JP3944471B2 - Driving device and XY table using the same - Google Patents

Driving device and XY table using the same Download PDF

Info

Publication number
JP3944471B2
JP3944471B2 JP2003204225A JP2003204225A JP3944471B2 JP 3944471 B2 JP3944471 B2 JP 3944471B2 JP 2003204225 A JP2003204225 A JP 2003204225A JP 2003204225 A JP2003204225 A JP 2003204225A JP 3944471 B2 JP3944471 B2 JP 3944471B2
Authority
JP
Japan
Prior art keywords
magnetic pole
core
armature
pole teeth
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003204225A
Other languages
Japanese (ja)
Other versions
JP2005051869A (en
Inventor
弘中 金
晃司 牧
久男 田所
秀樹 嶋根
均 柴田
慶次郎 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Setsubi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Setsubi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Setsubi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Setsubi Engineering Co Ltd
Priority to JP2003204225A priority Critical patent/JP3944471B2/en
Publication of JP2005051869A publication Critical patent/JP2005051869A/en
Application granted granted Critical
Publication of JP3944471B2 publication Critical patent/JP3944471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁力を利用した駆動装置及びそれを駆動源とした半導体等の製造装置等に用いられるXYテーブルに関するものである。
【0002】
【従来の技術】
従来の半導体製造装置等の駆動源として用いられる駆動装置としては、例えば特開2001−288号公報(以下、従来例1という。)がある。従来例1には、可動子には、複数の永久磁石を着磁方向が交互となるように配置し、固定子は、2種類の磁性体コアを有し、コイルを巻いた電機子が複数直列に配置されているものが記載されている。また、特開平11−262237号には、可動子の位置制御の高精度化,推力脈動の低減のために、可動子の位置を検出する位置センサを固定子側に配置したものが記載されている。
【0003】
【特許文献1】
特開2001−288号公報
【特許文献2】
特開平11−262237号
【0004】
【発明が解決しようとする課題】
電磁力を利用した駆動装置に、位置制御の高精度化,推力脈動の低減等のために磁極位置検出装置を配置した場合、位置検出装置の分駆動装置全体の体格が大きくなり、設置場所が制限される場合がある。特にコンパクト性が要求される半導体等を用いる電子機器の製造装置の駆動源として上記のような駆動装置を利用した場合に、上記の課題が顕著となる。
【0005】
本発明の目的は、磁極位置検出装置を取り付けた駆動装置及びそのような駆動装置を駆動源として用いたXYテーブルをコンパクトな構造とすることである。
【0006】
【課題を解決するための手段】
上記課題を達成するために、本発明のXYテーブルは上部磁極歯と下部磁極歯とが対向する第一の対向部を有し、磁性体を有する第一のコアと上部磁極歯と下部磁極歯とが対向する第二の対向部を有し、磁性体を有する第二のコアとを備え、前記第一のコアと前記第二のコアは互い違いに配置され、かつ、前記第一の対向部と前記第二の対向部の磁極の向きが対向する複数の電機子ユニットと、前記複数の電機子ユニットが複相分並べて配置された電機子とを備え、前記第一の対向部の間及び前記第二の対向部の間に永久磁石を有する二次側部材を配置し、前記二次側部材の上方には前記第一のコアに配置される上部磁極歯と前記第二のコアに配置される上部磁極歯が交互に配置され、前記二次側部材の下方には前記第一のコアに配置される下部磁極歯と前記第二のコアに配置される下部磁極歯が交互に配置され、前記第一のコアと前記第二のコアに共通にコイルが巻かれ、前記複相の電機子の間にスペーサが配置され、該スペーサ中の前記二次側部材を挟んで前記コイルに対向する場所に位置検出装置が配置された駆動装置を駆動源としたものである。
【0007】
さらに本発明の他の特徴は、駆動装置を、磁性体を有し、コイルが巻かれた複数の電機子と、複数の永久磁石を有する二次側部材とを有し、電機子は上部磁極歯部と下部磁極歯部がギャップを介して対向する第一の対向部と上部磁極歯と下部磁極歯がギャップを介して対向する第二の対向部とを有し、前記第一の対向部間のギャップ及び第二の対向部間のギャップに二次側部材を備え、複数の電機子が所定の間隔を隔てて配置され、複数の電機子の間に位置検出装置が配置されているものとすることにある。
【0008】
さらに本発明の他の特徴は、駆動装置を、上部磁極歯と下部磁極歯とが対向する第一の対向部を有し、磁性体を有する第一のコアと上部磁極歯と下部磁極歯とが対向する第二の対向部を有し、磁性体を有する第二のコアとを有する複数の電機子を有し、第一の対向部の間及び前記第二の対向部の間に二次側部材を配置し、二次側部材の上方には前記第一のコアに配置される上部磁極歯と前記第二の磁極ユニットに配置される上部磁極歯が交互に配置され、二次側部材の下方には第一のコアに配置される下部磁極歯と第二のコアに配置される下部磁極歯が交互に配置され、第一のコアと第二のコアに共通にコイルが巻かれ、複数の電機子の間に位置検出装置が配置されているものとすることにある。
【0009】
本発明によれば、推力脈動抑制のために複数の電機子の間に設けられた空間を利用し、その位置に位置検出装置を配置することにより、駆動装置及び製造装置の体格を大きくすることなく位置検出装置を取り付けることができる。
【0010】
尚、その他の本発明の特徴は本願特許請求の範囲に記載の通りである。
【0011】
【発明の実施の形態】
図5に比較例の駆動装置を示す。比較例において、磁極位置検出装置101は電機子コイル4の有効導体部から極ピッチのn倍離れた位置に配置されている。比較例の構成では、磁極位置検出装置101の長さの分電機子全体の駆動方向の長さが大きくなる。また、使用中に障害物に衝突することによって磁極位置検出装置101が破損する恐れがある。
【0012】
図1は、本発明の実施例の駆動装置の全体図である。図1において、電機子3には導体からなる電機子コイル4が巻かれて、電機子3を複数個直列に配置して一次側部材を構成し、二次側部材6はベアリング等で一次側部材の電機子3のギャップ中に移動可能に支持されている。本実施例では、一次側部材が固定され二次側部材が移動する構成であるが、二次側部材が固定され一次側部材が移動する構成でもよい。隣り合う電機子3は、推力の脈動を抑えるため及び位置制御を高精度化するために、所定の間隔が保たれている。そのため、隣り合う電機子3の間にスペーサ100が設けられている。ここで、磁極位置検出装置101は、スペーサ100に設けられている。本実施例によれば、位置の変化による推力脈動の抑制等の目的で隣り合う電機子3の間に設けられた空間を利用し、その位置に磁極位置検出装置101を配置することにより、駆動装置の駆動方向の長さを短くすることができ、駆動装置全体をコンパクトな構造とすることができる。また、外部の障害物に磁気位置検出装置が衝突することを防止することにより、磁気位置検出部の破損を防止することができる。
【0013】
図2に本実施例に用いられる駆動装置を示す。図2(a)は、駆動装置の磁束の流れを示す図、図2(b)は、駆動装置の全体図である。複数の永久磁石34がN極,S極が交互になるように配置され駆動装置の二次側部材6になる。電機子3は、駆動装置の一次側部材(コイルを巻いた磁性体を有する側)に相当し、コア51,52と電機子コイル4から構成される。
【0014】
コア51,52は磁性体で構成され、コア51とコア52には、上部と下部の磁極が互い違いになるように構成されている。ここで、コア51の上部磁極歯11aと下部磁極歯21bを第一の対向部と定義し、コア52の下部磁極歯12bと上部磁極歯22aを第2の対向部と定義する。よって、(2n−1)番目のコアは、第1の対向部、(2n)番目のコアは、第2の対向部を有するように電機子3を構成する(但し、n=1,2,3…)。コア51,52の各対向部の上部磁極歯と下部磁極歯の間に一定のギャップを設け、ギャップに二次側部材6を通すと、二次側部材6が第1の対向部及び第2の対向部の間に配置された構造を形成する。二次側部材6と電機子3の相対的な位置に応じてコイル4に単相の交流電流をながすと、駆動装置各対向部の上部磁極歯と下部磁極歯の間のギャップには、磁束が上部と下部の磁極歯間を交番して上下に通り、第1の対向部と第2の対向部に流れる磁束の向きは交互に逆方向になる。第1の対向部及び第2の対向部に流れる磁束と、永久磁石34の作る磁束の相互作用により、二次側部材6にはx方向に電磁力による駆動力が発生する。
【0015】
図3に磁極位置検出装置の配置に関する実施例を示す。前述したように、駆動時の推力脈動を低減させるには、隣り合う電機子の磁極歯中心間にはスペーサ100を配置して所定の間隔(k・P+P/M)を保つ必要がある(ここに、k=0,1,2,3…,P=磁極ピッチ,M=相数)。スペーサ100に磁極位置検出装置101を組み込むことにより、全体の体格は大きくならずにコンパクトな駆動装置が提供可能であり、外部から磁極位置検出装置を保護する機能を持つ効果もある。
【0016】
図3に示す磁極位置検出装置101はホール素子,ホールIC等の磁極位置検出部で構成され、3相分を一つにした磁極位置検出装置ユニットを意味する。
【0017】
図4は各相の磁極位置検出装置配置間隔の一例を示す。図4(A)は3相駆動装置における、磁極位置検出部をほぼπ/3(磁極ピッチをPとすると、ほぼP/6)の間隔で配置した例であり、図4(B)は磁極位置検出装置101をほぼ2π/3(ほぼP/3)の間隔で配置した例を示す。
【0018】
同じく、隣り合う電機子の磁極歯中心間にはスペーサ100を用いて所定の間隔(k・P+P/M)(ここに、k=0,1,2,3…,P=磁極ピッチ,M=相数)を保てば、2相,5相の駆動装置も可能である。
【0019】
もちろん、2相,5相等の駆動装置に組み込まれた磁極検出装置においても、磁極位置検出装置101をほぼπ/M、若しくは2π/M(Mは相数)の間隔で配置すれば同じような効果が得られる。
【0020】
また、前記スペーサ100に磁極位置検出装置101を備える方法において、電機子3からなる一次側部材の磁極中心と永久磁石からなる二次側部材6の永久磁石磁極中心のずれに応じて制御回路による電流供給の進角を補正すれば、磁極位置検出の配置制約を小さくすることができる。つまり、必ずしも上述のように、隣り合う電機子の間隔を(k・P+P/M)としなくても制御回路の制御により推力脈動を低減させることが可能である。
【0021】
図6は、本発明の駆動装置を用いたXYテーブルの全体図である。図6において、電機子3は図1で示すA相,B相,C相,3つの電機子らの組合せによる3相駆動装置であり、電機子3の各相間にスペーサ100が設けられている。ここで、磁極位置検出装置101は、スペーサ100に設けられている。図6において、3XはX方向駆動装置の電機子3を表し、3YはY方向駆動装置の電機子3を表す。XYテーブルのベース120には、X方向駆動装置の電機子3Xが自由に駆動出来るように直線案内機構121(リニアベアリング)が配置されている。又、Y軸においても、Y方向駆動装置の電機子3Yが自由に駆動出来るように直線案内機構121(リニアベアリング)が配置されている。ベース120にはX方向駆動、若しくはXY駆動が出来る他のXYステージ123を用いて、ワークを固定し微小変位の動きを得ることも可能である。
【0022】
図11に、本発明のリニアモータの位置制御系のブロック線図を示す。図11において、リニアモータは本発明の駆動装置である電機子3と二次側部材6の組合せを意味する。同じく、磁極検出装置は図1に示す電機子3の相間に配置された磁極位置検出装置101を意味する。
【0023】
磁極位置検出装置101より得られた磁極位置は電流制御器203にフィードバックされ、負荷変動にも同期はずれを起こさないように、所定の負荷角を保ちながら制御される。また、進行方向に対して、電機子3と二次側6との相対的な位置変位に関しては位置検出器(リニアスケール)206より得られた情報は速度信号,位置信号として処理され、速度制御器202,位置制御器201にそれぞれフィードバックされる。速度制御器202,位置制御器201の信号及び電流の値から電流制御器203により制御すべき電流値を計算し、その電流値になるように電力増幅回路204の出力を制御する。
【0024】
図7は、本発明の駆動装置を用いたXYテーブルの他の実施例の全体図である。本実施例では、Y方向駆動装置の電機子3Yは複数個(図7では2個)用いた実施例を示す。Y方向駆動装置の2つの電磁子3Yには二次側部材6を共通に用いることでコンパクトな構造にすることが可能である。
【0025】
図8は、本発明の駆動装置を用いたXYZテーブルの他の実施例の全体図である。図8において、Y方向駆動装置の電機子3Yには、Z軸方向駆動装置の電機子3Zが設けられ二次側6部材が上下運動する仕組みである。もちろん、Z軸方向駆動装置において、二次側部材6を固定して相対的に電機子3Zが上下運動するようにすることも可能である。
【0026】
図9は、本発明の駆動装置を用いたXYテーブルの他の実施例の全体図である。図9において、図7に示すガントリ(移動起重機の構台)124を複数組(図9では2組)用意して多軸対応を考慮した実施例を示す。
【0027】
図10は、本発明の駆動装置を用いたXYテーブルの他の全体図である。図10において、1軸の基本ユニットはベース120に、電機子3が自由に駆動出来るように直線案内機構121(リニアベアリング)と、二次側部材6が平行してベース120に固定されている。1軸の基本ユニット二つほぼ直角に交差するように組合せた構造であり、Y方向駆動装置は、X軸方向駆動装置の電機子3Xに固定されている。
【0028】
本発明の磁極位置検出装置の配置は、上記のような駆動装置の構成に限らず、複数の電機子を有し、電機子同士に間隔が設けられている駆動装置であれば適用することできる。また、上記実施例のような駆動装置の構成は、特にコンパクト化の要請の強い半導体等の電子機器の製造装置に用いられるXYテーブルに適用した場合に有効である。
【0029】
【発明の効果】
本発明によれば、駆動装置及びXYテーブルにおいて磁極位置検出装置をコンパクトにすることができる。
【図面の簡単な説明】
【図1】本発明の実施例の全体図。
【図2】本発明の実施例に用いられる駆動装置の構造図。
【図3】本発明の磁極位置検出装置を配置した構造図(その1)。
【図4】本発明の磁極位置検出装置を配置した構造図(その2)。
【図5】比較例の駆動装置の磁極位置検出装置における配置構造図。
【図6】本発明の駆動装置を用いたXYテーブルの実施例の全体図。
【図7】本発明の駆動装置を用いたXYテーブルの実施例の全体図(その1)。
【図8】本発明の駆動装置を用いたXYZテーブルの実施例の全体図(その2)。
【図9】本発明の駆動装置を用いたXYZテーブルの実施例の全体図(その3)。
【図10】本発明の駆動装置を用いたXYZテーブルの実施例の全体図(その4)。
【図11】本発明の実施例の駆動装置を用いた位置制御系のブロック線図。
【符号の説明】
3…電機子、3X…X軸電機子、3Y…Y軸電機子、4…コイル、6…二次側部材、11a…磁極1の上部磁極歯、12b…磁極1の下部磁極歯、21b…磁極2の下部磁極歯、22a…磁極2の上部磁極歯、34…永久磁石、51…第1の対向部を有するコア、52…第2の対向部を有するコア、100…相間スペーサ、101…磁極位置検出装置、120…ベース、121…直線案内機構。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive device using electromagnetic force and an XY table used for a semiconductor manufacturing device using the drive device as a drive source.
[0002]
[Prior art]
As a driving device used as a driving source for a conventional semiconductor manufacturing apparatus or the like, there is, for example, Japanese Patent Laid-Open No. 2001-288 (hereinafter referred to as Conventional Example 1). In Conventional Example 1, a plurality of permanent magnets are arranged on the mover so that the magnetization directions are alternate, the stator has two types of magnetic cores, and a plurality of armatures each having a coil wound thereon. What is arranged in series is described. Japanese Patent Application Laid-Open No. 11-262237 describes that a position sensor for detecting the position of the mover is arranged on the stator side in order to improve the position control of the mover and reduce the thrust pulsation. Yes.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-288 [Patent Document 2]
JP-A-11-262237 [0004]
[Problems to be solved by the invention]
When a magnetic pole position detection device is placed on a drive device that uses electromagnetic force in order to improve the accuracy of position control, reduce thrust pulsation, etc., the size of the drive device as a whole becomes larger and the installation location becomes larger. There may be restrictions. In particular, when the above driving device is used as a driving source of an electronic apparatus manufacturing apparatus using a semiconductor or the like that requires compactness, the above-described problem becomes significant.
[0005]
An object of the present invention is to provide a compact structure for a drive device equipped with a magnetic pole position detection device and an XY table using such a drive device as a drive source.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an XY table of the present invention has a first facing portion in which an upper magnetic pole tooth and a lower magnetic pole tooth face each other, a first core having a magnetic body, an upper magnetic pole tooth, and a lower magnetic pole tooth. And a second core having a magnetic body, wherein the first core and the second core are alternately arranged, and the first counter portion And a plurality of armature units in which the directions of the magnetic poles of the second facing portion oppose each other, and an armature in which the plurality of armature units are arranged side by side for a plurality of phases, and between the first facing portions and A secondary member having a permanent magnet is disposed between the second opposing portions, and an upper magnetic pole tooth disposed on the first core and the second core are disposed above the secondary member. The upper magnetic pole teeth are alternately arranged, and are arranged on the first core below the secondary side member. The partial magnetic pole teeth and the lower magnetic pole teeth arranged on the second core are alternately arranged, a coil is wound around the first core and the second core in common, and between the multiphase armatures The drive source is a drive device in which a spacer is disposed and a position detection device is disposed at a location facing the coil across the secondary member in the spacer.
[0007]
Still another feature of the present invention is that the drive device includes a plurality of armatures each having a magnetic body and wound with a coil, and a secondary member having a plurality of permanent magnets. A first opposing portion having a tooth portion and a lower magnetic pole tooth portion opposed via a gap, and an upper magnetic pole tooth and a second opposing portion opposed to the lower magnetic pole tooth via a gap, wherein the first opposing portion A secondary side member is provided in the gap between and the gap between the second opposing portions, a plurality of armatures are arranged at a predetermined interval, and a position detection device is arranged between the plurality of armatures It is to do.
[0008]
Still another feature of the present invention is that the drive device has a first facing portion in which the upper magnetic pole teeth and the lower magnetic pole teeth face each other, and includes a first core having a magnetic body, an upper magnetic pole tooth, and a lower magnetic pole tooth. Has a plurality of armatures having a second facing portion facing each other and a second core having a magnetic body, and is secondary between the first facing portion and between the second facing portions. Side members are arranged, and upper magnetic pole teeth arranged in the first core and upper magnetic pole teeth arranged in the second magnetic pole unit are alternately arranged above the secondary side member, and the secondary side member is arranged. The lower magnetic pole teeth arranged on the first core and the lower magnetic pole teeth arranged on the second core are alternately arranged below, and a coil is wound around the first core and the second core in common, It is assumed that a position detection device is arranged between a plurality of armatures.
[0009]
According to the present invention, the space provided between a plurality of armatures is used to suppress thrust pulsation, and the position detector is disposed at the position, thereby increasing the size of the drive device and the manufacturing device. It is possible to attach a position detection device.
[0010]
The other features of the present invention are as described in the claims.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 5 shows a driving device of a comparative example. In the comparative example, the magnetic pole position detection device 101 is disposed at a position separated by n times the pole pitch from the effective conductor portion of the armature coil 4. In the configuration of the comparative example, the length of the entire armature in the driving direction is increased by the length of the magnetic pole position detection device 101. Further, the magnetic pole position detecting device 101 may be damaged by colliding with an obstacle during use.
[0012]
FIG. 1 is an overall view of a driving apparatus according to an embodiment of the present invention. In FIG. 1, an armature coil 4 made of a conductor is wound around an armature 3, and a plurality of armatures 3 are arranged in series to constitute a primary side member, and a secondary side member 6 is a primary side by a bearing or the like. It is movably supported in the gap of the armature 3 of the member. In this embodiment, the primary side member is fixed and the secondary side member is moved, but the secondary side member is fixed and the primary side member is moved. Adjacent armatures 3 are maintained at a predetermined interval in order to suppress thrust pulsation and to improve position control. Therefore, the spacer 100 is provided between the adjacent armatures 3. Here, the magnetic pole position detection device 101 is provided in the spacer 100. According to the present embodiment, the space provided between the adjacent armatures 3 is used for the purpose of suppressing thrust pulsation due to a change in position, and the magnetic pole position detection device 101 is disposed at that position, thereby driving. The length of the drive direction of the device can be shortened, and the entire drive device can be made compact. Further, by preventing the magnetic position detection device from colliding with an external obstacle, it is possible to prevent the magnetic position detection unit from being damaged.
[0013]
FIG. 2 shows a driving device used in this embodiment. FIG. 2A is a diagram showing the flow of magnetic flux of the drive device, and FIG. 2B is an overall view of the drive device. A plurality of permanent magnets 34 are arranged so that the N poles and the S poles are alternated to become the secondary side member 6 of the driving device. The armature 3 corresponds to a primary side member (side having a magnetic body wound with a coil) of the driving device, and includes the cores 51 and 52 and the armature coil 4.
[0014]
The cores 51 and 52 are made of a magnetic material, and the core 51 and the core 52 are configured such that the upper and lower magnetic poles are alternated. Here, the upper magnetic pole teeth 11a and the lower magnetic pole teeth 21b of the core 51 are defined as first opposing portions, and the lower magnetic pole teeth 12b and the upper magnetic pole teeth 22a of the core 52 are defined as second opposing portions. Therefore, the armature 3 is configured so that the (2n-1) th core has the first facing portion and the (2n) th core has the second facing portion (where n = 1, 2, 3 ...). When a certain gap is provided between the upper magnetic pole teeth and the lower magnetic pole teeth of the opposing portions of the cores 51 and 52, and the secondary member 6 is passed through the gap, the secondary member 6 becomes the first opposing portion and the second opposing member. The structure arrange | positioned between the opposing parts is formed. When a single-phase alternating current is applied to the coil 4 in accordance with the relative positions of the secondary member 6 and the armature 3, the gap between the upper magnetic pole teeth and the lower magnetic pole teeth of each opposed portion of the driving device has no magnetic flux. Alternates between the upper and lower magnetic pole teeth and passes up and down, and the directions of the magnetic fluxes flowing in the first facing portion and the second facing portion are alternately reversed. Due to the interaction between the magnetic flux flowing in the first facing portion and the second facing portion and the magnetic flux generated by the permanent magnet 34, the secondary member 6 generates a driving force due to electromagnetic force in the x direction.
[0015]
FIG. 3 shows an embodiment relating to the arrangement of the magnetic pole position detecting device. As described above, in order to reduce the thrust pulsation at the time of driving, it is necessary to arrange the spacer 100 between the magnetic pole tooth centers of adjacent armatures to maintain a predetermined interval (k · P + P / M) (here K = 0, 1, 2, 3..., P = magnetic pole pitch, M = number of phases). By incorporating the magnetic pole position detection device 101 into the spacer 100, a compact drive device can be provided without increasing the overall size, and there is also an effect of protecting the magnetic pole position detection device from the outside.
[0016]
The magnetic pole position detection device 101 shown in FIG. 3 is composed of magnetic pole position detection units such as Hall elements and Hall ICs, and means a magnetic pole position detection device unit that combines three phases.
[0017]
FIG. 4 shows an example of the arrangement interval of the magnetic pole position detection devices for each phase. FIG. 4A shows an example in which the magnetic pole position detectors are arranged at intervals of approximately π / 3 (approximately P / 6 when the magnetic pole pitch is P) in the three-phase driving device, and FIG. An example in which the position detection devices 101 are arranged at intervals of approximately 2π / 3 (approximately P / 3) will be described.
[0018]
Similarly, a predetermined interval (k · P + P / M) (where k = 0, 1, 2, 3..., P = magnetic pole pitch, M = between the magnetic pole teeth centers of adjacent armatures using a spacer 100. If the number of phases is maintained, two-phase and five-phase driving devices are possible.
[0019]
Of course, even in a magnetic pole detection device incorporated in a two-phase, five-phase, etc. drive device, if the magnetic pole position detection device 101 is arranged at an interval of approximately π / M or 2π / M (M is the number of phases), the same thing is obtained. An effect is obtained.
[0020]
Further, in the method of providing the magnetic pole position detecting device 101 in the spacer 100, the control circuit uses a control circuit in accordance with a deviation between the magnetic pole center of the primary side member made of the armature 3 and the permanent magnet magnetic pole center of the secondary side member 6 made of the permanent magnet. If the advance angle of the current supply is corrected, the arrangement restriction of the magnetic pole position detection can be reduced. That is, as described above, the thrust pulsation can be reduced by the control of the control circuit even if the interval between the adjacent armatures is not (k · P + P / M).
[0021]
FIG. 6 is an overall view of an XY table using the driving device of the present invention. In FIG. 6, the armature 3 is a three-phase driving device that is a combination of the A-phase, B-phase, C-phase, and three armatures shown in FIG. 1, and a spacer 100 is provided between each phase of the armature 3. . Here, the magnetic pole position detection device 101 is provided in the spacer 100. In FIG. 6, 3X represents the armature 3 of the X-direction drive device, and 3Y represents the armature 3 of the Y-direction drive device. A linear guide mechanism 121 (linear bearing) is disposed on the base 120 of the XY table so that the armature 3X of the X-direction drive device can be freely driven. A linear guide mechanism 121 (linear bearing) is also arranged on the Y axis so that the armature 3Y of the Y-direction drive device can be freely driven. It is also possible to use a XY stage 123 that can be driven in the X direction or XY for the base 120 to fix the work and obtain a minute displacement movement.
[0022]
FIG. 11 shows a block diagram of the position control system of the linear motor of the present invention. In FIG. 11, the linear motor means a combination of the armature 3 and the secondary side member 6 which are the driving device of the present invention. Similarly, the magnetic pole detecting device means the magnetic pole position detecting device 101 arranged between the phases of the armature 3 shown in FIG.
[0023]
The magnetic pole position obtained from the magnetic pole position detection device 101 is fed back to the current controller 203 and controlled while maintaining a predetermined load angle so as not to be out of synchronization with load fluctuations. Regarding the relative position displacement between the armature 3 and the secondary side 6 with respect to the traveling direction, information obtained from the position detector (linear scale) 206 is processed as a speed signal and a position signal, and speed control is performed. Is fed back to the device 202 and the position controller 201, respectively. A current value to be controlled by the current controller 203 is calculated from the signals and current values of the speed controller 202 and the position controller 201, and the output of the power amplifier circuit 204 is controlled so as to be the current value.
[0024]
FIG. 7 is an overall view of another embodiment of the XY table using the driving device of the present invention. In this embodiment, an embodiment in which a plurality of armatures 3Y (two in FIG. 7) of the Y-direction drive device are used is shown. By using the secondary member 6 in common for the two electromagnetic elements 3Y of the Y-direction drive device, a compact structure can be achieved.
[0025]
FIG. 8 is an overall view of another embodiment of the XYZ table using the driving device of the present invention. In FIG. 8, the armature 3Y of the Y-direction drive device is provided with the armature 3Z of the Z-axis direction drive device, and the secondary side 6 member moves up and down. Of course, in the Z-axis direction drive device, it is also possible to fix the secondary side member 6 so that the armature 3Z moves up and down relatively.
[0026]
FIG. 9 is an overall view of another embodiment of the XY table using the driving apparatus of the present invention. FIG. 9 shows an embodiment in which a plurality of sets (two sets in FIG. 9) of the gantry (moving hoist gantry) 124 shown in FIG.
[0027]
FIG. 10 is another overall view of an XY table using the driving apparatus of the present invention. In FIG. 10, a uniaxial basic unit is fixed to the base 120, and a linear guide mechanism 121 (linear bearing) and the secondary member 6 are fixed to the base 120 in parallel so that the armature 3 can be driven freely. . The Y-direction drive device is fixed to the armature 3X of the X-axis direction drive device.
[0028]
The arrangement of the magnetic pole position detection device of the present invention is not limited to the configuration of the drive device as described above, and can be applied to any drive device having a plurality of armatures and having an interval between the armatures. . In addition, the configuration of the driving device as in the above embodiment is particularly effective when applied to an XY table used in an apparatus for manufacturing an electronic device such as a semiconductor that is strongly demanded to be compact.
[0029]
【The invention's effect】
According to the present invention, the magnetic pole position detection device can be made compact in the drive device and the XY table.
[Brief description of the drawings]
FIG. 1 is an overall view of an embodiment of the present invention.
FIG. 2 is a structural diagram of a driving device used in an embodiment of the present invention.
FIG. 3 is a structural diagram (No. 1) in which a magnetic pole position detection device of the present invention is arranged.
FIG. 4 is a structural diagram (part 2) in which the magnetic pole position detection device of the present invention is arranged.
FIG. 5 is an arrangement structure diagram of a magnetic pole position detection device of a driving device of a comparative example.
FIG. 6 is an overall view of an embodiment of an XY table using the driving device of the present invention.
FIG. 7 is an overall view (No. 1) of an embodiment of an XY table using the driving device of the present invention.
FIG. 8 is an overall view of an embodiment of an XYZ table using the driving device of the present invention (part 2).
FIG. 9 is an overall view of an embodiment of an XYZ table using the driving apparatus of the present invention (No. 3).
FIG. 10 is an overall view (No. 4) of an embodiment of an XYZ table using the driving apparatus of the present invention.
FIG. 11 is a block diagram of a position control system using the driving apparatus according to the embodiment of the present invention.
[Explanation of symbols]
3 ... Armature, 3X ... X-axis armature, 3Y ... Y-axis armature, 4 ... Coil, 6 ... Secondary member, 11a ... Upper magnetic pole tooth of magnetic pole 1, 12b ... Lower magnetic pole tooth of magnetic pole 1, 21b ... Lower magnetic pole teeth of magnetic pole 2, 22a ... Upper magnetic pole teeth of magnetic pole 2, 34 ... Permanent magnet, 51 ... Core having a first opposing portion, 52 ... Core having a second opposing portion, 100 ... Interphase spacer, 101 ... Magnetic pole position detection device, 120 ... base, 121 ... linear guide mechanism.

Claims (1)

上部磁極歯と下部磁極歯とが対向する第一の対向部を有し、磁性体を有する第一のコアと上部磁極歯と下部磁極歯とが対向する第二の対向部を有し、磁性体を有する第二のコアとを備え、前記第一のコアと前記第二のコアは互い違いに配置され、かつ、前記第一の対向部と前記第二の対向部の磁極の向きが対向する複数の電機子ユニットと、
前記複数の電機子ユニットが複相分並べて配置された電機子とを備え、
前記第一の対向部の間及び前記第二の対向部の間に永久磁石を有する二次側部材を配置し、
前記二次側部材の上方には前記第一のコアに配置される上部磁極歯と前記第二のコアに配置される上部磁極歯が交互に配置され、
前記二次側部材の下方には前記第一のコアに配置される下部磁極歯と前記第二のコアに配置される下部磁極歯が交互に配置され、
前記第一のコアと前記第二のコアに共通にコイルが巻かれ、
前記複相の電機子の間にスペーサが配置され、該スペーサ中の前記二次側部材を挟んで前記コイルに対向する場所に位置検出装置が配置された駆動装置を駆動源とするXYテーブル。
The upper magnetic pole teeth and the lower magnetic pole teeth have a first opposed portion facing each other, the first core having a magnetic body, the upper magnetic pole teeth and the lower magnetic pole teeth have a second opposed portion opposed to each other, and magnetic A second core having a body, wherein the first core and the second core are arranged alternately, and the magnetic poles of the first facing portion and the second facing portion are opposed to each other. A plurality of armature units;
An armature in which the plurality of armature units are arranged side by side for multiple phases;
A secondary member having a permanent magnet is disposed between the first facing portion and the second facing portion;
Above the secondary member, upper magnetic pole teeth arranged on the first core and upper magnetic pole teeth arranged on the second core are alternately arranged,
Below the secondary member, lower magnetic pole teeth arranged on the first core and lower magnetic pole teeth arranged on the second core are alternately arranged,
A coil is wound in common on the first core and the second core,
An XY table using as a drive source a drive device in which a spacer is disposed between the multiphase armatures and a position detection device is disposed at a location facing the coil across the secondary member in the spacer.
JP2003204225A 2003-07-31 2003-07-31 Driving device and XY table using the same Expired - Fee Related JP3944471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204225A JP3944471B2 (en) 2003-07-31 2003-07-31 Driving device and XY table using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204225A JP3944471B2 (en) 2003-07-31 2003-07-31 Driving device and XY table using the same

Publications (2)

Publication Number Publication Date
JP2005051869A JP2005051869A (en) 2005-02-24
JP3944471B2 true JP3944471B2 (en) 2007-07-11

Family

ID=34263287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204225A Expired - Fee Related JP3944471B2 (en) 2003-07-31 2003-07-31 Driving device and XY table using the same

Country Status (1)

Country Link
JP (1) JP3944471B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141978A (en) * 2008-12-10 2010-06-24 Hitachi Ltd Thrust generation mechanism
US9000626B2 (en) 2008-12-10 2015-04-07 Hitachi, Ltd. Thrust generation mechanism, drive device, XY stage and XYZ stage
JP5277040B2 (en) * 2009-03-31 2013-08-28 株式会社日立製作所 Drive unit, XY stage and XYZ stage
KR20140138840A (en) * 2012-04-06 2014-12-04 가부시키가이샤 히타치세이사쿠쇼 Gas circuit breaker

Also Published As

Publication number Publication date
JP2005051869A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US7154198B2 (en) Linear motor
TW531600B (en) XYZ-axes table
JP5956993B2 (en) Linear motor
JP2010130740A (en) Movable magnet-type linear motor
JPWO2010021168A1 (en) Linear motor device
JP5508181B2 (en) Linear motor and linear motor device
JP3944471B2 (en) Driving device and XY table using the same
JP3821101B2 (en) Linear drive device, control method thereof, and XY table
KR100548857B1 (en) Driving device and xy table using it
JP4089597B2 (en) Linear motor and XY stage
JPH1052025A (en) Linear motor and its control method
JPH10201216A (en) Linear motor
JP2650438B2 (en) Pulse motor
JPH0699327A (en) Drive device for x and y tables
JP2002101636A (en) Linear motor
JP5863361B2 (en) Actuator
JP2010239724A (en) Drive, xy stage, and xyz stage
WO2008117345A1 (en) Linear motor and its control method
JP2006034016A (en) Linear motor for machine tool
JPH11220866A (en) Shaft-type linear motor and its driving method
JP3941460B2 (en) Pulse motor
JP5616717B2 (en) Linear motor
JP2004104858A (en) Linear motor
JPH0433565A (en) Polyphase drive type linear brushless dc motor
JP2006034014A (en) Linear motor for machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees