JP3945784B1 - Highly controlled weathering tester - Google Patents

Highly controlled weathering tester Download PDF

Info

Publication number
JP3945784B1
JP3945784B1 JP2006302254A JP2006302254A JP3945784B1 JP 3945784 B1 JP3945784 B1 JP 3945784B1 JP 2006302254 A JP2006302254 A JP 2006302254A JP 2006302254 A JP2006302254 A JP 2006302254A JP 3945784 B1 JP3945784 B1 JP 3945784B1
Authority
JP
Japan
Prior art keywords
light source
temperature
test
value
irradiance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006302254A
Other languages
Japanese (ja)
Other versions
JP2007298495A (en
Inventor
須賀長市
川島智明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP2006302254A priority Critical patent/JP3945784B1/en
Application granted granted Critical
Publication of JP3945784B1 publication Critical patent/JP3945784B1/en
Publication of JP2007298495A publication Critical patent/JP2007298495A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】一定の放射照度を試料に照射し、かつ温度制御性に優れた耐候試験機を提供する。
【解決手段】本発明は、試験開始に先立って耐候試験機の構成要素が、正常に作動するかを確認した後に、インバータ制御型交流電源を用い、波形の安定した電力を光源に供給することによって、一定の放射照度で試験を行うと共に、光源から放出される熱特性を温度制御演算回路に加味することにより、試験槽内の温度が設定条件から逸脱することを防止する。
【選択図】 図1
A weathering tester that irradiates a sample with a constant irradiance and has excellent temperature controllability is provided.
The present invention provides an inverter-controlled AC power source to supply power having a stable waveform to a light source after confirming that the components of the weathering tester operate normally prior to the start of the test. Thus, the test is performed with a constant irradiance, and the temperature in the test tank is prevented from deviating from the set condition by adding the thermal characteristics emitted from the light source to the temperature control arithmetic circuit.
[Selection] Figure 1

Description

本発明は、キセノンアークランプ、メタルハライドアークランプなどを光源とし、光源の点灯開始時には予め設定した放電開始可能な放電電力をインバータで制御する電源から付与し、一定の放射照度を維持する定常点灯時には、商用周波数より高い周波数で、矩形波の交流電力により光源を一定の光強度で点灯すると共に、点灯開始後の放射照度の変化を基に、加熱器の出力及び冷却コイルへ供給する冷媒の量を制御することによって、昇温状態から試験を一定に保持する温度に到達する際に、ブラックパネル温度計(以降BPTと略記する)の値が前記保持温度をオーバーシュートすることのない耐候試験機に関する。 The present invention uses a xenon arc lamp, a metal halide arc lamp or the like as a light source, and applies a preset discharge power from a power source controlled by an inverter at the start of lighting of the light source, and at the time of steady lighting maintaining a constant irradiance The amount of refrigerant to be supplied to the output of the heater and the cooling coil based on the change in irradiance after starting lighting, while lighting the light source at a constant light intensity with a rectangular wave AC power at a frequency higher than the commercial frequency By controlling the temperature, the temperature of the black panel thermometer (hereinafter abbreviated as BPT) does not overshoot the holding temperature when reaching a temperature at which the test is held constant from the temperature rise state. About.

従来の耐候試験機には、光源として使用されるキセノンアークランプや、メタルハライドアークランプから放射されるエネルギーを安定して制御するために、光源の周囲を回転する試料枠あるいは固定した試料台に、試料と同一の位置に並べて、同一面内に取り付けた放射照度計によって放射照度を測定し、放射照度計に連結したスリップリング又は無線機によって前記耐候試験機の制御部に前記放射照度の値を送信し、予め設定した試験条件の放射照度の値と前記放射照度計にて測定した前記放射照度の値が一致するように制御部に設けた演算回路を介して前記光源の点灯電源に制御信号を送り、自動制御方式で光源の光強度を調整しているものがある。 In a conventional weather tester, in order to stably control the energy radiated from a xenon arc lamp used as a light source or a metal halide arc lamp, a sample frame rotating around the light source or a fixed sample stage, Measure the irradiance with an irradiance meter placed in the same plane as the sample, and connect the irradiance value to the control unit of the weathering tester with a slip ring or radio connected to the irradiance meter. A control signal is transmitted to the lighting power source of the light source via an arithmetic circuit provided in the control unit so that the irradiance value of the test condition set in advance and the irradiance value measured by the irradiance meter coincide with each other. And the light intensity of the light source is adjusted by an automatic control method.

これとは別に、光源の過負荷を防止するために、
(1)光源の点灯電源に連結した放電電力監視回路により、ランプ放電電力を監視し、それが規定値を超えると制御信号を演算回路に保持されている初期値に切換えて、初期値と同じ放電電力で点灯させる方法、
(2)演算回路に予め設定した初期値を基に光源を点灯し、光源の放射エネルギーの経時変化に対応して光源の点灯電力を制御する方法、
(3)上記(1)の構成に加えて、受光器より測定された放射照度の値に基づいた放電電力が予め設定した放電電力値よりも低い場合には、新たに設定放射照度になるように放電電力の制御値をリセットする方法、
などが行われている。
特許番号第2774010号
Apart from this, to prevent overloading of the light source,
(1) The lamp discharge power is monitored by the discharge power monitoring circuit connected to the lighting power source of the light source, and when it exceeds the specified value, the control signal is switched to the initial value held in the arithmetic circuit and is the same as the initial value. A method of lighting with discharge power,
(2) A method of turning on the light source based on an initial value preset in the arithmetic circuit and controlling the lighting power of the light source in response to a change with time of the radiant energy of the light source,
(3) In addition to the configuration of (1) above, when the discharge power based on the value of irradiance measured from the light receiver is lower than the preset discharge power value, the set irradiance is newly set. To reset the discharge power control value,
Etc. are done.
Patent No. 2774010

しかしながら、これらの光源の点灯電源部分は受光器からの信号、あるいは点灯電力信号、例えば、点灯放電電圧、点灯放電電流を基に、耐候試験機の制御部に設けたPID方式などによる回路で演算した信号によって点灯放電電力を光源に供給している。 However, the lighting power supply part of these light sources is calculated by a circuit using a PID method or the like provided in the control unit of the weathering tester based on a signal from a light receiver or a lighting power signal, for example, a lighting discharge voltage and a lighting discharge current. The lighting discharge power is supplied to the light source by the signal.

点灯電源部の放電電力調整回路は位相制御方式であり、一般には、商用交流電源周波数をそのまま利用している。この位相制御方式では、光源へ供給する電力の制御をSCRのゲートに付与する電圧又は電流を変化させることによって行う。理想的な制御の場合にはSCRでサイン波形の一部を切り取った波形が光源の出力として供給されることになるが、SCRの特性上、ゲートに作用させる電圧によっては、単にサイン波形の一部を切り取った波形にはならずに、1/2サイクル中にピーク電圧が複数有する波形になる場合もあり、またその形状も安定しておらず、光源への供給電力が1サイクル中で前述の波形に追従して変化しているので、肉眼では一定に感じられても、短時間における放射照度は変動した状態になっている。 The discharge power adjustment circuit of the lighting power supply unit is a phase control system, and generally uses the commercial AC power supply frequency as it is. In this phase control method, the power supplied to the light source is controlled by changing the voltage or current applied to the SCR gate. In the case of ideal control, a waveform obtained by cutting out a part of the sine waveform with the SCR is supplied as the output of the light source. However, due to the characteristics of the SCR, depending on the voltage applied to the gate, only one sine waveform is obtained. In some cases, a waveform having a plurality of peak voltages during a ½ cycle may be obtained, and the shape thereof is not stable, and the power supplied to the light source is the same as that described above during one cycle. Therefore, the irradiance in a short time fluctuates even if it is felt constant by the naked eye.

実環境中に於ける塗料、プラスチック、繊維、印刷された文字ならびに画像、写真などに作用する光の強度は長時間で観測すればその値は一定ではないが、時間的変化は朝、昼、夕方のスパンで変化するような非常に緩やかなものである。従来の耐候試験機の光源は交流を変調した電力で放電を行っているので、ミリセカンドのようなショートレンジで放射照度を観測すれば、変動した不安定な照度となっている。このため、試料表面では実環境下で生ずる光化学反応の機構とは異なる反応が生じていることも考えられる。 The intensity of light acting on paints, plastics, fibers, printed characters and images, photos, etc. in the real environment is not constant if observed for a long time, but the temporal change is morning, noon, It is a very gradual one that changes in the evening span. Since the light source of a conventional weathering tester discharges with electric power modulated with alternating current, if the irradiance is observed in a short range such as a millisecond, it becomes a fluctuating and unstable illuminance. For this reason, it is also possible that a reaction different from the mechanism of the photochemical reaction occurring in the actual environment occurs on the sample surface.

また、使用する光源によっては、赤外近傍の長波長が含まれている。前記長波長の光は熱エネルギーとして作用するため、試料台あるいは試料枠に取り付けられたBPTの値を上昇させ、その程度が大きい場合には空調機器の制御能力を越えてしまうので設定温度を逸脱する場合がある。 In addition, depending on the light source used, a long wavelength near the infrared is included. Since the long wavelength light acts as heat energy, the value of the BPT attached to the sample table or the sample frame is increased, and if the degree is large, the control capability of the air conditioner is exceeded, so that it deviates from the set temperature. There is a case.

従来の耐候試験機は、冷媒を用いて冷却する冷却器と電気抵抗による発熱を利用した加熱器を搭載して試験槽内の温度を規定値に制御しているが、例えば、設定条件が暗黒試験時には槽内温度を38℃に保ち、照射試験時にはBPTの値が63℃で放射照度を2500W/m2のような高い放射照度で試験を行う場合がある。従来の試験機の制御方式は、暗黒試験から照射試験に切り替わると、制御回路は昇温するモードに設定される。 The conventional weathering tester is equipped with a cooler that cools using a refrigerant and a heater that uses heat generated by electric resistance to control the temperature in the test tank to a specified value. During the test, the temperature in the tank is maintained at 38 ° C., and during the irradiation test, the test may be performed with a high irradiance such as 2500 W / m 2 with a BPT value of 63 ° C. When the conventional tester control method is switched from the dark test to the irradiation test, the control circuit is set to a mode of increasing the temperature.

この状態においては、BPTの値が63℃に達するまでは、前記加熱器が作動し、これと同時に光源からの熱エネルギーが重畳することになるので、BPTの値が設定値近傍に達したとき、冷凍機が作動し冷却を開始する制御を実行しても、制御しきれずに設定温度を越えて、63℃に回復するまでには、かなりの時間を要することがある。 In this state, the heater is operated until the BPT value reaches 63 ° C., and at the same time, the thermal energy from the light source is superimposed, so when the BPT value reaches the vicinity of the set value. Even if the refrigerator is operated and the control for starting the cooling is executed, it may take a considerable time until the temperature exceeds the set temperature and recovers to 63 ° C. without being fully controlled.

これは、前述の如くBPTの値を上昇させる熱源が二箇所すなわち、前記加熱器と光源から成っているからである。すなわち、加熱器には温度調整機構が連結されているが、光源は、光強度の制御を優先しなければならないので、温度を制御するために光源への供給電力を変化させることは出来ない。これまでは点灯を開始すると同時に加熱器は、設定温度とBPTの値の差を基にPID制御によって作動していた。このために、温度が低い点灯初期には、PID値が100%となり、加熱器がフルパワーで作動することがあるのでBPTの値が急速に上昇する。光源の放射照度が設定値に近づくにつれ光源からの熱もBPTの値の上昇に作用し、設定温度に達した時に、加熱器から発生する熱量を減じてもBPTの温度上昇を急速に留めることが出来ないからである。 This is because, as described above, the heat source for increasing the BPT value is composed of two places, that is, the heater and the light source. That is, although the temperature adjustment mechanism is connected to the heater, the light source must give priority to the control of the light intensity. Therefore, the power supplied to the light source cannot be changed in order to control the temperature. So far, the heater has been operated by PID control based on the difference between the set temperature and the value of BPT at the same time as lighting is started. For this reason, at the beginning of lighting when the temperature is low, the PID value becomes 100%, and the heater may operate at full power, so the BPT value rises rapidly. As the irradiance of the light source approaches the set value, the heat from the light source also affects the increase in the BPT value, and when the set temperature is reached, even if the amount of heat generated from the heater is reduced, the BPT temperature rise is rapidly stopped. It is because it is not possible.

試験槽を小型にし、光源からの発熱量を少なくした場合には、温度変化に対する応答速度が速いので、設定温度から逸脱せずに制御することは可能であるが、上述の耐候試験機のように、光源からの発熱量が大きい場合には設定値から逸脱することが多い。 When the test chamber is downsized and the amount of heat generated from the light source is reduced, the response speed to the temperature change is fast, so it is possible to control without deviating from the set temperature. In addition, when the amount of heat generated from the light source is large, it often deviates from the set value.

本発明は、このような従来の問題を解決しようとするもので、試験開始に先立って耐候試験機の構成要素が、正常に作動することを確認し、その後に波形の安定した交流電源を用い、一定の放射照度で試験を行うと共に、点灯開始時の昇温状態から、試験を一定に保持する温度に到達する際に、BPTの値が前記保持温度をオーバーシュートすることのない耐候試験機を提供することを目的とするものである。 The present invention is intended to solve such a conventional problem, and confirms that the components of the weathering tester operate normally before the start of the test, and then uses an AC power source with a stable waveform. A weathering tester that performs a test at a constant irradiance and does not overshoot the holding temperature when the temperature reaches a temperature at which the test is held constant from a temperature rising state at the start of lighting. Is intended to provide.

本発明の耐候試験機が試験を開始するときには、前記耐候試験機の温度制御演算回路から昇温モードで加熱器や冷凍機を作動させて試験開始時に設定した温度になるように自動的に空調を開始する。また、同様に、暗黒試験から照射試験に切り替わるときにも、昇温モードとなる。この昇温モードにおいて、BPTの値が設定温度より低いと、前記光源からのエネルギーによる昇温に加えて前記耐候試験機に付属した前記加熱器によって昇温を行うが、前述の如く光源に熱エネルギーとなる前記長波長成分が多く含まれていると、BPTの温度が設定値を越える恐れがある。本発明においては、BPTの値が設定値を逸脱する前にその予兆を把握し、その予兆の状態を基に事前に制御対象に負荷を与えて制御する方式を採用した。すなわち、光源からの放射照度は、点灯開始直後は低く、一定時間後に高くなり安定する。点灯開始時に加熱器を高出力状態で作動させて昇温を開始すると、光源の照度が高くなり始めた時、あるいは高くなりつつあるときに加熱器の出力を低下させてもBPTの値が設定値を逸脱することがあるため、本発明では点灯開始から光源の放射照度が急速に上昇するまでの期間は、加熱器を作動させず、光源の放射照度が急速に上昇を始めたときに加熱器を作動させ、BPTの値を所定の値に導く。このとき、冷凍機はBPTの値を基に、PID制御によって光源の点灯開始時から作動させる。このことによって、光源からの熱エネルギーの影響によりBPTの値が設定値を逸脱することを防止できる。 When the weather tester of the present invention starts a test, it automatically air-conditions the temperature control arithmetic circuit of the weather tester to operate at a temperature set at the start of the test by operating a heater or a refrigerator in a temperature rising mode. To start. Similarly, when the dark test is switched to the irradiation test, the temperature raising mode is set. In this temperature increase mode, if the value of BPT is lower than the set temperature, the temperature is increased by the heater attached to the weathering tester in addition to the temperature increase by the energy from the light source. If many of the long wavelength components that become energy are contained, the temperature of the BPT may exceed the set value. In the present invention, a method is adopted in which the sign is grasped before the BPT value deviates from the set value, and control is performed by applying a load to the control object in advance based on the sign state. That is, the irradiance from the light source is low immediately after the start of lighting, and increases and stabilizes after a certain time. If the heater is operated in a high output state at the start of lighting and the temperature rise is started, the BPT value is set even if the output of the heater is decreased when the illuminance of the light source begins to increase or is increasing In the present invention, during the period from the start of lighting until the irradiance of the light source rapidly increases, the heater is not operated and heating is started when the irradiance of the light source starts to increase rapidly. And the BPT value is brought to a predetermined value. At this time, the refrigerator is operated from the start of lighting of the light source by PID control based on the value of BPT. Thus, it is possible to prevent the BPT value from deviating from the set value due to the influence of thermal energy from the light source.

さらに付け加えると、試験開始の信号を耐候試験機に与えると、前記耐候試験機を構成する各装置の状態、すなわち、BPTの値、試験槽内の温度、調温室の温度、ランプ冷却水の温度及び流量、湿度発生器の温度及び水位、冷凍機の内圧、点灯用電源回路の安全回路の作動状態、前記試験槽扉ロック確認スイッチの状態等が正常であるか否かを前記耐候試験機に設けた装置異常検出回路で自動的に判断し、異常を検知した場合には光、音、文字などで異常を警告し、異常が解除されるまでは、次のステップへ移行することを保留する。 In addition, when a test start signal is given to the weather tester, the state of each device constituting the weather tester, that is, the value of BPT, the temperature in the test chamber, the temperature of the conditioning room, the temperature of the lamp cooling water And whether or not the flow rate, humidity generator temperature and water level, internal pressure of the refrigerator, operating state of the safety circuit of the lighting power circuit, the state of the test chamber door lock confirmation switch, etc. are normal Judgment is automatically made by the provided device abnormality detection circuit. If an abnormality is detected, the abnormality is warned by light, sound, text, etc., and the transition to the next step is suspended until the abnormality is cleared. .

また、異常のないことを検知した場合及び異常が解除された場合には、光源を点灯する。点灯に際しては、前記耐候試験機の制御部に設けた放射照度制御回路から、予め同一種類の複数の光源の平均値から求めた電流値または電圧値または電流値と電圧値を、光源に負荷するために点灯用電源へ信号を伝達する。前記点灯用電源はインバータ型点灯電力制御回路と点灯電力出力回路で構成されており、矩形波で、電圧を変化させた前記信号に対応した交流電力を光源に供給することによって光源の明るさを調節する。 In addition, when it is detected that there is no abnormality and when the abnormality is canceled, the light source is turned on. At the time of lighting, a current value or a voltage value or a current value and a voltage value obtained in advance from an average value of a plurality of light sources of the same type are loaded on the light source from an irradiance control circuit provided in the control unit of the weather resistance tester. Therefore, a signal is transmitted to the lighting power source. The power supply for lighting is composed of an inverter type lighting power control circuit and a lighting power output circuit, and the brightness of the light source is increased by supplying alternating current power corresponding to the signal whose voltage is changed with a rectangular wave to the light source. Adjust.

また、放射照度は、試験槽内の試料枠あるいは試料台に設けた受光器で測定し、その値と試験開始時に設定した試験条件の放射照度の値とを前記放射照度制御回路で比較する。それらの値に差がある場合には、その差を解消するための放電電力制御信号を前記放射照度比較回路内のPID演算回路部で演算し、前記インバータ型点灯電力制御回路に伝達して、前記の設定した放射照度になるように前記点灯電力出力回路から光源の点灯電力の供給を制御することによって、放射照度を調整する。 Further, the irradiance is measured by a light receiver provided on a sample frame or a sample stage in the test tank, and the value is compared with the irradiance value of the test condition set at the start of the test by the irradiance control circuit. When there is a difference between these values, a discharge power control signal for eliminating the difference is calculated by the PID calculation circuit unit in the irradiance comparison circuit, and transmitted to the inverter type lighting power control circuit, The irradiance is adjusted by controlling the supply of the lighting power of the light source from the lighting power output circuit so as to obtain the set irradiance.

また、光源を安定して長時間使用するために、予め使用上限電圧、使用上限電流の値を設定し、この値を放電電力比較回路に入力して、前記光源に供給する電圧、電流を前記放電電力比較回路で測定し、その値が前記測定値を越えた場合は、前記光源へ供給する電力を前記耐候試験機に設けた運転開閉器で遮断する。
In addition, in order to use the light source stably for a long time, the values of the upper limit voltage and the upper limit current are set in advance, and these values are input to the discharge power comparison circuit, and the voltage and current supplied to the light source are When measured by a discharge power comparison circuit and the value exceeds the measured value, the power supplied to the light source is shut off by an operation switch provided in the weathering tester.

本発明によれば、各種安全回路を点検した後、インバータ制御点灯電源で光源を点灯することによって、試料に照射する光の放射照度を一定に制御すると共に、点灯開始後の放射照度の変化を基に、加熱器の出力及び冷却コイルへ供給する冷媒の量を制御することによって、昇温状態から試験を一定に保持する温度に到達する際に、BPTの値が前記保持温度をオーバーシュートすることのない、温度制御性に優れた試験が可能となるので、再現性の優れた耐候試験結果が得られる。
According to the present invention, after inspecting various safety circuits, the light source is turned on with an inverter-controlled lighting power source, thereby controlling the irradiance of light irradiating the sample to a constant level and changing the irradiance after starting lighting. On the basis, by controlling the output of the heater and the amount of refrigerant supplied to the cooling coil, the BPT value overshoots the holding temperature when reaching a temperature at which the test is held constant from the temperature rising state. Therefore, a test with excellent temperature controllability can be performed, and a weather resistance test result with excellent reproducibility can be obtained.

図1は、本発明によるメタルハライドアークランプを光源1とした耐候試験機のブロック図である。本耐候試験機は、試験槽10と、前記試験槽10内に配置された光源1と、光源1の一方に設けられた噴霧ノズル23と、光源1から350mm離れた位置に配置された試料台6と、冷却コイル14と、加熱器18と、インバータ制御型循環送風機17と、これらの機器を制御する制御回路と、これらの機器を駆動する動力源とから構成されている。試料台6は、噴霧ノズル23から噴霧した溶液が滞留しないように斜めに傾けられており、また、試料台6には、受光器7、BPT11、図には示していないが試料が取付けられている。 FIG. 1 is a block diagram of a weathering tester using a metal halide arc lamp according to the present invention as a light source 1. The weathering tester includes a test chamber 10, a light source 1 disposed in the test chamber 10, a spray nozzle 23 provided on one side of the light source 1, and a sample table disposed at a position 350 mm away from the light source 1. 6, a cooling coil 14, a heater 18, an inverter-controlled circulation blower 17, a control circuit that controls these devices, and a power source that drives these devices. The sample stage 6 is inclined obliquely so that the solution sprayed from the spray nozzle 23 does not stay, and the sample stage 6 has a light receiver 7, BPT 11, and a sample (not shown) attached thereto. Yes.

次に、操作手順に従って、その機能を記述する。始めに、図には示していないが、試験条件(試験槽内温度:63℃、相対湿度:50%等)を試験条件設定回路に入力した後、本耐候試験機の電源をONにすると、本耐候試験機を構成している機器の安全を確認する各種信号が装置異常検出回路2に送信される。ここで異常信号が検出された場合には、異常個所を表示器19に表示し、異常が解除されるまで、操作の進行を停止する。このときの解除は手動で行う。 Next, the function is described according to the operation procedure. First, although not shown in the figure, after inputting test conditions (test chamber temperature: 63 ° C., relative humidity: 50%, etc.) to the test condition setting circuit, the weather resistance tester is turned on. Various signals for confirming the safety of the devices constituting the weather tester are transmitted to the apparatus abnormality detection circuit 2. If an abnormal signal is detected here, the abnormal part is displayed on the display 19 and the operation is stopped until the abnormality is canceled. Release at this time is performed manually.

異常がなかった場合または、異常の原因を取り除き、異常を解除した場合は、光源1が点灯する。試験開始に先立って、同一種類の複数の光源の平均値から予め求めておいた、点灯電圧値と電流値を放射照度制御回路8に記憶させておき、点灯時にこの値を光源1に負荷するために必要な信号をインバータ型点灯電力制御回路3に送り、ここから点灯電圧を指示する信号をサイリスタ型点灯電力出力回路4に送り、光源1の点灯が自動的に行われる。 When there is no abnormality or when the cause of the abnormality is removed and the abnormality is canceled, the light source 1 is turned on. Prior to the start of the test, the lighting voltage value and the current value obtained in advance from the average value of a plurality of light sources of the same type are stored in the irradiance control circuit 8, and these values are loaded on the light source 1 at the time of lighting. Therefore, a signal necessary for the operation is sent to the inverter type lighting power control circuit 3, and a signal indicating the lighting voltage is sent to the thyristor type lighting power output circuit 4 from here, and the light source 1 is automatically turned on.

点灯が確認された後、受光器7で測定した放射照度の値が予め設定した試験条件の放射照度になるように、受光器7からの放射照度の値を基に放射照度制御回路8からインバータ型点灯電力制御回路3に信号を送る。この状態で光源1の放射照度を制御して耐候試験を行う。 After the lighting is confirmed, the inverter from the irradiance control circuit 8 based on the value of the irradiance from the light receiver 7 so that the value of the irradiance measured by the light receiver 7 becomes the irradiance of the preset test condition. A signal is sent to the mold lighting power control circuit 3. In this state, the weather resistance test is performed by controlling the irradiance of the light source 1.

図2に、耐候試験を実施中の点灯電圧の変化と放射照度の変化を対応して示す。図3に従来の位相制御型電源で点灯したときの図2と同様の測定結果を示す。図2と図3から明らかなように、点灯電源の電圧変動と放射照度の変化は連動しており、本発明の条件下での放射照度の変動幅は図3の条件下の放射照度の変動幅に比べると非常に少ない。 FIG. 2 shows the change in the lighting voltage and the change in irradiance during the weather resistance test. FIG. 3 shows the same measurement results as in FIG. 2 when the conventional phase control type power supply is lit. As apparent from FIGS. 2 and 3, the voltage fluctuation of the lighting power supply and the change of irradiance are linked, and the fluctuation range of the irradiance under the condition of the present invention is the fluctuation of the irradiance under the condition of FIG. Very little compared to the width.

光照射試験、暗黒試験、結露試験を複数回繰り返すサイクル試験において、光照射試験開始と同時に、従来は、BPT11の値を室温から63℃に昇温させるために、PID制御によって冷凍機を作動させるとともに、加熱器18を作動させ、30分以内(試験条件によって異なる)に63℃に達する電力を負荷していたが、ここでは光照射試験開始と同時に、PID制御回路を搭載した冷凍機出力制御回路12によってインバータ制御型冷凍機13を作動させ、温度制御演算回路15において、光源の放射照度が高くなり始める直前である点灯開始後3分間は加熱器18を停止し、点灯開始光源の放射照度が高くなり始める3分後からは加熱器18を温度制御演算回路15に設けたPID制御回路によって作動させ、BPT11の値が63℃になるように制御を開始する。 In a cycle test in which a light irradiation test, a darkness test, and a dew condensation test are repeated a plurality of times, at the same time as starting the light irradiation test, conventionally, in order to raise the value of BPT11 from room temperature to 63 ° C., the refrigerator is operated by PID control. At the same time, the heater 18 was activated and the electric power reaching 63 ° C. was loaded within 30 minutes (depending on the test conditions). Here, at the same time as the light irradiation test started, the refrigerator output control equipped with the PID control circuit The inverter control type refrigerator 13 is operated by the circuit 12, and in the temperature control arithmetic circuit 15, the heater 18 is stopped for 3 minutes after the start of lighting immediately before the irradiance of the light source starts to increase, and the irradiance of the lighting start light source After 3 minutes, the heater 18 is operated by the PID control circuit provided in the temperature control arithmetic circuit 15, and the value of BPT11 is 63 Control the start to be.

光照射試験が完了し暗黒試験、結露試験とへ移行する際に、光源1の点灯は停止する。 When the light irradiation test is completed and the process proceeds to the dark test and the dew condensation test, the lighting of the light source 1 is stopped.

図4に点灯開始時すなわち室温状態から63℃にBPT11の値が安定するまでのBPT11の値を示す。図4には、従来の制御条件で温度制御した場合の結果も併せて示した。図4に示す如く、本発明の結果は、設定温度である63℃をオーバーシュートすることなく温度制御が行われていることを示している。
FIG. 4 shows the value of BPT11 at the start of lighting, that is, until the value of BPT11 is stabilized at 63 ° C. from the room temperature state. FIG. 4 also shows the results when temperature control is performed under conventional control conditions. As shown in FIG. 4, the result of the present invention indicates that the temperature control is performed without overshooting the set temperature of 63 ° C.

本発明によるメタルハライドアークランプを光源とした耐候試験機のブロック図である。It is a block diagram of a weathering tester using a metal halide arc lamp according to the present invention as a light source. 本発明による耐候試験機によって耐候試験を実施中の点灯電圧の変化と放射照度の変化を示す図である。It is a figure which shows the change of the lighting voltage and the change of irradiance which are implementing the weather test by the weather tester by this invention. 従来の位相制御型電源で点灯し、耐候試験を実施した時の点灯電圧の変化と放射照度の変化を示す図である。It is a figure which shows the change of the lighting voltage and the change of irradiance when it lights with the conventional phase control type power supply and a weather resistance test is implemented. 点灯開始から試験槽内の温度が安定するまでのBPTの値を示す図である。It is a figure which shows the value of BPT until the temperature in a test tank is stabilized from the lighting start.

符号の説明Explanation of symbols

1…光源
2…装置異常検出回路
3…インバータ型点灯電力制御回路
4…サイリスタ型点灯電力出力回路
5…放電電力比較回路
6…試料台
7…受光器
8…放射照度制御回路
9…運転開閉器
10…試験槽
11…BPT
12…冷凍機出力制御回路
13…インバータ制御型冷凍機
14…冷却コイル
15…温度制御演算回路
16…加熱器出力回路
17…インバータ制御型循環送風機
18…加熱器
19…表示器
20…加湿器

21…温度湿度センサー
22…光学フィルター
23…噴霧ノズル
1 ... Light source
2 ... Device abnormality detection circuit
3. Inverter type lighting power control circuit
4 ... Thyristor type lighting power output circuit
5 ... Discharge power comparison circuit
6 ... Sample stand 7 ... Light receiver 8 ... Irradiance control circuit 9 ... Operation switch
10 ... Test tank 11 ... BPT
DESCRIPTION OF SYMBOLS 12 ... Refrigerator output control circuit 13 ... Inverter control type refrigerator 14 ... Cooling coil 15 ... Temperature control arithmetic circuit
16 ... Heater output circuit 17 ... Inverter-controlled circulation blower
18 ... Heater
19 ... Indicator 20 ... Humidifier

21 ... Temperature / humidity sensor 22 ... Optical filter 23 ... Spray nozzle

Claims (1)

試料と同等の位置に取り付けた受光器と、ブラックパネル温度計と、温度制御演算回路と、加熱器とインバータ制御型冷凍機に連結した冷却コイルによって温度を制御する機構とを有する耐候試験機であって、該温度を制御する機構は、光源が点灯した後に前記受光器で測定した光源の放射照度の値が、点灯開始から急上昇を開始するまでの間は、前記加熱器を作動させずに試験を継続し、前記放射照度の値が急上昇を開始したときに初めて前記加熱器を作動させ、前記ブラックパネル温度計から伝達された値を基に前記温度制御演算回路で演算した温度制御信号で試験槽内の温度を制御することを特徴とする耐候試験機。 A weathering tester having a light receiver mounted at the same position as the sample, a black panel thermometer, a temperature control arithmetic circuit, and a mechanism for controlling the temperature by a cooling coil connected to a heater and an inverter-controlled refrigerator. there, a mechanism for controlling the temperature, the value of the irradiance of the light source light source is measured by the light receiver after the lighting, until the start of the jump from the lighting start, without operating the heater the test was continued, the operates the first said heater when the value of the irradiance starts to spike, a temperature control signal calculated by the temperature control arithmetic circuit based on the transmitted value from the black panel thermometer A weathering tester characterized by controlling the temperature in the test tank .
JP2006302254A 2006-11-08 2006-11-08 Highly controlled weathering tester Active JP3945784B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302254A JP3945784B1 (en) 2006-11-08 2006-11-08 Highly controlled weathering tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302254A JP3945784B1 (en) 2006-11-08 2006-11-08 Highly controlled weathering tester

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006128042 Division 2006-05-02

Publications (2)

Publication Number Publication Date
JP3945784B1 true JP3945784B1 (en) 2007-07-18
JP2007298495A JP2007298495A (en) 2007-11-15

Family

ID=38344674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302254A Active JP3945784B1 (en) 2006-11-08 2006-11-08 Highly controlled weathering tester

Country Status (1)

Country Link
JP (1) JP3945784B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223788A (en) * 2009-03-24 2010-10-07 Iwasaki Electric Co Ltd Weather resistance testing device
US9063050B2 (en) 2013-07-26 2015-06-23 Suga Test Instruments Co., Ltd. Weathering test instrument and solid-state light-emitting device system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223788A (en) * 2009-03-24 2010-10-07 Iwasaki Electric Co Ltd Weather resistance testing device
US9063050B2 (en) 2013-07-26 2015-06-23 Suga Test Instruments Co., Ltd. Weathering test instrument and solid-state light-emitting device system
DE102014010418B4 (en) 2013-07-26 2018-03-08 Suga Test Instruments Co., Ltd. Weathering

Also Published As

Publication number Publication date
JP2007298495A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
US4363957A (en) Heating apparatus with char detecting and heating controller
KR19980080345A (en) Heating cooker
JPH057839B2 (en)
US20150064639A1 (en) Systems and methods for controlling the internal environment of an enclosure
JP2003291632A (en) Electric heater, motor vehicle using the same, and electric heater control unit
JP3945784B1 (en) Highly controlled weathering tester
JPS61240594A (en) Automatic operation method and apparatus for high pressure mercury arc lamp
US4298165A (en) Controls for heating system
JP3903150B1 (en) Weather light test method and weather light test machine
KR200393545Y1 (en) A Temperature Controller For Hot Plate
JP2010223788A (en) Weather resistance testing device
US7578594B2 (en) Illumination source activation based on temperature sensing
KR101466861B1 (en) Method for Control of Convection Fan of Steam Oven
JPH09287881A (en) Temperature control method of heating furnace
KR101086101B1 (en) Steam oven and method for controlling the same
EP1054581B1 (en) A device for powering, controlling and commanding electric light sources
KR100351941B1 (en) A controlling method of cavity temperature in microwave oven
KR20100001767A (en) Control method of air-conditioner
JP2009236455A (en) Oil panel heater
KR19980057988A (en) Heater temperature control method of microwave oven
JPH032841Y2 (en)
JP3225565B2 (en) ICP emission spectrometer
JPH0466882A (en) Thermostat apparatus for testing ic
KR20210142390A (en) Temperature control apparatus
JP2002082723A (en) Temperature controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061219

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3945784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250