JP3943718B2 - Method for producing solder powder, solder powder and solder paste - Google Patents
Method for producing solder powder, solder powder and solder paste Download PDFInfo
- Publication number
- JP3943718B2 JP3943718B2 JP18207498A JP18207498A JP3943718B2 JP 3943718 B2 JP3943718 B2 JP 3943718B2 JP 18207498 A JP18207498 A JP 18207498A JP 18207498 A JP18207498 A JP 18207498A JP 3943718 B2 JP3943718 B2 JP 3943718B2
- Authority
- JP
- Japan
- Prior art keywords
- solder
- bta
- solder powder
- powder
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Nonmetallic Welding Materials (AREA)
- Powder Metallurgy (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はパーソナルコンピューターをはじめとする、携帯電話,テレビ,ビデオなどの電子機器一般の基板に部品を表面実装するときに用いるマイクロソルダリング用のハンダ粉の製造方法、ハンダ粉及びハンダペーストに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、電子機器の配線基板の小型化に伴い表面実装の技術が急速に発展した。表面実装のときにはハンダペーストを用いるがそのハンダはSn−Pb系のハンダが一般的であり、非常に古くから用いられてきた。ところが電子機器は一般の産業廃棄物をして廃棄された場合、環境中に放置されると、配線基板に用いられているハンダ中のPb成分が溶出し、地下水にしみ込み、人体に対し問題となる。
【0003】
そこでPbが全く入っていないハンダの開発が盛んに行われた。Sn−Ag系ハンダは比較的、機械的特性と取り扱いの上で従来のSn−Pb系のハンダとほぼ同等の特性が得られたが、値段が高いという点と、融点が高いという点が問題点としてあり、なかなか普及しない。
【0004】
それに対しSn−Zn系、Sn−Zn−Bi系は融点がSn−Pb系と同じ程度であり、機械的特性は共晶ハンダよりもむしろ優れており、しかも値段も同程度に押さえられるという利点がある反面、非常に酸化されやすく、ハンダボールが発生しやすく、ハンダペーストが在庫中に増粘してしまったり、ぬれ性が極端に悪かったり、さらにボイドが多数発生するという問題がある。
【0005】
非常に活性の強いフラックスでその問題を回避するという手も考えられるが、ハンダ付け後の洗浄をしなければならなくなり、フラックス残渣による腐食の問題があり、接続後の信頼性に問題が生じる虞がある。
【0006】
また特開平8−164496号公報に開示されているように、表面にSnやNiなどの安定な金属で処理するという方法も提案されている。しかしこの提案方法ではアルカリ脱脂、酸化膜除去、Pb活性化処理、Niメッキなどの工程をとるため、コストが非常にかかり、Sn−Zn系は比較的低コストであるという利点が損なわれてしまう。
【0007】
ハンダ粉からPbをなくすという課題は人類が今後生存していくために必須解決課題であり、その為にはSn−Zn系・Sn−Zn−Bi系のハンダ粉が酸化されやすいために生じる取扱い上の弊害を、廉価に解決することが望まれている。
【0008】
【課題を解決するための手段】
本発明者は鋭意研究した結果、ベンゾトリアゾール(BTA)のZn化合物をハンダの表面に処理することで十分な酸化防止効果があることを発見し、本発明を完結させることができた。
【0009】
かかる知見に基づく第一番目の発明は、Pbを含まない、Sn−Zn系又はSn−Zn−Bi系の合金粉と、ベンゾトリアゾール(BTA)を気化させた蒸気とを50〜120℃の温度で反応させて、当該合金粉の表面にベンゾトリアゾール(BTA)の有機Zn化合物を形成しているBTAの量が、全体質量に対して0.01〜1.0%となるよう、有機Zn化合物を形成することを特徴とするハンダ粉の製造方法である。
【0010】
第二番目の発明は、第一番目の発明に係る製造方法によって製造されたものであることを特徴とするハンダ粉である。
【0011】
第三番目の発明は、第二番目の発明において、前記合金粉の粒径が10〜40μmであることを特徴とするハンダ粉である。
【0013】
第四番目の発明は、第二番目又は第三番目のハンダ粉を用いていることを特徴とするハンダペーストである。
【0016】
ここで、本発明者等はすでにSn−Pb系のハンダ粉について酸化を防ぐ表面処理方法としてアジピン酸の金属化合物を表面に形成する方法を知見し、特開平10−58190号公報でその内容を開示している。この方法ではアジピン酸の金属化合物は主にPbと形成し、Pbが全くない組成のハンダについては酸化防止効果が十分ではない。したがってSn−Zn系、Sn−Zn−Bi系についてはZnと特に強い化合物を作る有機物を探す必要があった。
Znはカルボキシル基と反応しやすいことは公知であるが、カルボキシル基をもつ有機酸のでも脂肪酸はZnと安定な化合物を作りやすい。ほとんどの脂肪酸がZnと反応して化合物を作るので一定の効果が期待でき、2塩基酸は脂肪酸の中でも効果がはっきりとでると思われる。ところが金属化合物があまり安定であるとリフロー時に溶解して溶け合わないハンダボールと同じような現象が起こり、問題であった。
【0017】
以上のような観点から脂肪酸以外に有効な表面処理剤を検討した結果ベンゾトリアゾール(BTA)が有効であることを発見した。
なお、BTAは銅の防錆剤として有名であり、Cuと安定な化合物を作りCuの表面を保護する。Znに対しても化合物を作りやすく、検討を加えた結果、BTAがZnを含む無鉛ハンダの表面処理に有効であることを知見した。
適切な表面処理はフラックスの種類にもよるが、種々検討した結果、問題点を完全に解決できのはBTAだけであった。Sn−Pb系のときにアジピン酸のみが飛びぬけて酸化防止作用のある金属化合物を表面に形成したのと比較して、興味深い現象である。その理由について完全には理解できていないが、金属の種類によって化合物の安定性が大きく異なることが原因と思われる。
【0018】
ハンダの表面に形成されるベンゾトリアゾール(BTA)の有機金属化合物が簡単に分解してしまうようだと酸化を防止する効果が期待できず、さらにフラックスの溶媒中に溶けてしまうことがある。一方、安定過ぎると表面が酸化されたのと同じようにリフロー時にうまく溶けずにハンダボールの発生を逆に増大させてしまうので、以下の条件に沿った適度な表面処理を施す必要がある。
【0019】
BTAが表面に化学結合したハンダ粉を得る製造方法としては、BTAを気化させて蒸気をハンダ粉の表面に反応させる方法が好ましい。具体的な方法としてはBTAを気化させてその蒸気を撹拌しているハンダ粉に吹き付ける方法とBTAをハンダ粉と混合して加熱する方法とがある。またBTAがハンダ粉表面に化合物を作るためには常温よりも温度を上げる必要がある。
【0020】
BTAの分解温度が160℃程度であるので処理温度としては50℃から120℃が適当である。これは処理温度が50℃未満のように処理温度が低すぎると化合物を作ることができず、一方120℃を超えて処理温度を高くするとハンダ粉の焼結が始まってしまい大きな固まりができ、好ましくないからである。
【0021】
またBTAとZnとの反応を効率よく行うためにはハンダ粉の酸化は極力低い状態で処理する必要があり、また処理するときの雰囲気も酸素分圧として10-2Torr以上の高真空が望ましい。
【0022】
適切な処理量はハンダ粉の粒度にもよるが0.01から0.6%が好適である。これは処理量が0.01%未満であると表面を全面覆うことができずに効果が期待できず、また1%を超えた場合であると金属塩を作れないものは表面に残ってしまい、それがフラックスの溶媒に溶け込むのでペーストが変質しやすくなってしまい、共に好ましくないからである。特に好ましくは0.03%から0.3%とするのがよい。
また、ハンダ粉の粒径は10〜40μmとするのがよい。これは粒径が10μm未満であると製造時の酸化が激しく表面処理してもハンダボールの発生を防ぐことができず、一方今後基盤が小型化するに従って表面実装する部品も小さくなり、配線ピッチも狭くなる傾向にあるので、粒径は40μm以下になるのは必至となるからである。
【0023】
【実施例】
以下、本発明の効果を示す好適な実施例について説明するが、本発明はこれに限定されるものではない。
【0024】
[実施例1]
Sn−8Zn−2Biの合金粉末を回転ディスク法で作った後に20〜40μmに篩い分けした無鉛ハンダの粉末を用意した。
マントルヒーターに入れた200mlのセパラブルフラスコに15gのBTAを入れ、150℃に加熱した。ふたは3口をつかい中央の口は温度計、他の両方の口は銅パイプを接続し、一方の銅パイプよりキャリヤガスとして10ml/分の割合で流した。ゴム栓でふたをした1000mlのサンプルビンを用意し銅パイプを2本つけた。一つの銅パイプは気化したBTAを含んだキャリヤガスをつなぎこみ、もう一方の銅パイプを出口として逆止弁をつけてエタノールにBTAを吸収させた後に大気に放出した。
【0025】
サンプルビンの中に無鉛ハンダ粉を1kg入れ、ハンダ粉がある部分を油浴につけて80℃に維持した。セパラブルフラスコのBTAがなくなったときにガスを止めて、サンプルビンを20℃の水浴につけて冷やし、常温になってからハンダ粉を取り出した。
付着量を熱天秤で測定したところ0.1%であった。
【0026】
[実施例2]
セパラブルフラスコに入れるBTAの量を30gにする以外は実施例1と同じ処理を行った。付着量は0.19%であった。
【0027】
[実施例3]
セパラブルフラスコに入れるBTAの量を60gにする以外は実施例1と同じ処理を行った。付着量は0.37%であった。
【0028】
[実施例4]
ハンダ粉を入れたサンプルビンの温度を110℃にする以外は実施例1と同じ処理を行った。付着量は0.25%であった。
【0029】
[実施例5]
ハンダ粉を入れたサンプルビンの温度を60℃にする以外は実施例1と同じ処理を行った。付着量は0.05%であった。
【0030】
[実施例6]
実施例1で用いたのと同じ無鉛ハンダ粉1kgとBTA3gとを良く混合してからロータリーエパポレータに入れて、真空に引きながら、80℃のオイル浴で加熱した。3時間回転してから、オイル浴を20℃の水浴にかえて冷却してからハンダ粉を取り出した。残留しているBTAの白い粉が観察されたので目開き70μmのふるいを通して取り除いた。BTA付着量を熱天秤で測定したところ0.07%であった。
【0031】
[実施例7]
添加するBTAの量を10gとする以外は実施例6と同様の処理を行った。BTA付着量は0.12%であった。
【0032】
[実施例8]
添加するBTAの量を20gとする以外は実施例6と同様の処理を行った。BTA付着量は0.21%であった。
【0033】
[実施例9]
オイル浴の温度を110℃とする以外は実施例6と同様の処理を行った。BTA付着量は0.25%であった。
【0034】
[実施例10]
オイル浴の温度を60℃とする以外は実施例6と同様の処理を行った。BTA付着量は0.04%であった。
【0035】
[比較例1〜5]
実施例1〜5で用いたのと同じハンダ粉に実施例1〜5で付着したBTAを同じ量のBTAを良く混合した。
【0036】
[比較例6]
セパラブルフラスコにBTAのかわりにアジピン酸を入れ、その温度を200℃にする以外は実施例と同様な処理をした。取り出したハンダ粉をFT−IRで分析することによりアジピン酸が付着してZn化合物を作っていることを確認でき、付着量は0.2%であった。
【0037】
[比較例7]
BTAのかわりにアジピン酸を入れた以外は実施例6と同様な処理を行った。取り出したハンダ粉をFT−IRで分析することによりアジピン酸が付着してZn化合物を作っていることを確認でき、付着量は0.23%であった。
【0038】
[比較例8]
BTAのかわりにステアリン酸を入れた以外は実施例6と同様な処理を行った。取り出したハンダ粉をFT−IRで分析するとステアリン酸のZn化合物は存在しなかった。同様な方法で分析したところ付着量は0.002%であった。
【0039】
[比較例9]
セパラブルフラスコに入れるBTAの量を3gにする以外は実施例1と同じ処理を行った。付着量は0.009%であった。
【0040】
[比較例10]
添加するBTAの量を50gとする以外は実施例6と同様の処理を行った。BTA付着量は1.0%であった。
【0041】
[比較例11]
実施例1で用いたハンダ粉にまったく処理しなかったもの。
【0042】
以上の実施例1〜10、比較例1〜10で得られてハンダ粉に1.05gとフラックス(ロジン60%、ブチルカルビトール30%、水添ひまし油9%)0.25gとを10mlのポリエチレン容器に入れ、スパチュラで5分間練り、それぞれペーストを作成した。これらを直径6.5mmの円形の穴を空けた厚さ0.15mmのステンレス板を用いて、厚さ0.6mmのアルミナセラミック基板上に印刷した。この基板を210℃に維持したホットプレートの上に乗せてリフローさせた。ハンダ粉が溶けて一つのボールにまとまった場合、ハンダボールの発生無し。一つにまとまらず衛星のようにハンダが分散してしまった場合ハンダボールが発生したとする。この程度について全く発生しなかった場合を程度0、全面に広がって全くまとまらなかった場合を程度5としてハンダボールの発生程度を6段階で評価した。また印刷してからリフローさせるまでの時間を0,5,24時間の3段階に分けて試験した。これらの試験結果を「表1」に示す。
【0043】
【表1】
【0044】
実施例1〜5と比較例1〜5を比較すれば明らかなようにBTAをただ混ぜただけではほとんど効果がなく、表面にZn化合物として存在しているときに始めて効果がでている。付着量としては0.05%でも十分効果があり、あまり多いとペーストが増粘してしまい印刷できなくなってしまう。アジピン酸を用いて同じような処理をした場合も効果は若干確認されるがBTAほど顕著ではない。ステアリン酸の処理は今回のような方法ではうまく表面処理されない。
また作ったペーストの粘度を調べた。ペーストは開放したまま室内に放置し、スパチラで撹拌できないほど硬くなるまでに時間を調べた。その結果を「表2」に示す。
【0045】
【表2】
表面処理することにより増粘するまでの時間が飛躍的に延びていることがわかる。比較例10は始めから硬くてペーストにならなかった。
【0046】
【発明の効果】
本発明によれば、Pbを含まない、Sn−Zn系又はSn−Zn−Bi系の合金粉と、ベンゾトリアゾール(BTA)を気化させた蒸気とを50〜120℃の温度で反応させて、当該合金粉の表面にベンゾトリアゾール(BTA)の有機Zn化合物を形成しているBTAの量が、全体質量に対して0.01〜1.0%となるよう、有機Zn化合物を形成することで十分な酸化防止効果があるハンダ粉を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing solder powder for micro soldering used when a component is surface-mounted on a general board of electronic devices such as mobile phones, televisions, and videos such as personal computers , solder powder, and solder paste.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, with the miniaturization of wiring boards of electronic devices, surface mounting technology has rapidly developed. Solder paste is used for surface mounting, but the solder is generally Sn-Pb solder and has been used for a long time. However, when electronic devices are disposed of as general industrial waste, if left in the environment, the Pb component in the solder used in the wiring board will elute and soak into the groundwater, causing problems for the human body. It becomes.
[0003]
Therefore, development of solder without Pb at all has been actively conducted. Sn-Ag solder was relatively similar to conventional Sn-Pb solder in terms of mechanical properties and handling, but the problem was that the price was high and the melting point was high. There is a point, it is not easy to spread.
[0004]
In contrast, Sn—Zn and Sn—Zn—Bi have the same melting point as Sn—Pb, mechanical properties are superior to eutectic solder, and the price is also the same. On the other hand, there are problems that it is very easily oxidized, solder balls are easily generated, the solder paste is thickened in stock, the wettability is extremely bad, and many voids are generated.
[0005]
It may be possible to avoid this problem with a very active flux, but it must be cleaned after soldering, and there is a problem of corrosion due to flux residue, which may cause a problem in reliability after connection. There is.
[0006]
In addition, as disclosed in JP-A-8-16496, a method of treating the surface with a stable metal such as Sn or Ni has also been proposed. However, in this proposed method, steps such as alkali degreasing, oxide film removal, Pb activation treatment, and Ni plating are performed, so that the cost is very high, and the advantage that the Sn—Zn system is relatively low is lost. .
[0007]
The problem of eliminating Pb from solder powder is an indispensable problem for human beings to survive in the future. For this purpose, the handling that occurs because Sn-Zn and Sn-Zn-Bi solder powders are easily oxidized. It is desirable to solve the above adverse effects at low cost.
[0008]
[Means for Solving the Problems]
As a result of diligent research, the present inventor has found that the treatment of a Zn compound of benzotriazole (BTA) on the surface of the solder has a sufficient antioxidant effect, thereby completing the present invention.
[0009]
The first invention based on such findings is a temperature of 50 to 120 ° C. containing Sn-Zn-based or Sn-Zn-Bi-based alloy powder not containing Pb and vapor obtained by vaporizing benzotriazole (BTA). The organic Zn compound is formed so that the amount of BTA forming the organic Zn compound of benzotriazole (BTA) on the surface of the alloy powder is 0.01 to 1.0% with respect to the total mass. a method for producing a solder powder and forming a.
[0010]
The second invention is a solder powder produced by the production method according to the first invention .
[0011]
A third invention is the solder powder according to the second invention , wherein the alloy powder has a particle size of 10 to 40 μm.
[0013]
A fourth invention is a solder paste characterized by using the second or third solder powder.
[0016]
Here, the present inventors have already found out a method of forming a metal compound of adipic acid on the surface as a surface treatment method for preventing oxidation of Sn-Pb solder powder, and the content thereof is disclosed in JP-A-10-58190. Disclosure. In this method, the metal compound of adipic acid is mainly formed with Pb, and the antioxidation effect is not sufficient for the solder having a composition having no Pb. Therefore, for Sn—Zn and Sn—Zn—Bi, it was necessary to search for an organic substance that forms a particularly strong compound with Zn.
Although it is known that Zn easily reacts with a carboxyl group, fatty acids easily form a stable compound with Zn even in an organic acid having a carboxyl group. Since most fatty acids react with Zn to form a compound, a certain effect can be expected, and dibasic acids are considered to have a clear effect among fatty acids. However, if the metal compound is too stable, a phenomenon similar to that of a solder ball that melts and does not melt during reflow occurs.
[0017]
From the above viewpoint, as a result of examining an effective surface treatment agent other than fatty acids, it was discovered that benzotriazole (BTA) is effective.
BTA is famous as a copper rust inhibitor, and forms a stable compound with Cu to protect the surface of Cu. It was easy to make a compound for Zn, and as a result of investigation, it was found that BTA is effective for the surface treatment of lead-free solder containing Zn.
Although the appropriate surface treatment depends on the type of flux, as a result of various studies, only BTA can completely solve the problem. This is an interesting phenomenon as compared with the case where a metallic compound having an antioxidant action is formed on the surface by only adipic acid jumping in the Sn-Pb system. The reason for this is not completely understood, but it seems that the stability of the compound varies greatly depending on the type of metal.
[0018]
If the organometallic compound of benzotriazole (BTA) formed on the surface of the solder is easily decomposed, the effect of preventing oxidation cannot be expected, and it may be further dissolved in the flux solvent. On the other hand, if the surface is too stable, it will not melt well at the time of reflowing as if the surface is oxidized, and the generation of solder balls will be increased conversely. Therefore, it is necessary to perform an appropriate surface treatment according to the following conditions.
[0019]
As a production method for obtaining solder powder in which BTA is chemically bonded to the surface, a method in which BTA is vaporized and vapor reacts with the surface of the solder powder is preferable. As a specific method, there are a method of vaporizing BTA and spraying the vapor onto the stirring solder powder, and a method of mixing and heating BTA with the solder powder. In order for BTA to form a compound on the surface of the solder powder, it is necessary to raise the temperature from room temperature.
[0020]
Since the decomposition temperature of BTA is about 160 ° C., the processing temperature is suitably from 50 ° C. to 120 ° C. This is because if the treatment temperature is too low, such as less than 50 ° C, the compound cannot be made, while if the treatment temperature is raised above 120 ° C, the solder powder starts to sinter and a large mass can be formed. It is because it is not preferable.
[0021]
In order to efficiently perform the reaction between BTA and Zn, it is necessary to oxidize the solder powder as low as possible, and the atmosphere during the treatment is preferably a high vacuum of 10 −2 Torr or more as an oxygen partial pressure. .
[0022]
An appropriate treatment amount depends on the particle size of the solder powder, but 0.01 to 0.6% is preferable. If the treatment amount is less than 0.01%, the entire surface cannot be covered and the effect cannot be expected. If the treatment amount exceeds 1%, the metal salt cannot be formed on the surface. This is because the paste dissolves easily because it dissolves in the solvent of the flux, and both are not preferable. Particularly preferably, the content is 0.03% to 0.3%.
The particle size of the solder powder is preferably 10 to 40 μm. This is because if the particle size is less than 10 μm, oxidation during production is severe and surface treatment will not prevent the generation of solder balls. This is because the particle size is inevitably reduced to 40 μm or less.
[0023]
【Example】
Hereinafter, although the suitable Example which shows the effect of this invention is described, this invention is not limited to this.
[0024]
[Example 1]
After preparing Sn-8Zn-2Bi alloy powder by the rotating disk method, lead-free solder powder was prepared by sieving to 20 to 40 μm.
In a 200 ml separable flask placed in a mantle heater, 15 g of BTA was placed and heated to 150 ° C. The lid used three ports, the center port was a thermometer, and both the other ports were connected to copper pipes, and the copper gas flowed from one copper pipe at a rate of 10 ml / min. A 1000 ml sample bottle covered with a rubber stopper was prepared and two copper pipes were attached. One copper pipe was connected with a carrier gas containing vaporized BTA, and the other copper pipe was used as an outlet to attach a check valve so that ethanol absorbed BTA and then released to the atmosphere.
[0025]
1 kg of lead-free solder powder was put in the sample bottle, and the portion with the solder powder was put in an oil bath and maintained at 80 ° C. The gas was stopped when the BTA in the separable flask was exhausted, the sample bottle was placed in a 20 ° C. water bath to cool, and the solder powder was taken out after reaching room temperature.
The amount of adhesion measured with a thermobalance was 0.1%.
[0026]
[Example 2]
The same treatment as in Example 1 was performed except that the amount of BTA put in the separable flask was changed to 30 g. The adhesion amount was 0.19%.
[0027]
[Example 3]
The same treatment as in Example 1 was performed except that the amount of BTA put in the separable flask was changed to 60 g. The adhesion amount was 0.37%.
[0028]
[Example 4]
The same treatment as in Example 1 was performed except that the temperature of the sample bottle containing the solder powder was changed to 110 ° C. The adhesion amount was 0.25%.
[0029]
[Example 5]
The same treatment as in Example 1 was performed except that the temperature of the sample bottle containing the solder powder was changed to 60 ° C. The amount of adhesion was 0.05%.
[0030]
[Example 6]
1 kg of the same lead-free solder powder used in Example 1 and 3 g of BTA were mixed well, then placed in a rotary evaporator and heated in an oil bath at 80 ° C. while being evacuated. After rotating for 3 hours, the oil bath was changed to a 20 ° C. water bath and cooled, and then the solder powder was taken out. Residual white powder of BTA was observed and was removed through a sieve having an opening of 70 μm. The amount of BTA adhered was measured with a thermobalance and found to be 0.07%.
[0031]
[Example 7]
The same treatment as in Example 6 was performed except that the amount of BTA to be added was 10 g. The amount of BTA attached was 0.12%.
[0032]
[Example 8]
The same treatment as in Example 6 was performed except that the amount of BTA to be added was 20 g. The amount of BTA attached was 0.21%.
[0033]
[Example 9]
The same treatment as in Example 6 was performed except that the temperature of the oil bath was changed to 110 ° C. The amount of BTA attached was 0.25%.
[0034]
[Example 10]
The same treatment as in Example 6 was performed except that the temperature of the oil bath was 60 ° C. The amount of BTA attached was 0.04%.
[0035]
[Comparative Examples 1-5]
The same amount of BTA as that used in Examples 1 to 5 was mixed well with the same solder powder used in Examples 1 to 5.
[0036]
[Comparative Example 6]
Adipic acid was put in a separable flask in place of BTA, and the same treatment as in Example was performed except that the temperature was changed to 200 ° C. By analyzing the taken-out solder powder by FT-IR, it was confirmed that adipic acid was adhered and a Zn compound was formed, and the adhesion amount was 0.2%.
[0037]
[Comparative Example 7]
The same treatment as in Example 6 was performed except that adipic acid was added instead of BTA. By analyzing the taken-out solder powder by FT-IR, it was confirmed that adipic acid was adhered and a Zn compound was formed, and the adhesion amount was 0.23%.
[0038]
[Comparative Example 8]
The same treatment as in Example 6 was performed except that stearic acid was added instead of BTA. When the extracted solder powder was analyzed by FT-IR, there was no Zn compound of stearic acid. When analyzed by the same method, the adhesion amount was 0.002%.
[0039]
[Comparative Example 9]
The same treatment as in Example 1 was performed except that the amount of BTA put into the separable flask was changed to 3 g. The amount of adhesion was 0.009%.
[0040]
[Comparative Example 10]
The same treatment as in Example 6 was performed except that the amount of BTA to be added was 50 g. The amount of BTA attached was 1.0%.
[0041]
[Comparative Example 11]
The solder powder used in Example 1 was not treated at all.
[0042]
10 ml of polyethylene obtained by adding 1.05 g and flux (rosin 60%, butyl carbitol 30%, hydrogenated castor oil 9%) 0.25 g obtained in the above Examples 1-10 and Comparative Examples 1-10 to solder powder. It put into the container and knead | mixed for 5 minutes with the spatula, and each created the paste. These were printed on an alumina ceramic substrate having a thickness of 0.6 mm using a stainless steel plate having a thickness of 0.15 mm with a circular hole having a diameter of 6.5 mm. This substrate was placed on a hot plate maintained at 210 ° C. and reflowed. No solder balls are generated when the solder powder melts into a single ball. It is assumed that solder balls are generated when solder is dispersed as in a satellite instead of one. The degree of generation of solder balls was evaluated in six grades, with the case where no occurrence occurred at this level being 0, and the case where the spread was not spread out over the whole area was grade 5. In addition, the time from printing to reflowing was tested in three stages of 0, 5, and 24 hours. The test results are shown in “Table 1”.
[0043]
[Table 1]
[0044]
As apparent from a comparison between Examples 1 to 5 and Comparative Examples 1 to 5, just mixing BTA has almost no effect, and it is effective only when it exists as a Zn compound on the surface. An adhesion amount of 0.05% is sufficient, and if it is too large, the paste thickens and printing becomes impossible. When the same treatment is performed using adipic acid, the effect is slightly confirmed, but not as remarkable as BTA. The stearic acid treatment is not surface-treated successfully by the method as described above.
In addition, the viscosity of the prepared paste was examined. The paste was left open in the room and the time was examined until it became too hard to stir with a spatula. The results are shown in “Table 2”.
[0045]
[Table 2]
It can be seen that the time until thickening by the surface treatment is drastically increased. Comparative Example 10 was hard from the beginning and did not become a paste.
[0046]
【The invention's effect】
According to the present invention, Sn—Zn-based or Sn—Zn—Bi-based alloy powder not containing Pb and a vapor obtained by vaporizing benzotriazole (BTA) are reacted at a temperature of 50 to 120 ° C., By forming the organic Zn compound so that the amount of BTA forming the organic Zn compound of benzotriazole (BTA) on the surface of the alloy powder is 0.01 to 1.0% with respect to the total mass. Solder powder having a sufficient antioxidant effect can be provided.
Claims (4)
ことを特徴とするハンダ粉の製造方法。A Pb-free Sn—Zn-based or Sn—Zn—Bi-based alloy powder and a vapor obtained by vaporizing benzotriazole (BTA) are reacted at a temperature of 50 to 120 ° C. to form a surface of the alloy powder. The organic Zn compound is formed so that the amount of BTA forming the organic Zn compound of benzotriazole (BTA) is 0.01 to 1.0% with respect to the total mass. Production method.
ことを特徴とするハンダ粉。Solder powder produced by the production method according to claim 1.
前記合金粉の粒径が10〜40μmである
ことを特徴とするハンダ粉。In claim 2,
Solder powder, wherein the alloy powder has a particle size of 10 to 40 μm.
ことを特徴とするハンダペースト。Solder paste using the solder powder according to claim 2 or claim 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18207498A JP3943718B2 (en) | 1998-06-29 | 1998-06-29 | Method for producing solder powder, solder powder and solder paste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18207498A JP3943718B2 (en) | 1998-06-29 | 1998-06-29 | Method for producing solder powder, solder powder and solder paste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000015477A JP2000015477A (en) | 2000-01-18 |
JP3943718B2 true JP3943718B2 (en) | 2007-07-11 |
Family
ID=16111902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18207498A Expired - Fee Related JP3943718B2 (en) | 1998-06-29 | 1998-06-29 | Method for producing solder powder, solder powder and solder paste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3943718B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002361476A (en) * | 2001-06-08 | 2002-12-18 | Showa Denko Kk | Solder metal, solder paste, soldering method, soldered circuit board and soldered part |
-
1998
- 1998-06-29 JP JP18207498A patent/JP3943718B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000015477A (en) | 2000-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4138965B2 (en) | Lead-free solder powder and manufacturing method thereof | |
JP3788335B2 (en) | Solder paste | |
JP4231157B2 (en) | Solder powder, manufacturing method thereof, and solder paste | |
JP3493101B2 (en) | Solder powder, manufacturing method thereof, and solder paste using the solder powder | |
JP4084657B2 (en) | Solder powder for solder paste | |
JP4215235B2 (en) | Surface treatment agent and surface treatment method for Sn alloy | |
JP3943718B2 (en) | Method for producing solder powder, solder powder and solder paste | |
US5211764A (en) | Solder paste and method of using the same | |
JPH06502126A (en) | Solder paste with solder alloy/formate complex as oxide remover and method for producing the same | |
US5139704A (en) | Fluxless solder | |
JP2002120086A (en) | Lead-free solder and its production method | |
JP4242726B2 (en) | Lead-free soldering flux and solder paste | |
JP3273757B2 (en) | Solder paste and flux for forming solder joints | |
JP2007175776A (en) | Solder joining method and solder joint | |
JP5137317B2 (en) | Electronic components | |
JP2004156094A (en) | SURFACE TREATING AGENT AND METHOD FOR Sn OR Sn ALLOY | |
JP4068973B2 (en) | BTA derivative for solder, solder using the same, flux using the same, solder paste using the same | |
JP2011115855A (en) | Solder paste having blackening preventive effect, and lead-free solder blackening preventive method | |
JP2564151B2 (en) | Coating solder powder | |
JP3786405B2 (en) | Tin-zinc-based lead-free solder powder and method for producing the same | |
JP2001294901A (en) | Solder powder | |
JPWO2019117041A1 (en) | Solder paste, joint structure and method for manufacturing the joint structure | |
JP4347485B2 (en) | Soldering flux | |
JP2004283841A (en) | Solder paste and method for coating solder powder for solder paste | |
JP3815997B2 (en) | Solder paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070406 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140413 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |