JP3945126B2 - Bearing steel with improved turning performance - Google Patents

Bearing steel with improved turning performance Download PDF

Info

Publication number
JP3945126B2
JP3945126B2 JP2000156437A JP2000156437A JP3945126B2 JP 3945126 B2 JP3945126 B2 JP 3945126B2 JP 2000156437 A JP2000156437 A JP 2000156437A JP 2000156437 A JP2000156437 A JP 2000156437A JP 3945126 B2 JP3945126 B2 JP 3945126B2
Authority
JP
Japan
Prior art keywords
bearing steel
steel
particle size
turning
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000156437A
Other languages
Japanese (ja)
Other versions
JP2001335886A (en
Inventor
崇 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000156437A priority Critical patent/JP3945126B2/en
Publication of JP2001335886A publication Critical patent/JP2001335886A/en
Application granted granted Critical
Publication of JP3945126B2 publication Critical patent/JP3945126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸受け鋼材、特に脱炭層の形態と金属組織を規定することで旋削性能を改善した軸受け鋼材に関する。
【0002】
【従来の技術】
軸受鋼材から軸受けを製造する場合、高速度鋼あるいは超硬工具によって鋼材から軸受け形状、あるいはそれに類似した形状に削り出すという工程 (旋削) がある。旋削の目的は、軸受け形状に削り出すという目的の他に鋼材製造上で発生した有害な部位 (疵、脱炭層など) を除去するという目的がある。
【0003】
一方、転がり軸受けなどに用いられる軸受け用鋼材は、軸受け製品での転動疲労寿命が長いものが求められている。かかる転動疲労の長寿命化のため、軸受け製品は焼き入れ−焼戻しの熱処理を施され、その硬度値はHRC =約60以上が望ましいとされている。従って、この硬度値を確保するために、従来より、脱炭は少ない方が良いとされる。
【0004】
つまり、軸受鋼材は脱炭が少ない方が優良であるとされてきた。
従って、脱炭を抑制するための方法として、例えば、特開平7−37645 号公報(高炭素クロム軸受鋼の脱炭抑制方法)に見られるような熱処理設備での雰囲気コントロールや、特開平5−271866号公報(軸受用鋼)、特開平5−306432号公報(軸受用鋼)や、特開平8−3690号公報(軸受用鋼)に見られるように、特にSbを添加することによって熱処理時の鋼材表層部のCと雰囲気ガスとの反応を抑制することなどが開示されている。また、S、Pb、Ca、Bi、REM などを添加することで被削性を改善する方法も開示されている。
【0005】
さらに、鋼材の炭化物粒径についても、下記文献においては、焼入れ−焼戻しの熱処理や疲労寿命などの観点から適切な炭化物粒径が論ぜられてきた。
(1)『軸受鋼の寿命におよぼす熱処理組織の影響』鉄と鋼第54年 (1968) 第13号P.29
(2)『軸受鋼と熱処理』熱処理5巻6号P.374
(3)『ころがり軸受鋼』熱処理18巻1号P.20
【0006】
【発明が解決しようとする課題】
軸受け製造工程の大部分を占める被削面の『旋削』工程で、鋼材の金属組織に起因して旋削能率が大きく低下することがあった。ここで言う金属組織とは、脱炭深さ、ラメラ−組織のレベル、炭化物粒径のことである。また、削り面とは鋼管の場合、内外面であり、バー材の場合、外面である。
【0007】
ここに、本発明の目的は、この旋削工程に着目し、旋削作業能率がよい軸受け鋼材を提供することである。
より具体的には、本発明の目的は、軸受け製造工程の大部分を占める『旋削』工程で、旋削能率の低下要因である鋼材の金属組織因子を明確化することで、削りやすい軸受け用鋼材を提供するである。
【0008】
【課題を解決するための手段】
しかし、従来にあっては、製品性能の面から脱炭、炭化物粒径のことを論じてきたものはあったが、旋削作業の観点より、軸受け用鋼材の脱炭に関し論じたものはなかった。
【0009】
本発明者らは、かかる目的を実現すべく、種々検討を重ねたが、まず.既知の基礎的事実をまとめることで、その方向付けを考えた。
従来、切削性を改善するために、刃物等に代表される切削条件の改善が主になされてきた。また、金属組織的にはラメラ−組織が少ないこと、場合によりラメラー組織がないことが切削性の改善には良いとされて来た。
【0010】
また、球状化組織そのものについては、文献(『耐磨用鋼 (SUJ)の熱処理』金属臨時増刊号'97/4P.43 )に見られるように、炭化物個数が少ないほど、あるいは炭化物が大きいほど切削性が良好とされてきた。
【0011】
そこで、このような従来の知見に基づいて、さらに検討を重ねた結果、次のような知見を得た。
すなわち、脱炭形態、ラメラ−組織の程度、そして球状化組織を有することが旋削現象に相乗的に深い関係を持つことを見出した。脱炭深さが大きければ、ラメラ−組織がなければ、そしてさらに球状化組織の炭化物粒径が大きければ、切削抵抗が低くなる。
【0012】
ここで、脱炭は母相 (例えばフェライト相) の強度低下を狙ったものであり、ラメラ−組織は硬くて脆いものであるため、その現出の抑制を狙ったものである。また、球状化組織の炭化物粒径は工業的に到達可能なレベルとした。
【0013】
これらを統合して、旋削とは刃物と被削材との1種のせん断変形現象であり、せん断変形抵抗を下げるべく方策を旋削現象に応用することによって、旋削能率の高い鋼材を製造できることを知り、本発明を完成した。
【0014】
よって、本発明は次の通りである。
(1)質量%で、C=0.90−1.10% Si=0.15−0.35% Mn≦0.50% P≦0.030% S≦0.025% Cu≦0.35% Cr=1.30−1.65% Mo≦0.10% Ni≦0.30%、残部Feおよび不純物から成る鋼組成を有し、削り面の全脱炭深さが0.05mm以上、かつ球状化組織を有し、さらにASTM規格A892で規定されたラメラ組織LC1またはLC2レベルを有することを特徴とする軸受け鋼材。
(2)前記全脱炭深さの上限値が0.20mmであることを特徴とする上記(1)記載の軸受け鋼材。
(3)さらに、前記球状化組織の平均炭化物粒径が0.40μm以上である上記(1)または(2)記載の軸受け鋼材。
【0015】
言すれば、本発明は、全脱炭深さ、球状化組織、さらにラメラー組織を上述のように規定することを特徴とする軸受鋼材の旋削性能の改善方法である。
【0016】
【発明の実施の形態】
本発明において上述のように規定した理由について説明する。
全脱炭深さは、脱炭が存在すればせん断変形抵抗が減少することから、0.05mm以上とした。また、製品歩留の観点より削り代は0.20mmと設定されることがあり、最終製品での強度確保のため、望ましくは上限0.20mmとした。しかし脱炭の程度により (焼入れ時、C元素の拡散により) 所定の強度が確保できる場合、0.20mm以上の全脱炭深さがあっても何ら差し支えない。
【0017】
なお、脱炭は大気中などによる酸化性雰囲気下で熱処理することなどにより得るとができる。
ラメラ−組織 (フェライトとセメンタイトとの層状組織) は存在すれば著しくせん断変形抵抗を上昇させることから、ラメラ−組織はASTM892 で規定されるようなLC1、LC2レベルとした。
【0018】
なお、ラメラ−組織は、繰り返し法あるいは徐冷法などの球状化焼鈍時、適切な熱処理条件によってラメラ−組織の消滅・発生防止をすることができる。
なお、平均炭化物粒径の上限値は、コスト面も考慮した工業上到達可能な平均炭化物粒径であり、かつ巨大炭化物の存在下では却って製品性能に悪影響 (焼入れ時、炭化物が完全に固溶せず組織的な不連続が生じる) を及ぼすため、0.80μm程度が妥当であると考えられる。
【0019】
平均炭化物粒径の下限値は、工業上到達可能な平均炭化物粒径であり、かつ微小炭化物の存在下では却って製品性能に悪影響 (焼入れ時、固溶が進み著しく硬化する) を及ぼすため、0.40μmとした。
【0020】
なお、炭化物粒径の評価を平均炭化物粒径としたのは、1000μm2 あたり1000個前後の炭化物が観察されるが、旋削とはこれら炭化物などのせん断の合計であることから平均炭化物粒径にて評価した。また、炭化物粒径の調整は、主に球状化焼鈍法などによって達成することができる。
【0021】
次に、本発明の好適態様において規定する鋼組成の限定理由について説明すると次の通りである。なお、本明細書において特にことわりがない限り、「%」は「質量%」である。
C:
炭素(C)は、強度確保とそれによる転動疲労寿命を向上させるために、0.90%以上添加するが、1.10%を超えると、鋳造時に、巨大炭化物が生成し、加工性ならびに転動疲労寿命が低下するため、本発明においては、0.90〜1.10%に限定する。好ましくは、0.95〜1.05%である。
Si:
Siは、脱酸材として通常添加されるが、本発明においては、さらに耐摩耗性と強度を改善するために、0.15%以上添加する。過剰添加は、靱性劣化をもたらすため0.35%を上限とする。好ましくは、0.20〜0.30%である。
Mn≦0.50%
Mnは強度確保のための簡便な添加元素であり、本発明においても0.50%以下配合される。下限は特に規定されないが、0.10%以上配合するのが好ましい。
P、S:
PおよびSはそれぞれ不純物として0.030%、0.025%程度は許容されるが、鋼の靱性や転動疲労寿命の観点から、可能な限り低いことが望ましい。
Cu:
Cuは必要に応じて0.35%以下まで添加され、耐食性、焼入性の改善効果を発揮する。
Cr:
Crは、焼入れ性の向上と安定な炭化物の形成を通じて強度を向上させ、ひいては転動疲労寿命を向上させる成分である。こうした効果を得るため、1.30〜1.65%配合される。
Mo:
Moは、高価な元素であるため、焼入性のより一層の向上が必要な時のみ、添加する。その時のMo配合量は0.10%以下である。
Ni:
Niも、強度、耐食性改善を目的に添加されるが、0.30%を超えて添加すると、冷間加工時の変形抵抗の増加を招き、またコスト増を招くため、本発明では、添加する場合にあっても、0.30%以下に制限する。
【0022】
その他の合金元素としては、Al等を例示できるが、目的とする軸受鋼材の所望特性を害さない限り、必要により適宜添加することができる。
【0023】
【実施例】
表1に示す化学成分を有する鋼を溶製し、熱間加工、冷間加工、熱処理を行った。なお、脱炭処理は熱処理時の雰囲気調整、炭化物粒径およびラメラ組織レベルは熱処理条件調整に依った。
【0024】
このような製造過程での熱処理法、加工法などの違いにより表2のような金属組織を備えた試験片を準備し、表3に示したような切削条件下で切削試験を行った。その結果は切削抵抗によって評価し、図1にグラフで示す。
【0025】
本発明においては、経験に基づいて、切削性が良好とされるしきい値として、切削抵抗:700 N以下とした。被削面の脱炭深さは顕微鏡判定法に従った。
図1の結果からも判るように、本発明鋼では、切削抵抗が700 N以下と低い値を示し、高い旋削能率を実現することができた。
【0026】
【表1】

Figure 0003945126
【0027】
【表2】
Figure 0003945126
【0028】
【表3】
Figure 0003945126
【0029】
【発明の効果】
以上説明してきたように、本発明によれば、被削面の適切な金属組織 (脱炭深さ、ラメラ−組織レベル、炭化物粒径) を形成することによって、軸受け製造の主工程である「旋削」作業が、良好な能率で実施することができる。
【図面の簡単な説明】
【図1】実施例における結果を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bearing steel material, and more particularly to a bearing steel material having improved turning performance by defining the form and metal structure of a decarburized layer.
[0002]
[Prior art]
When manufacturing bearings from bearing steel, there is a process (turning) in which high-speed steel or cemented carbide tools are used to cut the steel into a bearing shape or a similar shape. In addition to the purpose of turning into a bearing shape, the purpose of turning is to remove harmful parts (such as dredging and decarburized layers) generated in steel production.
[0003]
On the other hand, steel materials for bearings used for rolling bearings or the like are required to have a long rolling fatigue life in bearing products. In order to extend the life of the rolling fatigue, the bearing product is subjected to a quenching-tempering heat treatment, and the hardness value is preferably HRC = about 60 or more. Therefore, in order to secure this hardness value, it is considered better that the amount of decarburization is smaller than before.
[0004]
In other words, it has been said that the bearing steel material is better when it has less decarburization.
Therefore, as a method for suppressing decarburization, for example, atmosphere control in heat treatment equipment such as that disclosed in JP-A-7-37645 (method for suppressing decarburization of high carbon chromium bearing steel), As shown in Japanese Patent No. 271866 (bearing steel), Japanese Patent Laid-Open No. 5-306432 (bearing steel) and Japanese Patent Laid-Open No. 8-3690 (bearing steel), especially during heat treatment by adding Sb. It is disclosed that the reaction between C in the steel material surface layer portion and the atmosphere gas is suppressed. Also disclosed is a method for improving machinability by adding S, Pb, Ca, Bi, REM or the like.
[0005]
Further, regarding the carbide particle size of steel materials, in the following literature, an appropriate carbide particle size has been discussed from the viewpoints of heat treatment of quenching and tempering and fatigue life.
(1) "Effect of heat treatment structure on bearing steel life" Iron and Steel 54th Year (1968) No.13 P.29
(2) "Bearing steel and heat treatment" Heat treatment Vol.5 No.6 P.374
(3) "Rolling bearing steel" Heat treatment Vol.18 No.1 P.20
[0006]
[Problems to be solved by the invention]
In the “turning” process of the machined surface, which accounts for the majority of the bearing manufacturing process, the turning efficiency may be greatly reduced due to the metal structure of the steel. The metal structure referred to here is a decarburization depth, a lamellar structure level, and a carbide particle size. In addition, in the case of a steel pipe, the shaving surface is an inner or outer surface, and in the case of a bar material, it is an outer surface.
[0007]
Here, an object of the present invention is to provide a bearing steel material having a good turning work efficiency by paying attention to this turning process.
More specifically, the object of the present invention is to provide a steel material for bearings that is easy to machine by clarifying the metal structure factor of the steel material, which is a factor that lowers the turning efficiency, in the “turning” process that occupies most of the bearing manufacturing process. To provide.
[0008]
[Means for Solving the Problems]
However, in the past, there have been discussions on decarburization and carbide particle size in terms of product performance, but there has been no discussion on decarburization of steel for bearings from the viewpoint of turning operations. .
[0009]
The inventors of the present invention have made various studies in order to achieve this object. I thought about the direction by putting together the known basic facts.
Conventionally, in order to improve the machinability, the cutting conditions typified by blades and the like have been mainly improved. Further, it has been said that the metal structure has few lamellar structures and, in some cases, no lamellar structure, is good for improving the machinability.
[0010]
As for the spheroidized structure itself, the smaller the number of carbides or the larger the carbides, as can be seen in the literature (“Heat Treatment of Abrasion Resistant Steel (SUJ)” Metal Extra Number '97 / 4 P.43). The machinability has been considered good.
[0011]
Therefore, as a result of further studies based on such conventional knowledge, the following knowledge was obtained.
That is, it has been found that having a decarburized form, a lamella structure, and a spheroidized structure have a synergistic deep relationship with the turning phenomenon. If the decarburization depth is large, if there is no lamella structure, and if the carbide particle size of the spheroidized structure is large, the cutting resistance is low.
[0012]
Here, decarburization is aimed at lowering the strength of the parent phase (for example, ferrite phase), and since the lamella structure is hard and brittle, it aims at suppressing its appearance. Further, the carbide particle size of the spheroidized structure was set to an industrially reachable level.
[0013]
By integrating these, turning is a kind of shear deformation phenomenon between the cutting tool and the work material. By applying a measure to the turning phenomenon to reduce the shear deformation resistance, it is possible to produce a steel material with high turning efficiency. Knowing and completing the present invention.
[0014]
Therefore, the present invention is as follows.
(1) In mass%, C = 0.90-1.10% Si = 0.15-0.35% Mn ≦ 0.50% P ≦ 0.030% S ≦ 0.025% Cu ≦ 0.35 % Cr = 1.30-1.65% Mo ≦ 0.10% Ni ≦ 0.30% , the steel composition comprising the balance Fe and impurities , the total decarburization depth of the machined surface is 0.05 mm or more, A bearing steel material having a spheroidized structure and further having a lamellar structure LC1 or LC2 level defined by ASTM standard A892.
(2) The bearing steel according to (1) above, wherein an upper limit value of the total decarburization depth is 0.20 mm.
(3) The bearing steel material according to (1) or (2), wherein the average carbide particle size of the spheroidized structure is 0.40 μm or more.
[0015]
If conversion words, the present invention, the total decarburization depth, spheroidized structure, an improved method of turning performance of the bearing steel, characterized by further defining the lamellar structure as described above.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The reason defined as described above in the present invention will be described.
The total decarburization depth was set to 0.05 mm or more because shear deformation resistance decreased if decarburization was present. Further, the cutting allowance may be set to 0.20 mm from the viewpoint of product yield, and the upper limit is desirably set to 0.20 mm in order to secure the strength in the final product. However, if a predetermined strength can be secured depending on the degree of decarburization (due to diffusion of C element during quenching), there is no problem even if the total decarburization depth is 0.20 mm or more.
[0017]
Decarburization can be obtained by heat treatment in an oxidizing atmosphere such as in the air.
If a lamellar structure (a layered structure of ferrite and cementite) is present, the shear deformation resistance is remarkably increased. Therefore, the lamellar structure is set to LC1 and LC2 levels as defined by ASTM892.
[0018]
The lamella structure can be prevented from disappearing or being generated by appropriate heat treatment conditions during spheroidizing annealing such as a repetitive method or a slow cooling method.
The upper limit of the average carbide particle size is the average carbide particle size that can be achieved industrially considering the cost, and adversely affects the product performance in the presence of giant carbide (the carbide is completely dissolved during quenching). Therefore, it is considered that about 0.80 μm is appropriate.
[0019]
The lower limit value of the average carbide particle size is the average carbide particle size that can be achieved industrially, and in the presence of fine carbides, it adversely affects the product performance (solid solution progresses and hardens significantly during quenching). μm.
[0020]
The carbide particle size was evaluated as the average carbide particle size by about 1000 carbide particles per 1000 μm 2 , but turning is the sum of the shear of these carbides and so on. And evaluated. Further, the adjustment of the carbide particle size can be achieved mainly by a spheroidizing annealing method or the like.
[0021]
Next, the reason for limiting the steel composition defined in the preferred embodiment of the present invention will be described as follows. In the present specification, unless otherwise specified, “%” is “mass%”.
C:
Carbon (C) is added in an amount of 0.90% or more in order to ensure the strength and improve the rolling fatigue life, but if it exceeds 1.10%, a giant carbide is produced during casting, In order to reduce the rolling fatigue life, in the present invention, it is limited to 0.90 to 1.10%. Preferably, it is 0.95 to 1.05%.
Si:
Si is usually added as a deoxidizer, but in the present invention, 0.15% or more is added in order to further improve wear resistance and strength. Excessive addition causes toughness deterioration, so the upper limit is 0.35%. Preferably, it is 0.20 to 0.30%.
Mn ≦ 0.50%
Mn is a simple additive element for securing the strength, and 0.50% or less is also blended in the present invention. The lower limit is not particularly specified, but it is preferably 0.10% or more.
P, S:
P and S are allowed to be about 0.030% and 0.025% as impurities, respectively, but are preferably as low as possible from the viewpoint of steel toughness and rolling fatigue life.
Cu:
Cu is added to 0.35% or less as needed, and exhibits the effect of improving corrosion resistance and hardenability.
Cr:
Cr is a component that improves strength through improvement of hardenability and formation of stable carbide, and thus improves rolling fatigue life. In order to acquire such an effect, 1.30 to 1.65% is blended.
Mo:
Since Mo is an expensive element, it is added only when further improvement in hardenability is required. At that time, the Mo content is 0.10% or less.
Ni:
Ni is also added for the purpose of improving strength and corrosion resistance, but if added over 0.30%, it will increase deformation resistance at the time of cold working and increase the cost, so it is added in the present invention. Even in some cases, it is limited to 0.30% or less.
[0022]
Examples of other alloy elements include Al, but can be appropriately added as necessary as long as the desired characteristics of the intended bearing steel material are not impaired.
[0023]
【Example】
Steels having chemical components shown in Table 1 were melted and subjected to hot working, cold working, and heat treatment. In addition, the decarburization treatment was performed by adjusting the atmosphere during the heat treatment, and the carbide particle size and the lamellar structure level depended on the heat treatment condition adjustment.
[0024]
Test pieces having a metal structure as shown in Table 2 were prepared according to differences in heat treatment method, processing method, and the like in the manufacturing process, and a cutting test was performed under the cutting conditions shown in Table 3. The result was evaluated by cutting resistance and is shown in a graph in FIG.
[0025]
In the present invention, based on experience, the cutting resistance is set to 700 N or less as a threshold value for good machinability. The decarburization depth of the work surface was in accordance with the microscope judgment method.
As can be seen from the results in FIG. 1, the steel of the present invention showed a low cutting resistance of 700 N or less, and a high turning efficiency could be realized.
[0026]
[Table 1]
Figure 0003945126
[0027]
[Table 2]
Figure 0003945126
[0028]
[Table 3]
Figure 0003945126
[0029]
【The invention's effect】
As described above, according to the present invention, by forming an appropriate metal structure (decarburization depth, lamella structure level, carbide particle size) of the work surface, the main process of bearing production is “turning”. The operation can be carried out with good efficiency.
[Brief description of the drawings]
FIG. 1 is a graph showing results in an example.

Claims (3)

質量%で、C=0.90−1.10% Si=0.15−0.35% Mn≦0.50% P≦0.030% S≦0.025% Cu≦0.35% Cr=1.30−1.65% Mo≦0.10% Ni≦0.30%、残部Feおよび不純物から成る鋼組成を有し、削り面の全脱炭深さが0.05mm以上、かつ球状化組織を有し、さらにASTM規格A892で規定されたラメラ組織LC1またはLC2レベルを有することを特徴とする軸受け鋼材。 By mass%, C = 0.90-1.10% Si = 0.15-0.35% Mn ≦ 0.50% P ≦ 0.030% S ≦ 0.025% Cu ≦ 0.35% Cr = 1.30-1.65% Mo ≦ 0.10% Ni ≦ 0.30% , steel composition comprising balance Fe and impurities , total decarburization depth of machined surface is 0.05mm or more, and spheroidized A bearing steel material having a structure and further having a lamellar structure LC1 or LC2 level defined by ASTM standard A892. 前記全脱炭深さの上限値が0.20mmであることを特徴とする請求項1記載の軸受け鋼材。The bearing steel material according to claim 1, wherein an upper limit value of the total decarburization depth is 0.20 mm. さらに、前記球状化組織の平均炭化物粒径が0.40μm以上である請求項1または2の軸受け鋼材。Furthermore, the bearing steel material of Claim 1 or 2 whose average carbide particle size of the said spheroidization structure is 0.40 micrometer or more.
JP2000156437A 2000-05-26 2000-05-26 Bearing steel with improved turning performance Expired - Lifetime JP3945126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000156437A JP3945126B2 (en) 2000-05-26 2000-05-26 Bearing steel with improved turning performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000156437A JP3945126B2 (en) 2000-05-26 2000-05-26 Bearing steel with improved turning performance

Publications (2)

Publication Number Publication Date
JP2001335886A JP2001335886A (en) 2001-12-04
JP3945126B2 true JP3945126B2 (en) 2007-07-18

Family

ID=18661231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000156437A Expired - Lifetime JP3945126B2 (en) 2000-05-26 2000-05-26 Bearing steel with improved turning performance

Country Status (1)

Country Link
JP (1) JP3945126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559913A (en) * 2018-05-16 2018-09-21 浙江健力股份有限公司 A kind of GCr15 Steel Pipe For Bearings and its preparation process

Also Published As

Publication number Publication date
JP2001335886A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
KR20120126131A (en) Hot-worked steel material having excellent machinability and impact value
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP6821097B1 (en) Martensitic stainless steel for high hardness and corrosion resistance with excellent cold workability and its manufacturing method
JP6073167B2 (en) Case-hardening steel with excellent surface fatigue strength and cold forgeability
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP2002069569A (en) Free cutting steel for machine structure having excellent mechanical property
JP2021155808A (en) Steel material
EP0930374B1 (en) Production of cold working tool steel
KR950005927B1 (en) Wear-resistant steel
JP6894166B2 (en) Pre-hardened hot tool steel with excellent machinability
JP6301145B2 (en) Sleeve dog gear
JP3095845B2 (en) High speed steel for end mills
KR100415626B1 (en) High Strength Wear Resistance Steel with Excellent Hardenability
EP1669468B1 (en) Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
JP3945126B2 (en) Bearing steel with improved turning performance
JP3883788B2 (en) Cold tool steel for molds with excellent toughness and wear resistance
JP3566162B2 (en) Hot tool steel with excellent weldability
JPH0143017B2 (en)
JP2002088450A (en) Hot work tool steel
JP2989766B2 (en) Case hardened steel with excellent fatigue properties and machinability
JPH08164465A (en) Steel for die of die casting in small quantity production
JP2018154903A (en) Steel for machine structural use and cutting method therefor
JP3381227B2 (en) High V high speed tool steel
JP2018154902A (en) Steel for machine structural use and cutting method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350