discharge flow path in the vacuum vessel 1. This prevents foreign matter discharged from the reaction vessel 6 from returning to the reaction vessel 6 again. Thus, it can suppress that a foreign material (particles etc.) rolls up. That is, once the foreign matter discharged from the reaction vessel 6 can be prevented from going again to the silicon carbide single crystal substrate 7 that becomes the seed crystal in the reaction vessel 6. This also makes it possible to produce a high-quality silicon carbide single crystal.
[0029]
Further, the generated particles flow downstream of the reaction vessel 6, but a storage chamber R1 for temporarily storing gas (foreign matter) from the discharge channel is formed on the outer wall portion on the lower surface of the vacuum vessel 1, from which the vacuum vessel is formed. By discharging the gas to the outside of 1, it is possible to prevent foreign matter from accumulating in the storage chamber R <b> 1 and returning to the reaction vessel 6. Therefore, foreign substances (particles or the like) are not lifted and mixed in the reaction vessel 6, and a high-quality silicon carbide single crystal can be manufactured. Furthermore, by capturing the foreign matter in the gas from the gas discharge channel outside the vacuum vessel 1 by the particle collector 12, the foreign matter (particles or the like) is not swung up into the reaction vessel 6 and mixed. A quality silicon carbide single crystal can be manufactured.
[0030]
In addition, since the particle collector 12 and the storage chamber R1 are provided, the particles in the vacuum vessel 1 are released even after evacuation after the pressure in the vacuum vessel 1 is released to atmospheric pressure by attaching the seed crystal 7 in the reaction vessel 6 or the like. Can be easily recovered. Therefore, a high-quality silicon carbide single crystal can be manufactured without being swirled into the reaction vessel 6 and mixed therein.
[0031]
Hereinafter, application examples will be described.
Although the upper part of the reaction vessel 6 in FIG. 1 is closed, instead of this, as shown in FIG. 2, a through hole 6 b is provided around the site where the seed crystal 7 is fixed on the ceiling surface of the reaction vessel 6. Then, the inert gas introduced from the inert gas introduction pipe 14 is introduced into the reaction vessel 6 from the inert gas introduction port 6b. If it carries out like this, the raw material gas concentration of the mixed gas in the discharge port 6a of the reaction container 6 can be lowered | hung, the clogging of the discharge port 6a can be prevented, and generation | occurrence | production of a particle can be suppressed.
[0032]
Alternatively, as shown in FIG. 3, pedestal 30 to which silicon carbide single crystal substrate 7 is attached is fixed to shaft 31. The shaft 31 can be rotated and moved up and down by a rotation / up and down movement mechanism 32. Further, an inert gas is introduced from the inside of the shaft 31 and is taken out of the shaft 31 through the through hole 31a. A large number of through holes 31 a are formed on the circumference of the shaft 31. Further, the inert gas moves downward along the inner peripheral surface of the reaction vessel 6 through a gap between the outer peripheral surface of the pedestal 30 and the inner peripheral surface of the reaction vessel 6. By doing in this way, an inert gas can be equally introduced with respect to the inside of the reaction vessel 6 in the circumferential direction. In addition, since the crystal can be pulled up and rotated, a longer crystal can be produced with high quality.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a silicon carbide single crystal manufacturing apparatus according to an embodiment.
FIG. 2 is a schematic cross-sectional view of another example of an apparatus for producing a silicon carbide single crystal.
FIG. 3 is a schematic cross-sectional view of another example of a silicon carbide single crystal manufacturing apparatus.
FIG. 4 is a cross-sectional view for explaining the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vacuum container, 2 ... Container main body, 3 ... Upper cover material (flange), 4 ... Lower cover material (flange), 5 ... Heat insulation material, 5a ... Notch part, 6 ... Reaction container, 6a ... Through-hole, 7 DESCRIPTION OF SYMBOLS Silicon carbide single crystal substrate used as seed crystal, 8 ... Recess, 9 ... Mixed gas introduction pipe, 10 ... Mixed gas introduction pipe, 11 ... Exhaust pipe, 12 ... Particle collector, 13 ... Exhaust pump, 14 ... Inert gas introduction Tube, 15 ... heating coil, 15a ... upper coil, 15b ... lower coil.

Claims (10)

真空容器(1)の内部において反応容器(6)内に種結晶となる炭化珪素単結晶基板(7)を配置し、前記反応容器(6)内に、少なくともSiを含有するガスとCを含有するガスとを含む混合ガスを導入することにより、前記炭化珪素単結晶基板(7)から炭化珪素単結晶(20)を成長させる炭化珪素単結晶の製造方法において、
前記種結晶となる炭化珪素単結晶基板(7)を、前記反応容器(6)内の上部において下向きにして配置し、当該炭化珪素単結晶基板(7)に向かう前記混合ガスの流れに対し逆向きの排出流路を反応容器(6)の内壁に沿うように形成するとともに、この排出流路を通してガスを強制的に排気するようにしたことを特徴とする炭化珪素単結晶の製造方法。
Inside the vacuum vessel (1), a silicon carbide single crystal substrate (7) serving as a seed crystal is placed in the reaction vessel (6), and at least Si-containing gas and C are contained in the reaction vessel (6). In the method for producing a silicon carbide single crystal, the silicon carbide single crystal (20) is grown from the silicon carbide single crystal substrate (7) by introducing a mixed gas containing
The silicon carbide single crystal substrate (7) serving as the seed crystal is disposed facing downward in the upper part of the reaction vessel (6), and is opposite to the flow of the mixed gas toward the silicon carbide single crystal substrate (7). A method for producing a silicon carbide single crystal, wherein a discharge channel in the direction is formed along the inner wall of the reaction vessel (6), and gas is forcibly exhausted through the discharge channel.
真空容器(1)の内部において反応容器(6)内に種結晶となる炭化珪素単結晶基板(7)を配置し、前記反応容器(6)内に、少なくともSiを含有するガスとCを含有するガスとを含む混合ガスを導入することにより、前記炭化珪素単結晶基板(7)から炭化珪素単結晶(20)を成長させる炭化珪素単結晶の製造方法において、Inside the vacuum vessel (1), a silicon carbide single crystal substrate (7) serving as a seed crystal is placed in the reaction vessel (6), and at least Si-containing gas and C are contained in the reaction vessel (6). In the method for producing a silicon carbide single crystal, the silicon carbide single crystal (20) is grown from the silicon carbide single crystal substrate (7) by introducing a mixed gas containing
前記種結晶となる炭化珪素単結晶基板(7)に向かう前記混合ガスの流れに対し逆向きの排出流路を反応容器(6)の内壁に沿うように形成するとともに、同反応容器(6)におけるガス排出口を前記炭化珪素単結晶基板(7)に比べ高温にし、この排出流路を通してガスを強制的に排気するようにしたことを特徴とする炭化珪素単結晶の製造方法。  A discharge channel opposite to the flow of the mixed gas toward the silicon carbide single crystal substrate (7) serving as the seed crystal is formed along the inner wall of the reaction vessel (6), and the reaction vessel (6) The method for producing a silicon carbide single crystal is characterized in that the gas discharge port in is heated to a temperature higher than that of the silicon carbide single crystal substrate (7), and the gas is forcibly exhausted through the discharge channel.
前記真空容器(1)内において前記排出流路に沿って不活性ガスを流し、前記反応容器(6)から排出された異物が再び反応容器(6)内に戻ろうとするのを防止するようにしたことを特徴とする請求項1または2に記載の炭化珪素単結晶の製造方法。An inert gas is allowed to flow along the discharge flow path in the vacuum vessel (1) to prevent foreign matter discharged from the reaction vessel (6) from returning to the reaction vessel (6) again. A method for producing a silicon carbide single crystal according to claim 1 or 2, wherein: 前記真空容器(1)の外部において前記排出流路からのガス中の異物を捕捉するようにしたことを特徴とする請求項1〜3のいずれか1項に記載の炭化珪素単結晶の製造方法。The method for producing a silicon carbide single crystal according to any one of claims 1 to 3, wherein foreign substances in the gas from the discharge channel are captured outside the vacuum vessel (1). . 前記真空容器(1)の外壁部に前記排出流路からのガスを一時的に貯める貯留室(R1)を形成し、ここから真空容器(1)の外部にガスを排出することにより、異物が前記貯留室(R1)に堆積して反応容器(6)内に戻ろうとするのを防止するようにしたことを特徴とする請求項1〜4のいずれか1項に記載の炭化珪素単結晶の製造方法。A storage chamber (R1) for temporarily storing gas from the discharge flow path is formed in the outer wall of the vacuum vessel (1), and the gas is discharged from the vacuum vessel (1) to the outside, whereby foreign substances are removed. The silicon carbide single crystal according to any one of claims 1 to 4, wherein the silicon carbide single crystal according to any one of claims 1 to 4 is prevented from being deposited in the storage chamber (R1) and returning to the inside of the reaction vessel (6). Production method. 真空容器(1)の内部において反応容器(6)内に種結晶となる炭化珪素単結晶基板(7)を配置し、前記反応容器(6)内に、少なくともSiを含有するガスとCを含有するガスとを含む混合ガスを下方から導入することにより、前記炭化珪素単結晶基板(7)から炭化珪素単結晶(20)を成長させる炭化珪素単結晶の製造装置において、Inside the vacuum vessel (1), a silicon carbide single crystal substrate (7) serving as a seed crystal is placed in the reaction vessel (6), and at least Si-containing gas and C are contained in the reaction vessel (6). In a silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal (20) from the silicon carbide single crystal substrate (7) by introducing a mixed gas containing a gas to be generated from below,
前記反応容器(6)内の上部において前記種結晶となる炭化珪素単結晶基板(7)を下向きにして配置するとともに、前記反応容器(6)の下面に、当該反応容器(6)の内外を連通する透孔(6a)を設け、前記真空容器(1)の下部に接続する排気管(11)に、前記反応容器(6)内のガスを前記透孔(6a)を通して真空容器(1)の外部に排出するための排気ポンプ(13)を設けたことを特徴とする炭化珪素単結晶の製造装置。  The silicon carbide single crystal substrate (7) serving as the seed crystal is arranged in the upper part in the reaction vessel (6) so that the inside and outside of the reaction vessel (6) are placed on the lower surface of the reaction vessel (6). A communicating through hole (6a) is provided, and the gas in the reaction vessel (6) is passed through the through hole (6a) to the exhaust pipe (11) connected to the lower part of the vacuum vessel (1). An apparatus for producing a silicon carbide single crystal, characterized in that an exhaust pump (13) for discharging to the outside is provided.
真空容器(1)の内部において反応容器(6)内に種結晶となる炭化珪素単結晶基板(7)を配置し、前記反応容器(6)内に、少なくともSiを含有するガスとCを含有するガスとを含む混合ガスを下方から導入することにより、前記炭化珪素単結晶基板(7)から炭化珪素単結晶(20)を成長させる炭化珪素単結晶の製造装置において、Inside the vacuum vessel (1), a silicon carbide single crystal substrate (7) serving as a seed crystal is placed in the reaction vessel (6), and at least Si-containing gas and C are contained in the reaction vessel (6). In a silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal (20) from the silicon carbide single crystal substrate (7) by introducing a mixed gas containing a gas to be generated from below,
前記反応容器(6)の下面に、当該反応容器(6)の内外を連通する透孔(6a)を設けるとともに、同反応容器(6)での前記透孔(6a)の形成部分を、前記種結晶となる炭化珪素単結晶基板(7)に比べ高温に加熱するための加熱手段(15)を設け、前記真空容器(1)の下部に接続する排気管(11)に、前記反応容器(6)内のガスを前記透孔(6a)を通して真空容器(1)の外部に排出するための排気ポンプ(13)を設けた  A through hole (6a) that communicates the inside and outside of the reaction vessel (6) is provided on the lower surface of the reaction vessel (6), and the formation portion of the through hole (6a) in the reaction vessel (6) is A heating means (15) for heating to a higher temperature than the silicon carbide single crystal substrate (7) serving as a seed crystal is provided, and the reaction vessel (11) is connected to the exhaust pipe (11) connected to the lower portion of the vacuum vessel (1). 6) An exhaust pump (13) for exhausting the gas inside the vacuum vessel (1) through the through hole (6a) is provided. ことを特徴とする炭化珪素単結晶の製造装置。An apparatus for producing a silicon carbide single crystal.
前記真空容器(1)内において反応容器(6)の上方から当該反応容器(6)に対し不活性ガスを導入して反応容器(6)内のガスを前記透孔(6a)を通して真空容器(1)の外部に向かわせる気流を作るための不活性ガス導入管(14)を設けたことを特徴とする請求項6または7に記載の炭化珪素単結晶の製造装置。In the vacuum vessel (1), an inert gas is introduced into the reaction vessel (6) from above the reaction vessel (6), and the gas in the reaction vessel (6) passes through the through-hole (6a) to form a vacuum vessel ( The apparatus for producing a silicon carbide single crystal according to claim 6 or 7, further comprising an inert gas introduction pipe (14) for generating an air flow directed to the outside of 1). 前記真空容器(1)と前記排気ポンプ(13)の間にガス中の異物を捕捉する装置(12)を設けたことを特徴とする請求項6〜8のいずれか1項に記載の炭化珪素単結晶の製造装置。The silicon carbide according to any one of claims 6 to 8, wherein a device (12) for capturing foreign substances in the gas is provided between the vacuum vessel (1) and the exhaust pump (13). Single crystal manufacturing equipment. 前記真空容器(1)内での下部に貯留室(R1)を形成し、当該貯留室(R1)と連通するように前記排気管(11)を接続したことを特徴とする請求項6〜9のいずれか1項に記載の炭化珪素単結晶の製造装置。The storage chamber (R1) is formed in the lower part in the vacuum vessel (1), and the exhaust pipe (11) is connected to communicate with the storage chamber (R1). The manufacturing apparatus of the silicon carbide single crystal of any one of these.
JP2002106328A 2002-04-09 2002-04-09 Method and apparatus for producing silicon carbide single crystal Expired - Lifetime JP3922074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106328A JP3922074B2 (en) 2002-04-09 2002-04-09 Method and apparatus for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002106328A JP3922074B2 (en) 2002-04-09 2002-04-09 Method and apparatus for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2003306398A JP2003306398A (en) 2003-10-28
JP3922074B2 true JP3922074B2 (en) 2007-05-30

Family

ID=29390679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106328A Expired - Lifetime JP3922074B2 (en) 2002-04-09 2002-04-09 Method and apparatus for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP3922074B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8882911B2 (en) 2010-12-16 2014-11-11 Denso Corporation Apparatus for manufacturing silicon carbide single crystal
US9644286B2 (en) 2011-07-28 2017-05-09 Denso Corporation Silicon carbide single crystal manufacturing apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407899B2 (en) * 2010-01-25 2014-02-05 株式会社デンソー Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP5811013B2 (en) * 2012-04-05 2015-11-11 株式会社デンソー Silicon carbide single crystal manufacturing apparatus and manufacturing method
US11591717B2 (en) 2017-09-25 2023-02-28 National University Corporation Nagoya University Vapor phase epitaxial growth device
JP7002722B2 (en) * 2017-09-25 2022-02-04 国立大学法人東海国立大学機構 Vapor deposition equipment
JP7002731B2 (en) * 2018-05-11 2022-01-20 国立大学法人東海国立大学機構 Vapor deposition equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354580A (en) * 1993-06-08 1994-10-11 Cvd Incorporated Triangular deposition chamber for a vapor deposition system
SE9502288D0 (en) * 1995-06-26 1995-06-26 Abb Research Ltd A device and a method for epitaxially growing objects by CVD
JP3489711B2 (en) * 1996-12-26 2004-01-26 日本電信電話株式会社 Vapor phase growth equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8882911B2 (en) 2010-12-16 2014-11-11 Denso Corporation Apparatus for manufacturing silicon carbide single crystal
US9644286B2 (en) 2011-07-28 2017-05-09 Denso Corporation Silicon carbide single crystal manufacturing apparatus

Also Published As

Publication number Publication date
JP2003306398A (en) 2003-10-28

Similar Documents

Publication Publication Date Title
EP1471168B1 (en) Device and method for producing single crystals by vapour deposition
JP3864696B2 (en) Method and apparatus for producing silicon carbide single crystal
JP3959952B2 (en) Method and apparatus for producing silicon carbide single crystal
EP1464735B1 (en) Equipment for manufacturing silicon carbide single crystal
WO2000039372A1 (en) Method for growing single crystal of silicon carbide
WO1999014405A1 (en) Method and apparatus for producing silicon carbide single crystal
JP4329282B2 (en) Method for producing silicon carbide single crystal
JP4604728B2 (en) Method for producing silicon carbide single crystal
JP3922074B2 (en) Method and apparatus for producing silicon carbide single crystal
JP3941727B2 (en) Method and apparatus for producing silicon carbide single crystal
JP3861853B2 (en) Silicon carbide single crystal manufacturing equipment
JP2003234296A (en) Device for producing silicon carbide single crystal
JP5418210B2 (en) Nitride semiconductor crystal manufacturing method, AlN crystal and nitride semiconductor crystal manufacturing apparatus
JP2000319098A (en) Method and apparatus for producing silicon carbide single crystal
US20080041309A1 (en) Silicon Manufacturing Apparatus
JP3491430B2 (en) Single crystal manufacturing equipment
JP4070353B2 (en) Method for epitaxial growth of silicon carbide
JP4293109B2 (en) Method for producing silicon carbide single crystal
JP4110763B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2003183098A (en) METHOD AND APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL
JP2631591B2 (en) Semiconductor single crystal manufacturing method and manufacturing apparatus
JP2004043211A (en) PROCESS AND APPARATUS FOR PREPARING SiC SINGLE CRYSTAL
JP5811013B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP4347325B2 (en) Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
JP2003128497A (en) Silicon carbide single crystal and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Ref document number: 3922074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term