JP3943474B2 - Automatic frequency control device and automatic frequency control method - Google Patents

Automatic frequency control device and automatic frequency control method Download PDF

Info

Publication number
JP3943474B2
JP3943474B2 JP2002290119A JP2002290119A JP3943474B2 JP 3943474 B2 JP3943474 B2 JP 3943474B2 JP 2002290119 A JP2002290119 A JP 2002290119A JP 2002290119 A JP2002290119 A JP 2002290119A JP 3943474 B2 JP3943474 B2 JP 3943474B2
Authority
JP
Japan
Prior art keywords
correlation
circuit
output
signal
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002290119A
Other languages
Japanese (ja)
Other versions
JP2004128877A (en
Inventor
史洋 山下
好典 中須賀
仁 三次
正純 上羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002290119A priority Critical patent/JP3943474B2/en
Publication of JP2004128877A publication Critical patent/JP2004128877A/en
Application granted granted Critical
Publication of JP3943474B2 publication Critical patent/JP3943474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Circuits Of Receivers In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、4相位相変調方式の受信信号の周波数誤差を推定して除去する際に、相関回路を用いて受信信号の周波数オフセット領域を推定して周波数誤差を補償する自動周波数制御装置および自動周波数制御方法に関する。
【0002】
【従来の技術】
4相位相変調方式(QPSK)の変調信号を復調する復調回路では、位相平面をπ/2ずつ4つの領域(以下、第1象限〜第4象限という)に分割し、受信シンボルが存在する象限を判定することによりビット列に変換する。ここで、受信信号がドップラーシフトなどの影響により周波数オフセットされる場合には、受信シンボルは位相平面上を一定方向に回転することになる。例えばシンボルレートをfsとしたときに、1/fs時間に受信シンボルの位相が位相平面上で2π回転することは、周波数軸上で受信信号の周波数が割り当てられた設定周波数よりfsだけ周波数オフセットしていることになる。すなわち、1/fs時間あたり±π/4の位相回転であれば、受信信号が周波数軸上で割り当てられた設定周波数より±fs/8だけ周波数オフセットしていることになる。
【0003】
したがって、受信信号が設定周波数から大きな周波数オフセットを受ける場合、例えば1/fs時間にkπ/2+α(kは0以外の整数)のようなπ/2を越える大きなシンボル回転が想定される場合に、第1象限に設定したシンボル位相点からαだけオフセットしたシンボルが観測されたときに、本来第1象限のシンボルがαだけ周波数オフセットしているのか、本来第2象限のシンボルがα−π/2オフセットしているのか、区別がつかない。しかし、このような不確定な場合に、位相回転量をαと判断して周波数制御を行い、受信シンボルの位相が1/fs時間にα−π/2回転する場合でも、各象限でのシンボルは設定位相からαだけ位相回転した位相となるため、シンボル同期をとることは可能である。ただし、本来の象限とは異なる象限と領域判定されるため、変換されたビット列は誤ったものになる。以下、これを「誤同期」という。
【0004】
この誤同期の問題を解決するために、従来提案された相関回路を用いた自動周波数制御装置の構成例を図6に示す。本構成は、非特許文献1から従来技術として考えられる箇所を抜粋したものであり、3つの相関回路を用いることにより、1/fs時間に受信シンボルの位相が±π/4以上回転しても、周波数誤差を補償することができる特徴を有する。
【0005】
図6において、受信信号と発振回路69の出力信号が乗算回路61で乗算され、周波数変換された信号が遅延検波回路62に入力される。遅延検波回路62では、乗算回路61の出力信号を2分岐回路621で2分岐し、その一方の信号と遅延回路622を介して遅延させた他方の信号を直交検波回路623に入力して遅延検波し、その検波信号がクロック再生回路624に入力されてタイミング再生される。クロック再生回路624から出力される再生信号は2分岐回路625で2分岐され、検出回路626はその一方の再生信号を領域判定してデータビット列を出力する。
【0006】
2分岐回路625で2分岐された他方の再生信号を入力する自動周波数制御回路63は、再生信号から推定された周波数誤差量を示す周波数誤差信号と、この周波数誤差量を再生信号から除去した信号(以下「復調信号」という)を出力する。この復調信号は3分岐回路70で3分岐され、それぞれ第1の相関回路64、第2の相関回路65、第3の相関回路66に入力され、各相関結果が判定回路67に出力される。判定回路67は3つの相関結果に応じて、自動周波数制御回路63から出力される周波数誤差信号の補正量Δθを判定し、その補正信号を出力する。加算回路68は、周波数誤差信号と補正信号を加算して発振回路69に与え、その発振周波数を制御する。
【0007】
以上示した遅延検波回路62は一般的な構成である(非特許文献2)。また、自動周波数制御回路63は例えば逓倍法を用いて構成でき、その出力信号により発振周波数を制御する発振回路69は、電圧制御発振器(VCO)を用いて容易に構成できる(非特許文献3、非特許文献4)。
【0008】
本自動周波数制御装置の特徴は、3つの相関回路を用いて周波数誤差領域を推定する機能にある。以下、第1の相関回路64、第2の相関回路65、第3の相関回路66および判定回路67の設計方法および動作原理について説明する。
【0009】
本自動周波数制御装置は遅延検波方式に対応する構成であり、受信信号を遅延検波するために送信側で情報ビットを差動符号化している。一般に、通信フレームには、同期をとるためにユニークワード(UW)と呼ばれる固定ビットパターンが挿入されるが、上記のように送信側でUWも差動符号化されるために、受信側に差動符号化されたUWが固定ビットパターンとして受信される。周波数誤差がない状態におけるこの差動符号化されたUWの固定ビットパターンを(Si ,Sq )とする。以下に説明する従来例では、信号はグレイ符号化されていることを想定している。この(Si ,Sq )の固定ビットパターンを第1の相関回路64の相関係数として設定した場合、第1の相関回路64のビット数は、差動符号化されたUWのビット数分だけ存在することになる。
【0010】
ここで、自動周波数制御回路63から出力される復調信号を第1の相関回路64に入力して相関を調べ、雑音等の影響によりビット誤りを起こす可能性があることから閾値を設け、あらかじめ設定された閾値以上のビット数が一致する相関結果が得られたならば(本明細書ではこの状況を「相関がとれる」または「相関する」と表現し、図中では「相関回路が相関」と表現する)、受信信号の周波数誤差量は±fs/8以下であり、受信シンボルの1/fs時間あたりの位相回転量は±π/4以下であるという情報が得られる。
【0011】
一方、単位1/fs時間に、受信シンボルの位相がπ/4〜3π/4回転するような状況では、自動周波数制御回路63から出力される復調信号は、第1の相関回路64で相関がとれない。この状況では、受信信号の周波数は設定周波数よりfs/8〜3fs/8だけ周波数オフセットしており、受信信号の固定ビットパターンは、第1の相関回路64の値をπだけ+方向にオフセットした(−Sq ,Si )の固定ビットパターンと一致する。ただし、符号の「−」はビット反転を意味する。そこで、この(−Sq ,Si )の固定ビットパターンを第2の相関回路65の相関係数に設定し、第2の相関回路65で相関がとれた場合、受信信号が設定周波数からfs/8〜3fs/8だけ周波数オフセットしており、受信シンボルの位相が1/fs時間にπ/4〜3π/4回転しているという情報が得られる。
【0012】
同様に、1/fs時間に、受信シンボルの位相が−π/4〜−3π/4回転するような、受信信号の周波数が設定周波数より−fs/8〜−3fs/8だけ周波数オフセットしている状況では、自動周波数制御回路63から出力される復調信号は、第1の相関回路64および第2の相関回路65で相関がとれない。この状況では、受信信号の固定ビットパターンは、第1の相関回路64の値をπだけ、−方向にオフセットした(Sq ,−Si )となる。そこで、この(Sq ,−Si )の固定ビットパターンを第3の相関回路66の相関係数に設定し、第3の相関回路66で相関がとれた場合、受信信号が設定周波数から−fs/8〜−3fs/8だけ周波数オフセットしており、受信シンボルの位相が1/fs時間に−π/4〜−3π/4回転しているという情報が得られる。
【0013】
次に、判定回路67の動作について説明する。
判定回路67は、第1の相関回路64、第2の相関回路65、第3の相関回路66の相関結果を入力し、その3つの相関を調べて推定された1/fs時間あたりの受信シンボルの位相回転量に関する情報を用い、自動周波数制御回路63から出力される周波数誤差信号の補正量Δθを判定する。
【0014】
ここで、第1の相関回路64で相関がとれた場合、受信シンボルの位相回転量は1/fs時間あたり±π/4以下である。この場合は、正常な象限で同期がとれていると判断する。したがって、自動周波数制御回路63で検出される周波数誤差量は正常な象限で推定されている値であることから、補正する必要がないために判定回路67の出力(周波数誤差信号の補正量)Δθは0である。
【0015】
第2の相関回路65で相関がとれた場合、受信シンボルの位相回転量は1/fs時間あたりπ/4〜3π/4である。したがって、正常な象限で周波数誤差を除去するためには、受信シンボルの位相回転量が1/fs時間あたり±π/4以下になるように、自動周波数制御回路63から出力される周波数誤差信号の補正量を設定する必要がある。すなわち、第2の相関回路65で相関がとれた場合、判定回路67の出力Δθを−π/2とし、受信シンボルの位相回転量に1/fs時間あたり−π/2を加えてやればよい。この1/fs時間あたりに与える位相シフト量−π/2は、周波数誤差の判別値としてはシンボルレートの−1/4である。
【0016】
第3の相関回路66で相関がとれた場合、受信シンボルの位相回転量は1/fs時間あたり−3π/4〜−π/4である。したがって、同様に判定回路67の出力Δθを+π/2とし、受信シンボルの位相回転量に1/fs時間あたりπ/2を加えてやればよい。この1/fs時間あたりに与える位相シフト量+π/2は、周波数誤差の判別値としてはシンボルレートの1/4となる。
【0017】
図7は、従来の自動周波数制御装置の判定回路67の判定アルゴリズムを示す。
判定回路67は、第1の相関回路64で相関を調べて相関がとれた場合には、判定回路出力Δθとして0を出力して処理を終了する。次に、第1の相関回路65で相関がとれず、第2の相関回路65で相関を調べて相関がとれた場合には、判定回路出力Δθとして−π/2を出力し、第1の相関回路64の相関を調べる手順に戻る。また、第1の相関回路64および第2の相関回路65で相関がとれず、第3の相関回路66で相関を調べて相関がとれた場合には、判定回路出力Δθとして+π/2を出力し、第1の相関回路64の相関を調べる手順に戻る。なお、従来の自動周波数制御装置では、第3の相関回路66で相関がとれない場合については特に考慮されておらず、処理を終了する。
【0018】
すなわち、第1の相関回路64で相関がとれた場合には、自動周波数制御回路63から出力される周波数誤差信号をそのまま発振回路69にフィードバックして処理を終了する。また、第2の相関回路65で相関がとれた場合には、周波数誤差信号に−π/2を加算して発振回路69にフィードバックすることにより、第1の相関回路64で相関がとれる状態になり処理を終了する。
【0019】
以上のように、判定回路67は、第1の相関回路64で相関がとれた場合には0、第2の相関回路65で相関がとれた場合には−π/2、第3の相関回路66で相関がとれた場合には+π/2を加算回路68に出力し、自動周波数制御回路63から出力される周波数誤差信号に加算し、発振回路69の発振周波数を制御する。このようにして制御された周波数の信号を乗算回路61に入力し、受信信号と乗算することにより、受信信号が割り当てられた設定周波数から周波数オフセットしている周波数誤差成分を除去することができる。
【0020】
【非特許文献1】
五十嵐、外5名、「複数の相関器を用いたAFC方法に関する一検討」、1994年電子情報通信学会秋季大会、B−290
【非特許文献2】
藤野忠著「ディジタル移動通信」昭晃堂、第1版、2000年6月10日発行、pp.52-78、pp.122-152
【非特許文献3】
飯田尚志著「衛星通信」オーム社、第1版、平成10年5月30日発行、pp.301-333
【非特許文献4】
山本平一、加藤修三共著「TDMA通信」電子情報通信学会、第1版、平成9年5月1日発行、pp.76-89
【0021】
【発明が解決しようとする課題】
ところで、従来の自動周波数制御装置は、図6に示すように3つの相関回路を用い、図7に示すように第3の相関回路66で相関がとれない場合については考慮していないので、補償できる最大周波数誤差は、位相面では1/fs時間あたり受信シンボル位相が最大±3π/4の回転量、周波数軸上では±3fs/8の周波数誤差量となる。
【0022】
また、図7に示す従来の判定アルゴリズムでは周波数誤差を補正できない(受信シンボルの同期がとれない)場合があり、以下この現象について図8を参照して説明する。図8は、自動周波数制御回路63の入力信号の1/fs時間あたりの周波数誤差によるシンボルの位相回転量を位相面で表す。
【0023】
まず、送信側の送信シンボル位置を位相面で♯0とする。図8は、周波数誤差によるシンボルの位相回転量を表すので、周波数誤差がなければ、受信シンボルの位相回転量は♯0となり(以下「受信シンボル♯0」または「♯0」という)、送信シンボル位置と一致する。この前提において、受信シンボルは周波数誤差の影響を受け、雑音がなければ1/fs時間あたりπ/4よりやや小さい位相量で回転している状況を仮定し、図8に受信シンボル♯1として表す。雑音がなければ、受信シンボル♯1は第1の相関回路64で相関がとれる。したがって、自動周波数制御回路63で周波数誤差成分が除去され、受信シンボル♯1の位相回転量を補正して送信シンボル♯0を推定することができる。
【0024】
しかし、一般に受信信号には、伝搬路や変復調回路において雑音が付加されるので、以下のような状況が一例として想定される。雑音が付加された状況では、受信シンボル♯1は、1/fs時間あたりπ/4より大きく回転することがある。このとき、受信シンボル♯1は位相面において♯2の位置に動き、受信シンボル♯2は第2の相関回路65で相関がとれる。ここで、判定回路67が出力する−π/2を自動周波数制御回路63が出力する周波数誤差信号に加算して発振回路69の発振周波数を制御すれば、次に自動周波数制御回路63に入力する受信シンボルは♯3となる。
【0025】
この受信シンボル♯3は、雑音が付加されることで♯4の位置に動くことがある。このとき、受信シンボル♯4は第3の相関回路66で相関がとれる。ここで、判定回路67が出力する+π/2を自動周波数制御回路63が出力する周波数誤差信号に加算して発振回路69の発振周波数を制御すれば、次に自動周波数制御回路63に入力する受信シンボルは♯5となり、受信シンボル♯1の近傍になる。
【0026】
このように、受信シンボル♯1が雑音付加により受信シンボル♯2に遷移し、−π/2のシンボル位相量の回転後に受信シンボル♯3になるが、雑音付加により受信シンボル♯4に遷移したために+π/2のシンボル位相量の回転が行われ、受信シンボル♯1の近傍の受信シンボル♯5になると、再び雑音の付加により受信シンボル♯2に遷移する状況が想定される。このようなシンボル遷移が繰り返し起こった場合には、図6の自動周波数制御回路63は推定する周波数誤差量が雑音の影響で時間とともに大きく変動し、正確に周波数誤差量を推定することができない。すなわち、受信開始後に受信信号の同期が長時間とれず、回線品質が大幅に劣化する状況になる。
【0027】
また、別の例として、自動周波数制御回路63に入力されるシンボルが♯1と♯2の間を雑音の影響によりふらつく場合には、相関結果が閾値を越えないために、第1の相関回路64および第2の相関回路65でともに相関がとれない状態になる。この場合も同様に図6の自動周波数制御回路63は正確に周波数誤差量を推定することができず、受信信号の同期が長時間とれないために回線品質が大幅に劣化する状況になる。
【0028】
このように、雑音の影響により、自動周波数制御回路63へ入力される受信シンボルの1/fs時間あたりの位相回転量が変わり、時間とともに相関がとれる相関回路が異なる場合や、相関がとれる相関回路がない場合には、判定回路67において周波数誤差領域の推定ができないために、受信信号の回線品質が大幅に劣化する。このような状況は、具体的には1/fs時間あたりの受信シンボルの位相回転量が±π/4近傍または±3π/4近傍であり、周波数軸上では±fs/8近傍、または±3fs/8近傍の周波数オフセットを受けている場合に生じる。以下この±fs/8および±3fs/8近傍の周波数誤差領域を「自動周波数制御不安定領域」という。
【0029】
本発明は、相関回路を用いて周波数誤差量を推定して除去する自動周波数制御装置において、±3fs/8以上の周波数誤差量を推定して除去することができるとともに、受信信号が設定周波数より±fs/8近傍または±3fs/8近傍の周波数誤差を受けている場合に雑音の影響を受けずに周波数誤差量を推定して除去し、回線品質の劣化を抑えることができる自動周波数制御装置を提供することを目的とする。
【0030】
【課題を解決するための手段】
本発明の自動周波数制御装置は、設定周波数より±3fs/8を越える周波数オフセットした信号を検出するために第4の相関回路を設けることを特徴とする。従来技術では、周波数誤差の制御範囲の上限が±3fs/8であったのに対して、本発明により制御範囲が±3fs/8を越える広範囲な周波数誤差量を推定して除去することができる。
【0031】
また、本発明の自動周波数制御装置は、すべての相関回路で相関がとれない場合には、周波数誤差信号の補正量としてα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力する判定回路を設けることを特徴とする。
【0032】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の第1の実施形態の全体構成を示す。
【0033】
図において、受信信号と発振回路8の出力信号が乗算回路1で乗算され、周波数変換された信号が復調回路2に入力される。復調回路2は、入力信号から推定した周波数誤差量を示す周波数誤差信号と、この周波数誤差量を入力信号から除去した復調信号と、この復調信号から検出されたデータを出力する。 復調信号は4分岐回路10で4分岐され、それぞれ第1の相関回路3、第2の相関回路4、第3の相関回路5、第4の相関回路6に入力され、各相関結果が判定回路7に出力される。判定回路7は4つの相関結果に応じて、復調回路2から出力される周波数誤差信号の補正量Δθを判定し、その補正信号を出力する。加算回路9は、周波数誤差信号と補正信号を加算して発振回路8に与え、その発振周波数を制御する。
【0034】
第1の相関回路3、第2の相関回路4、第3の相関回路5は、図6に示す従来の構成の相関回路64,65,66と同様の構成である。以下、本実施形態の特徴である第4の相関回路6の回路設計法、判定回路7で第4の相関回路6を追加することにより新しく付け加わった制御機能について説明する。
【0035】
図6に示す従来の構成では、設定周波数から最大±3fs/8の周波数誤差を補正することは可能であったが、まずこの最大周波数誤差以上の周波数誤差量として、受信信号に3fs/8〜5fs/8の周波数誤差がある状況を想定する。
【0036】
3fs/8〜5fs/8の周波数誤差がある状況では、復調回路2から出力される復調信号は、受信信号が設定周波数からfs/8〜3fs/8オフセットしている状況から、さらにシンボル位相が1/fs時間あたり+π/2回転している。結果として±fs/8以下の周波数オフセットを受けた場合から、シンボル位相が1/fs時間あたり+π回転していることになる。±fs/8以下の周波数オフセットを有する信号が相関する第1の相関回路の固定ビットパターンは、従来技術の欄で説明したように(Si ,Sq )である。したがって、この場合よりさらに、シンボル位相が1/fs時間あたり+π回転している場合、入力信号と相関がとれる固定ビットパターンは、第1の相関回路の固定ビットパターンを+π回転させた(−Si ,−Sq )となる。
【0037】
一方、−5fs/8〜−3fs/8の周波数誤差がある状況では、復調回路2から出力される復調信号は、受信信号が設定周波数から−3fs/8〜−fs/8オフセットしている状況から、さらにシンボル位相が1/fs時間あたり−π/2回転している。結果として±fs/8以下の周波数オフセットを受けた場合から、シンボル位相が1/fs時間あたり−π回転していることになる。±fs/8以下の周波数オフセットを有する信号が相関する第1の相関回路の固定ビットパターンは、従来技術の欄で説明したように(Si ,Sq )である。したがって、この場合よりさらに、シンボル位相が1/fs時間あたり−π回転している場合、入力信号と相関がとれる固定ビットパターンは、第1の相関回路の固定ビットパターンを−π回転させた(−Si ,−Sq )となる。
【0038】
以上により、(−Si ,−Sq )の固定ビットパターンを第4の相関回路6に設定し、入力信号と相関がとれた場合には、受信信号の周波数誤差量が3fs/8〜5fs/8または−5fs/8〜−3fs/8の範囲にあることを推定することができる。
【0039】
ここで、設定周波数から3fs/8〜5fs/8の周波数誤差領域に受信信号が存在すれば、シンボルの位相回転量は1/fs時間に3π/4〜5π/4になる。この場合、シンボルの位相を1/fs時間に−π/2回転させることにより、1/fs時間あたりのシンボルの位相回転量はπ/4〜3π/4になり、第2の相関回路4で相関がとれる。第2の相関回路4で相関がとれた場合、受信シンボルの位相は−π/2回転されるので、シンボルの位相回転量は1/fs時間あたり、最終的に±π/4以下まで補正される。これにより、復調回路2内に存在する自動周波数制御回路において周波数誤差の除去が可能となる。したがって、第4の相関回路6で相関がとれた場合、設定周波数から3fs/8〜5fs/8の周波数誤差領域に受信信号が存在すれば、判定回路7から出力する周波数誤差信号の補正量は−π/2とすればよい。
【0040】
一方、設定周波数から−5fs/8〜−3fs/8の周波数誤差領域に受信信号が存在すれば、シンボルの位相回転量は1/fs時間に−5π/4〜−3π/4になる。この場合、シンボルの位相を1/fs時間にπ/2回転させることにより、1/fs時間あたりのシンボルの位相回転量は−3π/4〜−π/4になり、第3の相関回路5で相関がとれる。第3の相関回路5で相関がとれた場合、受信シンボルの位相はπ/2回転されるので、シンボルの位相回転量は1/fs時間あたり、最終的に±π/4以下まで補正される。これにより、復調回路2内に存在する自動周波数制御回路において周波数誤差の除去が可能となる。したがって、第4の相関回路6で相関がとれた場合、設定周波数から−5fs/8〜−3fs/8の周波数誤差領域に受信信号が存在すれば、判定回路7から出力する周波数誤差信号の補正量はπ/2とすればよい。
【0041】
しかし、第4の相関回路6で相関がとれた場合、受信信号の周波数誤差量が3fs/8〜5fs/8、または−5fs/8〜−3fs/8の範囲にあることを推定することができるが、いずれの周波数誤差領域にあっても同じように相関結果が出力されるので、どちらの周波数誤差領域なのかを特定することができない。すなわち、判定回路7から出力する周波数誤差信号の補正量Δθが−π/2かπ/2かを決定することができない。そこで、第4の相関回路6で相関がとれた後に判定回路7の出力を制御する手順について、以下に図2を参照して説明する。
【0042】
第4の相関回路6で相関がとれたときに、判定回路7は、設定周波数から3fs/8〜5fs/8の周波数誤差領域に受信信号が存在すると仮定し、その出力を−π/2とする。これにより、発振回路8は周波数誤差信号に−π/2加算して制御されるので、仮定が正しければ第2の相関回路4で相関がとれる状態になる。したがって、第2の相関回路4で相関がとれた場合には、判定回路7の出力は最終的に−π/2と確定できる。
【0043】
一方、上記の仮定が誤っていれば、判定回路7の出力が−π/2とされたために、1/fs時間あたりのシンボルの位相回転量が−7π/4〜−5π/4となる。この場合には、受信信号は設定周波数よりさらに大きく周波数オフセットするため、いずれの相関回路でも相関しない状態になる。したがって、判定回路7の出力を−π/2とした後に、第2の相関回路4の相関結果に着目し、第2の相関回路4で相関しなければ仮定に誤りがあると判断し、受信信号は設定周波数から−5fs/8〜−3fs/8の周波数誤差領域に存在すると判断する。
【0044】
この周波数誤差の場合、本来は判定回路7の出力がπ/2でなければならないが、先に誤った仮定で−π/2が判定回路7の出力として発振回路8を制御しているので、それを打ち消してさらに出力を+π/2とするには、判定回路7の出力を+πとする必要がある。これにより、誤った仮定に基づく発振回路8の周波数制御は相殺され、第3の相関回路5で相関がとれる状態になる。したがって、第3の相関回路5で相関がとれた場合には、判定回路7の出力は最終的に+π/2と確定できる。
【0045】
以上のように第4の相関回路6および判定回路7を構成することにより、設定周波数から最大±5fs/8までの周波数誤差を除去することができる。
【0046】
(判定回路7の判定アルゴリズム)
図3および図4は、第1の実施形態における判定回路7の判定アルゴリズムを示す。
【0047】
図3において、判定回路7は、第1の相関回路3で相関を調べて相関がとれた場合には、判定回路出力Δθとして0を出力して処理を終了する。次に、第1の相関回路3で相関がとれず、第2の相関回路4で相関を調べて相関がとれた場合には、判定回路出力Δθとして−π/2を出力し、第1の相関回路3の相関を調べる手順に戻る。また、第1の相関回路3および第2の相関回路4で相関がとれず、第3の相関回路5で相関を調べて相関がとれた場合には、判定回路出力Δθとして+π/2を出力し、第1の相関回路3の相関を調べる手順に戻る。以上の手順(a) は、図7に示す従来構成のものと同じである。
【0048】
本実施形態の自動周波数制御装置では、第3の相関回路5で相関がとれない場合に第4の相関回路6に移行し、第4の相関回路6で相関を調べて相関がとれた場合に、上述したように判定回路出力Δθとして−π/2を出力し、第2の相関回路4で相関を調べる。第2の相関回路4で相関がとれた場合には、判定回路出力Δθとして−π/2を確定し、第1の相関回路3の相関を調べる手順に戻る。一方、第2の相関回路4で相関がとれない場合には、判定回路出力Δθとして+πを出力し、第3の相関回路5で相関を調べる。第3の相関回路5で相関がとれた場合には、判定回路出力Δθとして+π/2を確定し、第1の相関回路3の相関を調べる手順に戻る。
【0049】
なお、第4の相関回路6で相関がとれない場合には処理を終了する。ただし、ここで待機状態になるか、または各相関回路から判定回路7への入力を再開するかを含めて、ここでは処理終了としている。
【0050】
図4に示す判定回路7の判定アルゴリズムは、第4の相関回路6で相関がとれた場合に、図2および図3の場合の上記仮定を逆にして判定回路出力Δθとして+π/2を出力する。この場合には、第3の相関回路5で相関を調べ、第3の相関回路5で相関がとれた場合には、判定回路出力Δθとして+π/2を確定し、第1の相関回路3の相関を調べる手順に戻る。一方、第3の相関回路5で相関がとれない場合には、判定回路出力Δθとして−πを出力し、第2の相関回路4で相関を調べる。第2の相関回路4で相関がとれた場合には、判定回路出力Δθとして−π/2を確定し、第1の相関回路3の相関を調べる手順に戻る。
【0051】
また、本実施形態の説明では、判定回路7の出力を±π/2および±πとしたが、これらの値は厳密なものではなく、例えば±0.49πというように多少の誤差を許容している。
【0052】
また、第4の相関回路で相関がとれた場合に判定回路の出力として±π/2を出力するのではなく、受信シンボルの位相を正常に同期がとれる象限が存在する方向の象限に遷移できるような出力値を設定してもよい。例えば、図3の判定アルゴリズムでは、「第4の相関回路−[−π/2位相操作]−第2の相関回路−[−π/2位相操作]−第1の相関回路」、あるいは「第4の相関回路−[−π/2位相操作]−第2の相関回路−[+π位相操作]−第3の相関回路−[+π/2位相操作]−第1の相関回路」というように、2段階または3段階で同期がとれる象限にシンボルが遷移するように位相量を順次制御しており、図4の判定アルゴリズムでも同様であるが、第4の相関回路で相関がとれた場合の位相操作量を例えば−πとして「第4の相関回路−[−π位相操作]−第1の相関回路」というように、1段階で同期をとるようなアルゴリズムとしてもよい。ただし、このとき第1の相関回路で相関がとれない場合には、判定回路の出力を+2πとし、「第4の相関回路−[−π位相操作]−第1の相関回路−[+2π位相操作]−第1の相関回路」というように、2段階で同期をとるようなアルゴリズムになる。
【0053】
また、図3および図4(後述する図11および図12)の判定アルゴリズムにおいて、第2の相関回路と第3の相関回路の順番を入れ替えて入力信号との相関を調べる手順としてもよい。
【0054】
(復調回路2の構成例)
復調回路2の検波方式として遅延検波方式を採用する場合には、図6に示す遅延検波回路62と自動周波数制御回路63により復調回路2とすることができる。すなわち、クロック再生回路624から出力される再生信号を入力する自動周波数制御回路63から、推定された周波数誤差量を示す周波数誤差信号と、この周波数誤差量を再生信号から除去した復調信号を出力し、この復調信号を4分岐して各相関回路に入力する。
【0055】
図5は、復調回路2の他の構成例を示す。図5(1) の構成例は、検波方式として絶対同期検波方式を採用した場合であり、図5(2) の構成例は、検波方式として差動符号同期検波方式を採用した場合である。
【0056】
図5(1) において、復調回路2の入力信号(乗算回路1の出力信号)を直交検波回路21に入力して直交検波し、その検波信号がクロック再生回路22に入力されてタイミング再生される。クロック再生回路22から出力される再生信号を入力する自動周波数制御回路23は、再生信号から推定された周波数誤差量を示す周波数誤差信号と、この周波数誤差量を再生信号から除去した信号を出力する。周波数誤差信号は、復調回路2の出力として図1に示す加算回路9に入力される。周波数誤差量が除去された信号は搬送波再生回路24に入力され、位相オフセット成分が除去された信号となる。この信号は2分岐回路25で2分岐され、検出回路26はその一方の信号領域判定してデータビット列を出力する。
【0057】
2分岐回路24で2分岐された他方の信号は1シンボル差分回路27に入力され、入力信号とそれを1シンボル時間遅延させた信号との差分信号が生成される。この差分信号は、復調回路2の復調信号として図1に示す4分岐回路10を介して各相関回路(3〜6)に入力される。
【0058】
ここで、1シンボル分の差分値をとる理由は、差動符号化されたUWの固定ビットパターンを(Si ,Sq )とし、そのパターンをもとに各相関回路の相関係数を設定しているためである。絶対同期検波方式は、送信側で差動符号化しないため、相関回路の相関係数を上記パターンに設定するために、受信側で差動符号化する必要がある。また、絶対同期検波方式では、自動周波数制御回路23で±fs/8以下の周波数誤差を補償することができるので、自動周波数制御回路23で検出した周波数誤差信号を加算回路9に出力しない場合もある。
【0059】
図5(2) に示す復調回路2は、基本的な構成は図5(1) に示す絶対同期検波方式のものと同じであるが、差動符号同期検波方式をとるために送信側で情報ビットを差動符号化しており、1シンボル差分回路27が不要になるところが異なる。また、差動符号同期検波方式では、自動周波数制御回路23で±fs/8以下の周波数誤差を補償することができるので、自動周波数制御回路23で検出した周波数誤差信号を加算回路9に出力しない場合もある。
【0060】
なお、本発明の自動周波数制御装置に用いる復調回路2は、上記のように検波方式として、遅延検波方式、絶対同期検波方式、差動符号同期検波方式などを採用した構成例を示したが、各回路構成に限定されるものではない。また、本実施形態では、入力信号の符号化方式としてグレイ符号を想定したが、他の符号化方式にも同様に本発明の原理を適用することができる。
【0061】
(第2の実施形態)
第2の実施形態は、従来の自動周波数制御装置における判定回路67の判定アルゴリズムの改良例を示す。従来構成では、図8を用いて説明したように、設定周波数より±fs/8近傍または±3fs/8近傍の周波数誤差がある場合に、雑音の影響により周波数誤差の除去ができないことにより回線品質が劣化する問題があったが、本実施形態はこれを解決するものである。
【0062】
図9は、第2の実施形態における判定回路67の判定アルゴリズムを示す。本実施形態における自動周波数制御装置は図6に示す従来構成を例に説明するが、例えば遅延検波回路62と自動周波数制御回路63の部分は、図5に示すような他の復調回路の構成をとることもできる。
【0063】
判定回路67は、第1の相関回路64で相関を調べて相関がとれた場合には、判定回路出力Δθとして0を出力して処理を終了する。次に、第1の相関回路65で相関がとれず、第2の相関回路65で相関を調べて相関がとれた場合には、判定回路出力Δθとして−π/2を出力し、第1の相関回路64の相関を調べる手順に戻る。また、第1の相関回路64および第2の相関回路65で相関がとれず、第3の相関回路66で相関を調べて相関がとれた場合には、判定回路出力Δθとして+π/2を出力し、第1の相関回路64の相関を調べる手順に戻る。以上の手順は、図7に示す従来構成のものと同じである。
【0064】
本実施形態では、第1の相関回路64、第2の相関回路65、第3の相関回路66のいずれでも相関がとれない場合に、判定回路67は周波数誤差信号の補正量としてα(ただし、αはnπ/2(nは整数)とは異なる値)を出力し、第1の相関回路64の相関を調べる手順に戻る。
【0065】
このような判定アルゴリズムにより、雑音の影響により周波数誤差の除去ができない状態を回避できる例について図10を参照して説明する。図10は、図8と同様に、自動周波数制御回路63の入力信号の1/fs時間あたりの周波数誤差によるシンボルの位相回転量を位相面で表す。
【0066】
まず、αの一例としてπ/4と設定し、受信シンボルが1/fs時間あたり−7π/32回転している状況を想定する。この状況において大きな雑音が信号に加わると、同期がとれない自動周波数制御不安定領域(図中ハッチングで示す領域)と想定する。例えば雑音の影響により、受信シンボルが第1の相関回路の相関周波数誤差領域と第3の相関回路の相関周波数誤差領域の間でふらつくと、すべての相関回路の相関値が設定閾値を越えない状況になる。このとき、判定回路67は、図9の判定アルゴリズムに従い、α(=π/4)を出力する。
【0067】
図10では、送信シンボルが♯0であるのに対して、受信シンボルが♯1であることを想定している。この想定では、受信シンボル♯1の位相量は1/fs時間あたり−7π/32回転しているため、判定回路67の出力としてα(=π/4)を設定すると、受信シンボルの位相は差し引き1/fs時間あたりπ/32回転し、受信シンボル♯2の位置に遷移する。この回転量は、上記のように自動周波数制御回路63で除去可能な1/fs時間あたり±π/4以内の回転量であるので、容易に自動周波数制御回路63で除去することができる。その結果、第1の相関回路64で相関がとれ、判定回路67の出力は0となり、図9の処理が終了する。
【0068】
(第3の実施形態)
第3の実施形態は、図1の第1の実施形態における判定回路7の判定アルゴリズムの改良例を示す。図3に示す判定アルゴリズムの改良例を図11に示し、図4に示す判定アルゴリズムの改良例を図12に示す。
【0069】
いずれも、第1の相関回路3、第2の相関回路4、第3の相関回路5、第4の相関回路6のいずれでも相関がとれない場合に、判定回路7は周波数誤差信号の補正量としてα(ただし、αはnπ/2(nは整数)とは異なる値)を出力し、第1の相関回路3の相関を調べる手順に戻る。αを出力した後の動作は、第2の実施形態で示した動作と同じである。
【0070】
【発明の効果】
以上説明したように、本発明の自動周波数制御装置は、設定周波数より±3fs/8を越える周波数誤差を補正することができるので、高速に移動している移動体でドップラーシフトにより生じる大きな周波数誤差を補正できることになり、移動体通信の利用範囲を拡大することができる。
【0071】
また、安価で小型であるが周波数安定性の悪い発振器を利用することにより生じる大きな周波数誤差を補正することができるので、端末のコスト低減を図ることができる。
【0072】
また、受信信号が設定周波数より±fs/8近傍または±3fs/8近傍の周波数オフセットを受けている場合に、雑音を受けた場合でも安定して周波数誤差量を推定して除去することができるので、回線品質の劣化を抑えることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の全体構成を示すブロック図。
【図2】第1の実施形態の判定回路7の判定アルゴリズムの主要部を示すフローチャート。
【図3】第1の実施形態の判定回路7の判定アルゴリズムを示すフローチャート。
【図4】第1の実施形態の判定回路7の判定アルゴリズムを示すフローチャート。
【図5】第1の実施形態の復調回路2の他の構成例を示すブロック図。
【図6】従来の自動周波数制御装置の構成例を示すブロック図。
【図7】従来の自動周波数制御装置の判定回路67の判定アルゴリズムを示すフローチャート。
【図8】従来の判定アルゴリズムで受信シンボルの同期がとれない例を説明する図。
【図9】第2の実施形態における判定回路67の判定アルゴリズムを示すフローチャート。
【図10】第2の実施形態における判定アルゴリズムの改善例を説明する図。
【図11】図3に示す判定アルゴリズムの改良例を示すフローチャート。
【図12】図4に示す判定アルゴリズムの改良例を示すフローチャート。
【符号の説明】
1 乗算回路
2 復調回路
21 直交検波回路
22 クロック再生回路
23 自動周波数制御回路
24 搬送波再生回路
25 2分岐回路
26 検出回路
27 1シンボル差分回路
3 第1の相関回路
4 第2の相関回路
5 第3の相関回路
6 第4の相関回路
7 判定回路
8 発振回路
9 加算回路
10 4分岐回路
61 乗算回路
62 遅延検波回路
621 2分岐回路
622 遅延回路
623 直交検波回路
624 クロック再生回路
625 2分岐回路
626 検出回路
63 自動周波数制御回路
64 第1の相関回路
65 第2の相関回路
66 第3の相関回路
67 判定回路
68 加算回路
69 発振回路
70 3分岐回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic frequency control apparatus and an automatic frequency controller that compensates a frequency error by estimating a frequency offset region of a received signal using a correlation circuit when estimating and removing a frequency error of a received signal of a four-phase phase modulation method. The present invention relates to a frequency control method.
[0002]
[Prior art]
In a demodulation circuit that demodulates a four-phase phase modulation (QPSK) modulation signal, the phase plane is divided into four regions by π / 2 (hereinafter referred to as first to fourth quadrants), and a quadrant in which a received symbol exists. Is converted into a bit string. Here, when the received signal is frequency offset due to the influence of Doppler shift or the like, the received symbol rotates on the phase plane in a certain direction. For example, when the symbol rate is fs, the phase of the received symbol rotates by 2π on the phase plane at 1 / fs time is offset by fs from the set frequency to which the frequency of the received signal is assigned on the frequency axis. Will be. That is, if the phase rotation is ± π / 4 per 1 / fs time, the received signal is offset by ± fs / 8 from the set frequency assigned on the frequency axis.
[0003]
Therefore, when the received signal receives a large frequency offset from the set frequency, for example, when a large symbol rotation exceeding π / 2 such as kπ / 2 + α (k is an integer other than 0) is assumed in 1 / fs time, When a symbol offset by α from the symbol phase point set in the first quadrant is observed, whether the symbol in the first quadrant is originally frequency offset by α or the symbol in the second quadrant is α−π / 2. I cannot tell if it is offset. However, in such an uncertain case, even when the phase control amount is determined to be α and frequency control is performed and the phase of the received symbol rotates α−π / 2 in 1 / fs time, the symbol in each quadrant Since the phase is a phase rotated by α from the set phase, symbol synchronization is possible. However, since the region is determined to be a quadrant different from the original quadrant, the converted bit string is incorrect. Hereinafter, this is referred to as “false synchronization”.
[0004]
FIG. 6 shows a configuration example of an automatic frequency control apparatus using a conventionally proposed correlation circuit in order to solve the problem of erroneous synchronization. This configuration is an excerpt from the non-patent document 1 that can be considered as a conventional technique. By using three correlation circuits, even if the phase of the received symbol rotates ± π / 4 or more in 1 / fs time, The frequency error can be compensated.
[0005]
In FIG. 6, the reception signal and the output signal of the oscillation circuit 69 are multiplied by the multiplication circuit 61, and the frequency-converted signal is input to the delay detection circuit 62. In the delay detection circuit 62, the output signal of the multiplication circuit 61 is branched into two by the two-branch circuit 621, and one signal and the other signal delayed through the delay circuit 622 are input to the quadrature detection circuit 623 for delay detection. The detected signal is input to the clock recovery circuit 624 and the timing is recovered. The reproduction signal output from the clock reproduction circuit 624 is branched into two by a two-branch circuit 625, and the detection circuit 626 determines one of the reproduction signals and outputs a data bit string.
[0006]
The automatic frequency control circuit 63 for inputting the other reproduction signal branched into two by the two-branch circuit 625 includes a frequency error signal indicating a frequency error amount estimated from the reproduction signal and a signal obtained by removing this frequency error amount from the reproduction signal. (Hereinafter referred to as “demodulated signal”). The demodulated signal is branched into three by a three-branch circuit 70 and is input to the first correlation circuit 64, the second correlation circuit 65, and the third correlation circuit 66, respectively, and each correlation result is output to the determination circuit 67. The determination circuit 67 determines the correction amount Δθ of the frequency error signal output from the automatic frequency control circuit 63 according to the three correlation results, and outputs the correction signal. The adder circuit 68 adds the frequency error signal and the correction signal to the oscillation circuit 69 and controls the oscillation frequency.
[0007]
The delay detection circuit 62 shown above has a general configuration (Non-Patent Document 2). The automatic frequency control circuit 63 can be configured using, for example, a multiplication method, and the oscillation circuit 69 that controls the oscillation frequency based on the output signal can be easily configured using a voltage controlled oscillator (VCO) (Non-Patent Document 3, Non-patent document 4).
[0008]
A feature of the automatic frequency control device is a function of estimating a frequency error region using three correlation circuits. Hereinafter, a design method and an operation principle of the first correlation circuit 64, the second correlation circuit 65, the third correlation circuit 66, and the determination circuit 67 will be described.
[0009]
This automatic frequency control apparatus has a configuration corresponding to the delay detection method, and information bits are differentially encoded on the transmission side in order to delay-detect the received signal. In general, a fixed bit pattern called a unique word (UW) is inserted into a communication frame in order to synchronize. However, since UW is also differentially encoded on the transmission side as described above, there is a difference between the reception side and the reception side. The dynamically encoded UW is received as a fixed bit pattern. This differentially encoded UW fixed bit pattern in a state where there is no frequency error is defined as (Si, Sq). In the conventional example described below, it is assumed that the signal is gray-coded. When the fixed bit pattern of (Si, Sq) is set as the correlation coefficient of the first correlation circuit 64, the number of bits of the first correlation circuit 64 is the same as the number of differentially encoded UW bits. Will do.
[0010]
Here, the demodulated signal output from the automatic frequency control circuit 63 is input to the first correlation circuit 64, the correlation is examined, and a bit error may occur due to the influence of noise or the like, so that a threshold value is provided and set in advance. If a correlation result is obtained that matches the number of bits equal to or greater than the threshold value (in this specification, this situation is expressed as “correlation is possible” or “correlation”, and “correlation circuit is correlation” in the figure) The frequency error amount of the received signal is ± fs / 8 or less, and the information that the phase rotation amount per 1 / fs time of the received symbol is ± π / 4 or less is obtained.
[0011]
On the other hand, in a situation where the phase of the received symbol rotates by π / 4 to 3π / 4 in the unit 1 / fs time, the demodulated signal output from the automatic frequency control circuit 63 is correlated by the first correlation circuit 64. Can not be removes. In this situation, the frequency of the received signal is offset by fs / 8 to 3 fs / 8 from the set frequency, and the fixed bit pattern of the received signal is offset in the + direction by the value of the first correlation circuit 64 by π. It matches the fixed bit pattern of (-Sq, Si). However, the sign “−” means bit inversion. Therefore, when the fixed bit pattern of (-Sq, Si) is set as the correlation coefficient of the second correlation circuit 65, and the correlation is obtained by the second correlation circuit 65, the received signal is fs / 8 from the set frequency. Information is obtained that the frequency is offset by ˜3 fs / 8 and the phase of the received symbol is rotated by π / 4 to 3π / 4 in 1 / fs time.
[0012]
Similarly, the frequency of the received signal is offset by −fs / 8 to −3 fs / 8 from the set frequency so that the phase of the received symbol rotates by −π / 4 to −3π / 4 in 1 / fs time. In this situation, the demodulated signal output from the automatic frequency control circuit 63 cannot be correlated by the first correlation circuit 64 and the second correlation circuit 65. In this situation, the fixed bit pattern of the received signal is (Sq, -Si) in which the value of the first correlation circuit 64 is offset in the-direction by π. Therefore, when the fixed bit pattern of (Sq, -Si) is set as the correlation coefficient of the third correlation circuit 66, and the correlation is obtained by the third correlation circuit 66, the received signal is -fs / Information is obtained that the frequency is offset by 8 to −3 fs / 8 and the phase of the received symbol is rotated by −π / 4 to −3π / 4 in 1 / fs time.
[0013]
Next, the operation of the determination circuit 67 will be described.
The determination circuit 67 receives the correlation results of the first correlation circuit 64, the second correlation circuit 65, and the third correlation circuit 66, and examines the three correlations to estimate the received symbols per 1 / fs time. Is used to determine the correction amount Δθ of the frequency error signal output from the automatic frequency control circuit 63.
[0014]
Here, when the correlation is obtained by the first correlation circuit 64, the phase rotation amount of the received symbol is ± π / 4 or less per 1 / fs time. In this case, it is determined that synchronization is established in a normal quadrant. Therefore, since the frequency error amount detected by the automatic frequency control circuit 63 is a value estimated in a normal quadrant, there is no need to correct it, and therefore the output of the determination circuit 67 (correction amount of the frequency error signal) Δθ. Is 0.
[0015]
When the correlation is obtained by the second correlation circuit 65, the phase rotation amount of the received symbol is π / 4 to 3π / 4 per 1 / fs time. Therefore, in order to remove the frequency error in the normal quadrant, the frequency error signal output from the automatic frequency control circuit 63 is set so that the phase rotation amount of the received symbol is ± π / 4 or less per 1 / fs time. It is necessary to set a correction amount. That is, when the correlation is obtained by the second correlation circuit 65, the output Δθ of the determination circuit 67 is set to −π / 2, and −π / 2 per 1 / fs time is added to the phase rotation amount of the received symbol. . The phase shift amount −π / 2 given per 1 / fs time is −1/4 of the symbol rate as a discriminating value of the frequency error.
[0016]
When the correlation is obtained by the third correlation circuit 66, the phase rotation amount of the received symbol is −3π / 4 to −π / 4 per 1 / fs time. Therefore, similarly, the output Δθ of the determination circuit 67 may be set to + π / 2, and π / 2 per 1 / fs time may be added to the phase rotation amount of the received symbol. The phase shift amount + π / 2 given per 1 / fs time is 1/4 of the symbol rate as a discriminating value of the frequency error.
[0017]
FIG. 7 shows a determination algorithm of the determination circuit 67 of the conventional automatic frequency control device.
When the first correlation circuit 64 checks the correlation and finds a correlation, the determination circuit 67 outputs 0 as the determination circuit output Δθ and ends the process. Next, when the correlation is not obtained by the first correlation circuit 65 and the correlation is obtained by examining the correlation by the second correlation circuit 65, −π / 2 is output as the determination circuit output Δθ, and the first correlation circuit 65 The procedure returns to the procedure for examining the correlation of the correlation circuit 64. If the correlation is not obtained by the first correlation circuit 64 and the second correlation circuit 65 but the correlation is obtained by examining the correlation by the third correlation circuit 66, + π / 2 is output as the determination circuit output Δθ. Then, the procedure returns to the procedure for examining the correlation of the first correlation circuit 64. In the conventional automatic frequency control device, the case where the correlation is not obtained by the third correlation circuit 66 is not particularly taken into consideration, and the processing is terminated.
[0018]
That is, when the correlation is obtained by the first correlation circuit 64, the frequency error signal output from the automatic frequency control circuit 63 is fed back to the oscillation circuit 69 as it is, and the process is terminated. When the correlation is obtained by the second correlation circuit 65, −π / 2 is added to the frequency error signal and fed back to the oscillation circuit 69, so that the correlation can be obtained by the first correlation circuit 64. The process ends.
[0019]
As described above, the determination circuit 67 is 0 when the correlation is obtained by the first correlation circuit 64, -π / 2 when the correlation is obtained by the second correlation circuit 65, and the third correlation circuit. When the correlation is obtained at 66, + π / 2 is output to the adder circuit 68 and added to the frequency error signal output from the automatic frequency control circuit 63 to control the oscillation frequency of the oscillation circuit 69. By inputting the signal of the frequency controlled in this way to the multiplication circuit 61 and multiplying the received signal, the frequency error component that is frequency offset from the set frequency to which the received signal is assigned can be removed.
[0020]
[Non-Patent Document 1]
Igarashi, 5 others, “A study on AFC method using multiple correlators”, 1994 Autumn Meeting of IEICE, B-290
[Non-Patent Document 2]
Fujino Tadashi "Digital Mobile Communications" Shosho-do, 1st edition, published on June 10, 2000, pp.52-78, pp.122-152
[Non-Patent Document 3]
Naoshi Iida "Satellite Communications" Ohmsha, 1st edition, published on May 30, 1998, pp.301-333
[Non-Patent Document 4]
Heiichi Yamamoto and Shuzo Kato “TDMA Communication” The Institute of Electronics, Information and Communication Engineers, 1st edition, published on May 1, 1997, pp.76-89
[0021]
[Problems to be solved by the invention]
By the way, the conventional automatic frequency control apparatus uses three correlation circuits as shown in FIG. 6, and does not consider the case where the correlation cannot be obtained by the third correlation circuit 66 as shown in FIG. The maximum frequency error that can be performed is a rotation amount of a maximum of ± 3π / 4 of the received symbol phase per 1 / fs time on the phase plane, and a frequency error amount of ± 3 fs / 8 on the frequency axis.
[0022]
Further, there are cases where the conventional determination algorithm shown in FIG. 7 cannot correct the frequency error (the received symbol cannot be synchronized), and this phenomenon will be described below with reference to FIG. FIG. 8 shows the phase rotation amount of the symbol due to the frequency error per 1 / fs time of the input signal of the automatic frequency control circuit 63 on the phase plane.
[0023]
First, the transmission symbol position on the transmission side is set to # 0 on the phase plane. FIG. 8 shows the phase rotation amount of the symbol due to the frequency error. If there is no frequency error, the phase rotation amount of the reception symbol is # 0 (hereinafter referred to as “reception symbol # 0” or “# 0”), and the transmission symbol Match the position. Under this assumption, it is assumed that the received symbol is affected by the frequency error, and if there is no noise, the received symbol is rotated by a phase amount slightly smaller than π / 4 per 1 / fs time, and is represented as received symbol # 1 in FIG. . If there is no noise, the received symbol # 1 can be correlated by the first correlation circuit 64. Accordingly, the frequency error component is removed by the automatic frequency control circuit 63, and the transmission symbol # 0 can be estimated by correcting the phase rotation amount of the reception symbol # 1.
[0024]
However, since noise is generally added to a received signal in a propagation path or a modem circuit, the following situation is assumed as an example. In a situation where noise is added, received symbol # 1 may rotate more than π / 4 per 1 / fs time. At this time, the received symbol # 1 moves to the position of # 2 in the phase plane, and the received symbol # 2 is correlated by the second correlation circuit 65. Here, if −π / 2 output from the determination circuit 67 is added to the frequency error signal output from the automatic frequency control circuit 63 to control the oscillation frequency of the oscillation circuit 69, then it is input to the automatic frequency control circuit 63. The received symbol is # 3.
[0025]
This received symbol # 3 may move to the position of # 4 due to the addition of noise. At this time, the received symbol # 4 is correlated by the third correlation circuit 66. Here, if + π / 2 output from the determination circuit 67 is added to the frequency error signal output from the automatic frequency control circuit 63 to control the oscillation frequency of the oscillation circuit 69, the next reception input to the automatic frequency control circuit 63 is performed. The symbol is # 5 and is in the vicinity of the reception symbol # 1.
[0026]
Thus, reception symbol # 1 transitions to reception symbol # 2 by adding noise and becomes reception symbol # 3 after rotation of the symbol phase amount of −π / 2, but has transitioned to reception symbol # 4 by adding noise. When a symbol phase amount of + π / 2 is rotated and the received symbol # 5 is in the vicinity of the received symbol # 1, it is assumed that a transition to the received symbol # 2 occurs again due to the addition of noise. When such symbol transitions occur repeatedly, the automatic frequency control circuit 63 of FIG. 6 cannot estimate the frequency error amount accurately because the frequency error amount to be estimated varies greatly with time due to the influence of noise. In other words, the reception signal cannot be synchronized for a long time after the start of reception, and the line quality is greatly deteriorated.
[0027]
As another example, when the symbol input to the automatic frequency control circuit 63 fluctuates between # 1 and # 2 due to the influence of noise, the correlation result does not exceed the threshold value. 64 and the second correlation circuit 65 cannot be correlated. In this case as well, the automatic frequency control circuit 63 of FIG. 6 cannot accurately estimate the frequency error amount, and the received signal cannot be synchronized for a long time, so that the line quality is greatly deteriorated.
[0028]
In this way, the phase rotation amount per 1 / fs time of the received symbol input to the automatic frequency control circuit 63 changes due to the influence of noise, and the correlation circuit that can be correlated with time is different, or the correlation circuit that can be correlated When there is no signal, the determination circuit 67 cannot estimate the frequency error region, so that the line quality of the received signal is greatly deteriorated. Specifically, in this situation, the phase rotation amount of the received symbol per 1 / fs time is near ± π / 4 or ± 3π / 4, and on the frequency axis, near ± fs / 8, or ± 3 fs. This occurs when a frequency offset in the vicinity of / 8 is received. Hereinafter, the frequency error region in the vicinity of ± fs / 8 and ± 3 fs / 8 is referred to as “automatic frequency control unstable region”.
[0029]
The present invention can estimate and remove a frequency error amount of ± 3 fs / 8 or more in an automatic frequency control apparatus that estimates and removes a frequency error amount using a correlation circuit, and receives a received signal from a set frequency. An automatic frequency control device that estimates and removes the frequency error amount without being affected by noise when it receives a frequency error in the vicinity of ± fs / 8 or ± 3 fs / 8, and suppresses deterioration in line quality. The purpose is to provide.
[0030]
[Means for Solving the Problems]
The automatic frequency control apparatus according to the present invention is characterized in that a fourth correlation circuit is provided to detect a signal that is offset from the set frequency by more than ± 3 fs / 8. In the prior art, the upper limit of the control range of the frequency error was ± 3 fs / 8, but a wide range of frequency error amounts exceeding ± 3 fs / 8 can be estimated and removed by the present invention. .
[0031]
Further, in the automatic frequency control device of the present invention, when correlation cannot be obtained in all the correlation circuits, the correction amount of the frequency error signal is α (where α is the symbol rate n / 4 (n is an integer)). It is characterized in that a determination circuit for outputting (different values) is provided.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows the overall configuration of the first embodiment of the present invention.
[0033]
In the figure, the received signal and the output signal of the oscillation circuit 8 are multiplied by the multiplication circuit 1, and the frequency-converted signal is input to the demodulation circuit 2. The demodulating circuit 2 outputs a frequency error signal indicating a frequency error amount estimated from the input signal, a demodulated signal obtained by removing the frequency error amount from the input signal, and data detected from the demodulated signal. The demodulated signal is branched into four by the four-branch circuit 10 and input to the first correlation circuit 3, the second correlation circuit 4, the third correlation circuit 5, and the fourth correlation circuit 6, respectively, and each correlation result is determined by the determination circuit. 7 is output. The determination circuit 7 determines the correction amount Δθ of the frequency error signal output from the demodulation circuit 2 according to the four correlation results, and outputs the correction signal. The adder circuit 9 adds the frequency error signal and the correction signal to the oscillation circuit 8 and controls the oscillation frequency.
[0034]
The first correlation circuit 3, the second correlation circuit 4, and the third correlation circuit 5 have the same configuration as the correlation circuits 64, 65, and 66 having the conventional configuration shown in FIG. Hereinafter, a circuit design method for the fourth correlation circuit 6 which is a feature of the present embodiment, and a control function newly added by adding the fourth correlation circuit 6 in the determination circuit 7 will be described.
[0035]
In the conventional configuration shown in FIG. 6, it was possible to correct a maximum frequency error of ± 3 fs / 8 from the set frequency. First, as a frequency error amount equal to or greater than the maximum frequency error, 3 fs / 8˜ Assume a situation where there is a frequency error of 5 fs / 8.
[0036]
In a situation where there is a frequency error of 3 fs / 8 to 5 fs / 8, the demodulated signal output from the demodulation circuit 2 has a symbol phase further from the situation where the received signal is offset by fs / 8 to 3 fs / 8 from the set frequency. The rotation is + π / 2 per 1 / fs time. As a result, when a frequency offset of ± fs / 8 or less is received, the symbol phase is rotated by + π per 1 / fs time. The fixed bit pattern of the first correlation circuit that correlates signals having a frequency offset of ± fs / 8 or less is (Si, Sq) as described in the section of the prior art. Therefore, when the symbol phase is further rotated by + π per 1 / fs time than in this case, the fixed bit pattern that can be correlated with the input signal is rotated by the fixed bit pattern of the first correlation circuit by + π (−Si). , -Sq).
[0037]
On the other hand, in a situation where there is a frequency error of −5 fs / 8 to −3 fs / 8, the demodulated signal output from the demodulation circuit 2 is a situation where the received signal is offset from the set frequency by −3 fs / 8 to −fs / 8. Therefore, the symbol phase is further rotated by −π / 2 per 1 / fs time. As a result, since a frequency offset of ± fs / 8 or less is received, the symbol phase is rotated by −π per 1 / fs time. The fixed bit pattern of the first correlation circuit that correlates signals having a frequency offset of ± fs / 8 or less is (Si, Sq) as described in the section of the prior art. Therefore, when the symbol phase is further rotated by −π per 1 / fs time than in this case, the fixed bit pattern that can be correlated with the input signal is obtained by rotating the fixed bit pattern of the first correlation circuit by −π ( -Si, -Sq).
[0038]
As described above, when the fixed bit pattern of (-Si, -Sq) is set in the fourth correlation circuit 6 and correlation is established with the input signal, the frequency error amount of the received signal is 3 fs / 8 to 5 fs / 8. Alternatively, it can be estimated that it is in the range of −5 fs / 8 to −3 fs / 8.
[0039]
Here, if the received signal exists in the frequency error region of 3 fs / 8 to 5 fs / 8 from the set frequency, the phase rotation amount of the symbol becomes 3π / 4 to 5π / 4 in 1 / fs time. In this case, by rotating the symbol phase by −π / 2 in 1 / fs time, the symbol phase rotation amount per 1 / fs time becomes π / 4 to 3π / 4. Correlation can be taken. When the correlation is obtained by the second correlation circuit 4, the phase of the received symbol is rotated by −π / 2, so that the phase rotation amount of the symbol is finally corrected to ± π / 4 or less per 1 / fs time. The As a result, the frequency error can be removed in the automatic frequency control circuit existing in the demodulation circuit 2. Therefore, when the correlation is obtained by the fourth correlation circuit 6, if the received signal exists in the frequency error region of 3 fs / 8 to 5 fs / 8 from the set frequency, the correction amount of the frequency error signal output from the determination circuit 7 is It may be set to −π / 2.
[0040]
On the other hand, if the received signal exists in the frequency error region of −5 fs / 8 to −3 fs / 8 from the set frequency, the phase rotation amount of the symbol becomes −5π / 4 to −3π / 4 in 1 / fs time. In this case, by rotating the symbol phase by π / 2 in 1 / fs time, the symbol phase rotation amount per 1 / fs time becomes −3π / 4 to −π / 4, and the third correlation circuit 5 Can be correlated. When the correlation is obtained by the third correlation circuit 5, the phase of the received symbol is rotated by π / 2, so that the amount of phase rotation of the symbol is finally corrected to ± π / 4 or less per 1 / fs time. . As a result, the frequency error can be removed in the automatic frequency control circuit existing in the demodulation circuit 2. Therefore, when the correlation is obtained by the fourth correlation circuit 6, if the received signal exists in the frequency error region of −5 fs / 8 to −3 fs / 8 from the set frequency, the frequency error signal output from the determination circuit 7 is corrected. The amount may be π / 2.
[0041]
However, when the correlation is obtained by the fourth correlation circuit 6, it is estimated that the frequency error amount of the received signal is in the range of 3 fs / 8 to 5 fs / 8 or −5 fs / 8 to −3 fs / 8. However, since the correlation result is output in the same manner in any frequency error region, it cannot be specified which frequency error region. That is, it cannot be determined whether the correction amount Δθ of the frequency error signal output from the determination circuit 7 is −π / 2 or π / 2. A procedure for controlling the output of the determination circuit 7 after the correlation is obtained by the fourth correlation circuit 6 will be described below with reference to FIG.
[0042]
When the correlation is obtained by the fourth correlation circuit 6, the determination circuit 7 assumes that the received signal exists in the frequency error region of 3 fs / 8 to 5 fs / 8 from the set frequency, and outputs the output as −π / 2. To do. As a result, the oscillation circuit 8 is controlled by adding −π / 2 to the frequency error signal. Therefore, if the assumption is correct, the second correlation circuit 4 can be correlated. Therefore, when the correlation is obtained in the second correlation circuit 4, the output of the determination circuit 7 can be finally determined as -π / 2.
[0043]
On the other hand, if the above assumption is incorrect, the output of the determination circuit 7 is set to −π / 2, and the amount of symbol phase rotation per 1 / fs time is −7π / 4 to −5π / 4. In this case, the received signal is offset by a frequency larger than the set frequency, so that no correlation circuit is correlated. Therefore, after setting the output of the determination circuit 7 to −π / 2, paying attention to the correlation result of the second correlation circuit 4, if there is no correlation in the second correlation circuit 4, it is determined that there is an error in the assumption, and reception It is determined that the signal exists in the frequency error region of −5 fs / 8 to −3 fs / 8 from the set frequency.
[0044]
In the case of this frequency error, the output of the determination circuit 7 should originally be π / 2, but because −π / 2 controls the oscillation circuit 8 as the output of the determination circuit 7 under the wrong assumption, In order to cancel this and further increase the output to + π / 2, the output of the determination circuit 7 needs to be + π. As a result, the frequency control of the oscillation circuit 8 based on an erroneous assumption is canceled, and the third correlation circuit 5 is in a state of being correlated. Therefore, when the correlation is obtained by the third correlation circuit 5, the output of the determination circuit 7 can be finally determined as + π / 2.
[0045]
By configuring the fourth correlation circuit 6 and the determination circuit 7 as described above, it is possible to remove frequency errors from the set frequency up to ± 5 fs / 8.
[0046]
(Judgment algorithm of judgment circuit 7)
3 and 4 show a determination algorithm of the determination circuit 7 in the first embodiment.
[0047]
In FIG. 3, when the correlation is obtained by examining the correlation in the first correlation circuit 3, the determination circuit 7 outputs 0 as the determination circuit output Δθ and ends the process. Next, when the correlation is not obtained in the first correlation circuit 3 and the correlation is obtained by examining the correlation in the second correlation circuit 4, −π / 2 is output as the determination circuit output Δθ, and the first The procedure returns to the procedure for examining the correlation of the correlation circuit 3. Further, when the correlation is not obtained by the first correlation circuit 3 and the second correlation circuit 4 and the correlation is obtained by examining the correlation by the third correlation circuit 5, + π / 2 is output as the determination circuit output Δθ. Then, the procedure returns to the procedure for examining the correlation of the first correlation circuit 3. The above procedure (a) is the same as that of the conventional configuration shown in FIG.
[0048]
In the automatic frequency control device according to the present embodiment, when the correlation cannot be obtained by the third correlation circuit 5, the process proceeds to the fourth correlation circuit 6, and when the correlation is examined by the fourth correlation circuit 6, the correlation is obtained. As described above, -π / 2 is output as the determination circuit output Δθ, and the correlation is examined by the second correlation circuit 4. When the correlation is obtained by the second correlation circuit 4, −π / 2 is determined as the determination circuit output Δθ, and the procedure returns to the procedure for examining the correlation of the first correlation circuit 3. On the other hand, when the correlation cannot be obtained by the second correlation circuit 4, + π is output as the determination circuit output Δθ, and the correlation is examined by the third correlation circuit 5. When the correlation is obtained by the third correlation circuit 5, + π / 2 is determined as the determination circuit output Δθ, and the procedure returns to the procedure for examining the correlation of the first correlation circuit 3.
[0049]
If the correlation cannot be obtained by the fourth correlation circuit 6, the process is terminated. However, the processing is ended here, including whether to enter a standby state or to restart the input from each correlation circuit to the determination circuit 7.
[0050]
The determination algorithm of the determination circuit 7 shown in FIG. 4 outputs + π / 2 as the determination circuit output Δθ by reversing the above assumption in the case of FIGS. 2 and 3 when the correlation is obtained by the fourth correlation circuit 6. To do. In this case, the correlation is examined by the third correlation circuit 5, and when the correlation is obtained by the third correlation circuit 5, + π / 2 is determined as the determination circuit output Δθ, and the first correlation circuit 3 Return to the procedure to check the correlation. On the other hand, when the third correlation circuit 5 cannot obtain the correlation, -π is output as the determination circuit output Δθ, and the second correlation circuit 4 checks the correlation. When the correlation is obtained by the second correlation circuit 4, −π / 2 is determined as the determination circuit output Δθ, and the procedure returns to the procedure for examining the correlation of the first correlation circuit 3.
[0051]
In the description of this embodiment, the output of the determination circuit 7 is set to ± π / 2 and ± π. However, these values are not exact, and allow for some errors such as ± 0.49π. Yes.
[0052]
In addition, when the correlation is obtained by the fourth correlation circuit, instead of outputting ± π / 2 as the output of the determination circuit, the phase of the received symbol can be shifted to a quadrant in a direction where there is a quadrant that can be normally synchronized. Such an output value may be set. For example, in the determination algorithm of FIG. 3, “fourth correlation circuit — [− π / 2 phase operation] —second correlation circuit — [− π / 2 phase operation] —first correlation circuit” or “first correlation circuit” 4 correlation circuits-[-π / 2 phase operation]-second correlation circuit-[+ π phase operation]-third correlation circuit-[+ π / 2 phase operation]-first correlation circuit " The phase amount is sequentially controlled so that the symbols transition to quadrants that can be synchronized in two or three stages, and the same applies to the determination algorithm of FIG. 4, but the phase when the correlation is obtained in the fourth correlation circuit. For example, an operation amount may be set to −π, and an algorithm that performs synchronization in one stage, such as “fourth correlation circuit — [− π phase operation] —first correlation circuit” may be used. However, if the correlation cannot be obtained in the first correlation circuit at this time, the output of the determination circuit is set to + 2π, and “fourth correlation circuit − [− π phase operation] −first correlation circuit − [+ 2π phase operation” is set. ] —First correlation circuit ”, the algorithm is synchronized in two stages.
[0053]
Further, in the determination algorithm of FIGS. 3 and 4 (FIGS. 11 and 12 to be described later), the order of the second correlation circuit and the third correlation circuit may be switched to check the correlation with the input signal.
[0054]
(Configuration example of demodulation circuit 2)
When the delay detection method is adopted as the detection method of the demodulation circuit 2, the demodulation circuit 2 can be formed by the delay detection circuit 62 and the automatic frequency control circuit 63 shown in FIG. 6. That is, a frequency error signal indicating the estimated frequency error amount and a demodulated signal obtained by removing the frequency error amount from the reproduction signal are output from the automatic frequency control circuit 63 that inputs the reproduction signal output from the clock recovery circuit 624. The demodulated signal is branched into four and input to each correlation circuit.
[0055]
FIG. 5 shows another configuration example of the demodulation circuit 2. The configuration example of FIG. 5 (1) is a case where the absolute synchronous detection method is adopted as the detection method, and the configuration example of FIG. 5 (2) is a case where the differential code synchronous detection method is adopted as the detection method.
[0056]
In FIG. 5 (1), the input signal of the demodulation circuit 2 (the output signal of the multiplication circuit 1) is input to the quadrature detection circuit 21 for quadrature detection, and the detected signal is input to the clock recovery circuit 22 for timing recovery. . An automatic frequency control circuit 23 that inputs a reproduction signal output from the clock reproduction circuit 22 outputs a frequency error signal indicating a frequency error amount estimated from the reproduction signal and a signal obtained by removing the frequency error amount from the reproduction signal. . The frequency error signal is input to the adder circuit 9 shown in FIG. The signal from which the frequency error amount has been removed is input to the carrier wave recovery circuit 24 and becomes a signal from which the phase offset component has been removed. This signal is branched into two by a two-branch circuit 25, and the detection circuit 26 determines one of the signal areas and outputs a data bit string.
[0057]
The other signal branched into two by the two-branch circuit 24 is input to the 1-symbol difference circuit 27, and a difference signal between the input signal and a signal obtained by delaying it by one symbol time is generated. This differential signal is input as a demodulated signal of the demodulating circuit 2 to each correlation circuit (3 to 6) via the four-branch circuit 10 shown in FIG.
[0058]
Here, the reason for taking the difference value for one symbol is that the differentially encoded UW fixed bit pattern is (Si, Sq), and the correlation coefficient of each correlation circuit is set based on the pattern. Because it is. Since the absolute synchronous detection method does not perform differential encoding on the transmission side, it is necessary to perform differential encoding on the reception side in order to set the correlation coefficient of the correlation circuit to the above pattern. In the absolute synchronous detection method, since the frequency error of ± fs / 8 or less can be compensated for by the automatic frequency control circuit 23, the frequency error signal detected by the automatic frequency control circuit 23 may not be output to the adder circuit 9. is there.
[0059]
The basic configuration of the demodulation circuit 2 shown in FIG. 5 (2) is the same as that of the absolute synchronous detection method shown in FIG. 5 (1), but information is transmitted on the transmission side in order to adopt the differential code synchronous detection method. The difference is that the bits are differentially encoded and the one-symbol difference circuit 27 is not required. Further, in the differential code synchronous detection method, since the frequency error of ± fs / 8 or less can be compensated for by the automatic frequency control circuit 23, the frequency error signal detected by the automatic frequency control circuit 23 is not output to the adder circuit 9. In some cases.
[0060]
The demodulating circuit 2 used in the automatic frequency control device of the present invention has shown a configuration example in which a delay detection method, an absolute synchronous detection method, a differential code synchronous detection method, etc. are adopted as a detection method as described above. It is not limited to each circuit configuration. In this embodiment, the Gray code is assumed as the encoding method of the input signal. However, the principle of the present invention can be applied to other encoding methods as well.
[0061]
(Second Embodiment)
The second embodiment shows an improved example of the determination algorithm of the determination circuit 67 in the conventional automatic frequency control device. In the conventional configuration, as described with reference to FIG. 8, when there is a frequency error in the vicinity of ± fs / 8 or ± 3 fs / 8 from the set frequency, the line quality cannot be removed due to the influence of noise. However, the present embodiment solves this problem.
[0062]
FIG. 9 shows a determination algorithm of the determination circuit 67 in the second embodiment. The automatic frequency control apparatus according to the present embodiment will be described by taking the conventional configuration shown in FIG. 6 as an example. For example, the delay detection circuit 62 and the automatic frequency control circuit 63 have the configuration of another demodulation circuit as shown in FIG. It can also be taken.
[0063]
When the first correlation circuit 64 checks the correlation and finds a correlation, the determination circuit 67 outputs 0 as the determination circuit output Δθ and ends the process. Next, when the correlation is not obtained by the first correlation circuit 65 and the correlation is obtained by examining the correlation by the second correlation circuit 65, −π / 2 is output as the determination circuit output Δθ, and the first correlation circuit 65 The procedure returns to the procedure for examining the correlation of the correlation circuit 64. If the correlation is not obtained by the first correlation circuit 64 and the second correlation circuit 65 but the correlation is obtained by examining the correlation by the third correlation circuit 66, + π / 2 is output as the determination circuit output Δθ. Then, the procedure returns to the procedure for examining the correlation of the first correlation circuit 64. The above procedure is the same as that of the conventional configuration shown in FIG.
[0064]
In this embodiment, when no correlation is obtained in any of the first correlation circuit 64, the second correlation circuit 65, and the third correlation circuit 66, the determination circuit 67 uses α (however, α is a value different from nπ / 2 (n is an integer), and the procedure returns to the procedure for examining the correlation of the first correlation circuit 64.
[0065]
An example in which such a determination algorithm can avoid a state in which the frequency error cannot be removed due to the influence of noise will be described with reference to FIG. FIG. 10 shows the phase rotation amount of the symbol due to the frequency error per 1 / fs time of the input signal of the automatic frequency control circuit 63 in the same manner as FIG.
[0066]
First, π / 4 is set as an example of α, and a situation is assumed in which the received symbol is rotated by −7π / 32 per 1 / fs time. When a large noise is added to the signal in this situation, it is assumed that the automatic frequency control is unstable (the area indicated by hatching in the figure) that cannot be synchronized. For example, when the received symbol fluctuates between the correlation frequency error region of the first correlation circuit and the correlation frequency error region of the third correlation circuit due to noise, the correlation values of all the correlation circuits do not exceed the set threshold value become. At this time, the determination circuit 67 outputs α (= π / 4) according to the determination algorithm of FIG.
[0067]
In FIG. 10, it is assumed that the transmission symbol is # 0 while the reception symbol is # 1. In this assumption, the phase amount of the received symbol # 1 is rotated by −7π / 32 per 1 / fs time. Therefore, if α (= π / 4) is set as the output of the determination circuit 67, the phase of the received symbol is subtracted. It rotates by π / 32 per 1 / fs time and transitions to the position of received symbol # 2. Since the rotation amount is within ± π / 4 per 1 / fs time that can be removed by the automatic frequency control circuit 63 as described above, it can be easily removed by the automatic frequency control circuit 63. As a result, the correlation is obtained by the first correlation circuit 64, the output of the determination circuit 67 becomes 0, and the processing of FIG.
[0068]
(Third embodiment)
The third embodiment shows an improved example of the determination algorithm of the determination circuit 7 in the first embodiment of FIG. An improved example of the determination algorithm shown in FIG. 3 is shown in FIG. 11, and an improved example of the determination algorithm shown in FIG. 4 is shown in FIG.
[0069]
In any case, when any of the first correlation circuit 3, the second correlation circuit 4, the third correlation circuit 5, and the fourth correlation circuit 6 cannot be correlated, the determination circuit 7 determines the correction amount of the frequency error signal. As α (where α is a value different from nπ / 2 (n is an integer)), and the procedure returns to the procedure for examining the correlation of the first correlation circuit 3. The operation after outputting α is the same as the operation shown in the second embodiment.
[0070]
【The invention's effect】
As described above, since the automatic frequency control apparatus of the present invention can correct a frequency error exceeding ± 3 fs / 8 from the set frequency, a large frequency error caused by Doppler shift in a moving body moving at high speed. Can be corrected, and the use range of mobile communication can be expanded.
[0071]
In addition, since a large frequency error caused by using an oscillator that is inexpensive and small but has poor frequency stability can be corrected, the cost of the terminal can be reduced.
[0072]
Further, when the received signal receives a frequency offset in the vicinity of ± fs / 8 or ± 3 fs / 8 from the set frequency, the frequency error amount can be estimated and removed stably even when receiving noise. Therefore, it is possible to suppress deterioration of the line quality.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the overall configuration of a first embodiment of the present invention.
FIG. 2 is a flowchart illustrating a main part of a determination algorithm of a determination circuit 7 according to the first embodiment.
FIG. 3 is a flowchart illustrating a determination algorithm of the determination circuit 7 according to the first embodiment.
FIG. 4 is a flowchart showing a determination algorithm of the determination circuit 7 according to the first embodiment.
FIG. 5 is a block diagram showing another configuration example of the demodulation circuit 2 of the first embodiment.
FIG. 6 is a block diagram showing a configuration example of a conventional automatic frequency control device.
FIG. 7 is a flowchart showing a determination algorithm of a determination circuit 67 of a conventional automatic frequency control device.
FIG. 8 is a diagram for explaining an example in which received symbols cannot be synchronized by a conventional determination algorithm;
FIG. 9 is a flowchart showing a determination algorithm of a determination circuit 67 in the second embodiment.
FIG. 10 is a diagram illustrating an improvement example of a determination algorithm according to the second embodiment.
FIG. 11 is a flowchart showing an improved example of the determination algorithm shown in FIG. 3;
12 is a flowchart showing an improved example of the determination algorithm shown in FIG. 4;
[Explanation of symbols]
1 Multiplier circuit
2 Demodulator circuit
21 Quadrature detection circuit
22 Clock recovery circuit
23 Automatic frequency control circuit
24 Carrier recovery circuit
25 2-branch circuit
26 Detection circuit
27 1-symbol difference circuit
3 First correlation circuit
4 Second correlation circuit
5 Third correlation circuit
6 Fourth correlation circuit
7 Judgment circuit
8 Oscillator circuit
9 Adder circuit
10 4-branch circuit
61 Multiplier circuit
62 Delay detection circuit
621 2-branch circuit
622 delay circuit
623 Quadrature detection circuit
624 clock recovery circuit
625 2-branch circuit
626 detection circuit
63 Automatic frequency control circuit
64 First correlation circuit
65 Second correlation circuit
66 Third correlation circuit
67 Judgment circuit
68 Adder circuit
69 Oscillator circuit
70 3-branch circuit

Claims (9)

発振周波数制御端子に入力する制御信号に応じて発振周波数の制御が可能な発振回路と、
4相位相変調された受信信号と前記発振回路の出力信号を乗算して周波数変換する乗算回路と、
前記周波数変換された信号を入力し、その入力信号から推定した周波数誤差量を示す周波数誤差信号と、この周波数誤差量を入力信号から除去した復調信号と、この復調信号から検出されたデータを出力する復調回路と、
前記復調信号を4分岐する4分岐回路と、
4分岐された前記復調信号をそれぞれ入力し、それぞれ所定の相関係数との相関をとる4つの相関回路と、
前記4つの相関回路の各相関結果に応じて、前記周波数誤差信号の補正量を判定する判定回路と、
前記周波数誤差信号と前記補正量を加算し、前記発振回路の発振周波数制御端子に与える加算回路とを備え、
前記4つの相関回路を第1の相関回路、第2の相関回路、第3の相関回路、第4の相関回路としたときに、それぞれの相関係数として、前記受信信号の周波数誤差量がシンボルレートの0,−1/4,1/4,1/2で伝送されたときのビットパターンを設定し、
前記判定回路は、前記周波数誤差信号の補正量として、前記第1の相関回路で入力信号と相関がとれた場合に0を出力し、前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力し、前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力し、前記第1の相関回路、前記第2の相関回路および前記第3の相関回路で相関がとれず、前記第4の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力してさらに前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力し、または前記第4の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力してさらに前記第2の相関回路で入力信号と相関がとれない場合にシンボルレートの1/2を出力してさらに前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力する構成である
ことを特徴とする自動周波数制御装置。
An oscillation circuit capable of controlling the oscillation frequency in accordance with a control signal input to the oscillation frequency control terminal;
A multiplying circuit that multiplies the received signal that has undergone four-phase phase modulation and the output signal of the oscillation circuit to convert the frequency;
The frequency-converted signal is input, and a frequency error signal indicating a frequency error amount estimated from the input signal, a demodulated signal obtained by removing the frequency error amount from the input signal, and data detected from the demodulated signal are output. A demodulation circuit to
A four-branch circuit for four-branching the demodulated signal;
Each of the four-branched demodulated signals is input, and four correlation circuits each for correlating with a predetermined correlation coefficient;
A determination circuit for determining a correction amount of the frequency error signal according to each correlation result of the four correlation circuits;
An addition circuit that adds the frequency error signal and the correction amount and gives the oscillation error control terminal to the oscillation circuit;
When the four correlation circuits are a first correlation circuit, a second correlation circuit, a third correlation circuit, and a fourth correlation circuit, the frequency error amount of the received signal is a symbol as a correlation coefficient. Set the bit pattern when transmitted at 0, -1/4, 1/4, 1/2 of the rate,
When the first correlation circuit correlates with the input signal, the determination circuit outputs 0 as the correction amount of the frequency error signal, and when the second correlation circuit correlates with the input signal -1/4 of the symbol rate is output to the first correlation circuit, and when the third correlation circuit correlates with the input signal, 1/4 of the symbol rate is output, and the first correlation circuit and the second correlation When the correlation is not obtained in the circuit and the third correlation circuit and the input signal is correlated in the fourth correlation circuit, -1/4 of the symbol rate is output and input in the second correlation circuit. When the correlation with the signal is obtained , -1/4 of the symbol rate is output, or when the correlation with the input signal is obtained with the fourth correlation circuit, -1/4 of the symbol rate is output, and further, When the correlation circuit of 2 cannot correlate with the input signal, Automatic frequency control device which is a configuration for outputting a quarter of the symbol rate in the case where the correlation between the input signal caught by further said third correlation circuit outputs 1/2 of Borureto.
発振周波数制御端子に入力する制御信号に応じて発振周波数の制御が可能な発振回路と、
4相位相変調された受信信号と前記発振回路の出力信号を乗算して周波数変換する乗算回路と、
前記周波数変換された信号を入力し、その入力信号から推定した周波数誤差量を示す周波数誤差信号と、この周波数誤差量を入力信号から除去した復調信号と、この復調信号から検出されたデータを出力する復調回路と、
前記復調信号を4分岐する4分岐回路と、
4分岐された前記復調信号をそれぞれ入力し、それぞれ所定の相関係数との相関をとる4つの相関回路と、
前記4つの相関回路の各相関結果に応じて、前記周波数誤差信号の補正量を判定する判定回路と、
前記周波数誤差信号と前記補正量を加算し、前記発振回路の発振周波数制御端子に与える加算回路とを備え、
前記4つの相関回路を第1の相関回路、第2の相関回路、第3の相関回路、第4の相関回路としたときに、それぞれの相関係数として、前記受信信号の周波数誤差量がシンボルレートの0,−1/4,1/4,1/2で伝送されたときのビットパターンを設定し、
前記判定回路は、前記周波数誤差信号の補正量として、前記第1の相関回路で入力信号と相関がとれた場合に0を出力し、前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力し、前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力し、前記第1の相関回路、前記第2の相関回路および前 記第3の相関回路で相関がとれず、前記第4の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力してさらに前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力し、または前記第4の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力してさらに前記第3の相関回路で入力信号と相関がとれない場合にシンボルレートの−1/2を出力してさらに前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力する構成である
ことを特徴とする自動周波数制御装置。
An oscillation circuit capable of controlling the oscillation frequency in accordance with a control signal input to the oscillation frequency control terminal;
A multiplying circuit that multiplies the received signal that has undergone four-phase phase modulation and the output signal of the oscillation circuit to convert the frequency;
The frequency-converted signal is input, and a frequency error signal indicating a frequency error amount estimated from the input signal, a demodulated signal obtained by removing the frequency error amount from the input signal, and data detected from the demodulated signal are output. A demodulation circuit to
A four-branch circuit for four-branching the demodulated signal;
Each of the four-branched demodulated signals is input, and four correlation circuits each for correlating with a predetermined correlation coefficient;
A determination circuit for determining a correction amount of the frequency error signal according to each correlation result of the four correlation circuits;
An addition circuit that adds the frequency error signal and the correction amount and gives the oscillation error control terminal to the oscillation circuit;
When the four correlation circuits are a first correlation circuit, a second correlation circuit, a third correlation circuit, and a fourth correlation circuit, the frequency error amount of the received signal is a symbol as a correlation coefficient. Set the bit pattern when transmitted at 0, -1/4, 1/4, 1/2 of the rate,
When the first correlation circuit correlates with the input signal, the determination circuit outputs 0 as the correction amount of the frequency error signal, and when the second correlation circuit correlates with the input signal -1/4 of the symbol rate is output to the first correlation circuit, and when the third correlation circuit correlates with the input signal, 1/4 of the symbol rate is output, and the first correlation circuit and the second correlation circuits and pre-symbol third correlation in the correlation circuit Torezu, input in the fourth further said third correlation circuit outputs 1/4 of the symbol rate in the case where the correlation between the input signal caught by the correlation circuit When the correlation with the signal is obtained , 1/4 of the symbol rate is output, or when the correlation with the input signal is obtained with the fourth correlation circuit, 1/4 of the symbol rate is output and further the third rate is output. Symbol when the correlation circuit cannot correlate with the input signal Automatic frequency control device which is a configuration for outputting a -1/4 symbol rate when correlated with the input signal caught by further said second correlation circuit outputs a -1/2 over preparative .
発振周波数制御端子に入力する制御信号に応じて発振周波数の制御が可能な発振回路と、
4相位相変調された受信信号と前記発振回路の出力信号を乗算して周波数変換する乗算回路と、
前記周波数変換された信号を入力し、その入力信号から推定した周波数誤差量を示す周波数誤差信号と、この周波数誤差量を入力信号から除去した復調信号と、この復調信号から検出されたデータを出力する復調回路と、
前記復調信号を3分岐する3分岐回路と、
3分岐された前記復調信号をそれぞれ入力し、それぞれ所定の相関係数との相関をとる3つの相関回路と、
前記3つの相関回路の各相関結果に応じて、前記周波数誤差信号の補正量を判定する判定回路と、
前記周波数誤差信号と前記補正量を加算し、前記発振回路の発振周波数制御端子に与える加算回路とを備え、
前記3つの相関回路を第1の相関回路、第2の相関回路、第3の相関回路としたときに、それぞれの相関係数として、前記受信信号の周波数誤差量がシンボルレートの0,−1/4,1/4で伝送されたときのビットパターンを設定し、
前記判定回路は、前記周波数誤差信号の補正量として、前記第1の相関回路で入力信号と相関がとれた場合に0を出力し、前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力し、前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力し、いずれの相関回路でも入力信号と相関がとれない場合にα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力する構成である
ことを特徴とする自動周波数制御装置。
An oscillation circuit capable of controlling the oscillation frequency in accordance with a control signal input to the oscillation frequency control terminal;
A multiplying circuit that multiplies the received signal that has undergone four-phase phase modulation and the output signal of the oscillation circuit to convert the frequency;
The frequency-converted signal is input, and a frequency error signal indicating a frequency error amount estimated from the input signal, a demodulated signal obtained by removing the frequency error amount from the input signal, and data detected from the demodulated signal are output. A demodulation circuit to
A three-branch circuit that branches the demodulated signal into three branches;
Three correlation circuits that respectively input the three-branch demodulated signals and correlate with predetermined correlation coefficients;
A determination circuit for determining a correction amount of the frequency error signal according to each correlation result of the three correlation circuits;
An addition circuit that adds the frequency error signal and the correction amount and gives the oscillation error control terminal to the oscillation circuit;
When the three correlation circuits are a first correlation circuit, a second correlation circuit, and a third correlation circuit, the frequency error amount of the received signal is 0 or −1 of the symbol rate as a correlation coefficient. Set the bit pattern when transmitted at / 4, 1/4,
When the first correlation circuit correlates with the input signal, the determination circuit outputs 0 as the correction amount of the frequency error signal, and when the second correlation circuit correlates with the input signal Is output -1/4 of the symbol rate, and when the third correlation circuit correlates with the input signal, it outputs 1/4 of the symbol rate, and none of the correlation circuits correlates with the input signal. In this case, the automatic frequency control apparatus is characterized in that α is output (where α is a value different from n / 4 (n is an integer) of the symbol rate).
請求項1または請求項2に記載の自動周波数制御装置において、
前記判定回路は、前記周波数誤差信号の補正量として、いずれの相関回路でも入力信号と相関がとれない場合にα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力する構成である
ことを特徴とする自動周波数制御装置。
In the automatic frequency control device according to claim 1 or 2 ,
The determination circuit uses α as a correction amount of the frequency error signal when any correlation circuit cannot correlate with the input signal (where α is a value different from n / 4 of the symbol rate (n is an integer)). The automatic frequency control apparatus characterized by the above-mentioned.
請求項1に記載の自動周波数制御装置の判定回路が行う自動周波数制御方法において、
前記第1の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力として0を出力して処理を終了し、
前記第1の相関回路で相関がとれないときに、前記第2の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
前記第1の相関回路および前記第2の相関回路で入力信号との相関がとれないときに、前記第3の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
前記第1の相関回路、前記第2の相関回路および前記第3の相関回路で入力信号との相関がとれないときに、前記第4の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、さらに前記第2の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、逆に前記第2の相関回路で入力信号との相関を調べて相関がとれない場合に判定回路出力としてシンボルレートの1/2を出力し、さらに前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻る
ことを特徴とする自動周波数制御方法。
In the automatic frequency control method performed by the determination circuit of the automatic frequency control device according to claim 1 ,
When the correlation with the input signal is examined by the first correlation circuit and a correlation is obtained, 0 is output as the determination circuit output and the process is terminated.
When the correlation is not obtained by the first correlation circuit, the correlation with the input signal is examined by the second correlation circuit, and when the correlation is obtained, -1/4 of the symbol rate is output as the determination circuit output, Returning to the procedure for examining the correlation of the first correlation circuit,
When the first correlation circuit and the second correlation circuit cannot correlate with the input signal, the third correlation circuit examines the correlation with the input signal and obtains a correlation. Output 1/4 of the symbol rate, and return to the procedure for examining the correlation of the first correlation circuit,
When the first correlation circuit, the second correlation circuit, and the third correlation circuit cannot correlate with the input signal, the fourth correlation circuit checks the correlation with the input signal to obtain the correlation. Is output as a determination circuit output, and -1/4 of the symbol rate is output as a determination circuit output. Further, when the correlation with the input signal is examined by the second correlation circuit, the correlation is obtained. 4 is returned to the procedure for examining the correlation of the first correlation circuit. Conversely, when the correlation with the input signal is examined by the second correlation circuit and the correlation cannot be obtained, 1 of the symbol rate is output as the determination circuit output. / 2, and when the third correlation circuit correlates with the input signal, outputs 1/4 of the symbol rate, and returns to the procedure for examining the correlation of the first correlation circuit. Automatic frequency control method.
請求項2に記載の自動周波数制御装置の判定回路が行う自動周波数制御方法において、
前記第1の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力として0を出力して処理を終了し、
前記第1の相関回路で相関がとれないときに、前記第2の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
前記第1の相関回路および前記第2の相関回路で入力信号との相関がとれないときに、前記第3の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
前記第1の相関回路、前記第2の相関回路および前記第3の相関回路で入力信号との相関がとれないときに、前記第4の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、さらに前記第3の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、逆に前記第3の相関回路で入力信号との相関を調べて相関がとれない場合に判定回路出力としてシンボルレートの−1/2を出力し、さらに前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻る
ことを特徴とする自動周波数制御方法。
In the automatic frequency control method performed by the determination circuit of the automatic frequency control device according to claim 2 ,
When the correlation with the input signal is examined by the first correlation circuit and a correlation is obtained, 0 is output as the determination circuit output and the process is terminated.
When the correlation is not obtained by the first correlation circuit, the correlation with the input signal is examined by the second correlation circuit, and when the correlation is obtained, -1/4 of the symbol rate is output as the determination circuit output, Returning to the procedure for examining the correlation of the first correlation circuit,
When the first correlation circuit and the second correlation circuit cannot correlate with the input signal, the third correlation circuit examines the correlation with the input signal and obtains a correlation. Output 1/4 of the symbol rate, and return to the procedure for examining the correlation of the first correlation circuit,
When the first correlation circuit, the second correlation circuit, and the third correlation circuit cannot correlate with the input signal, the fourth correlation circuit checks the correlation with the input signal to obtain the correlation. Is output as a determination circuit output, and 1/4 of the symbol rate is output as the determination circuit output when the correlation with the input signal is further checked by the third correlation circuit. Returning to the procedure for examining the correlation of the first correlation circuit, conversely, if the correlation with the input signal is examined by the third correlation circuit and the correlation cannot be obtained, the symbol rate -1 / 2 is output, and when the second correlation circuit correlates with the input signal, -1/4 of the symbol rate is output, and the procedure returns to the procedure for examining the correlation of the first correlation circuit. Automatic frequency control method.
請求項3に記載の自動周波数制御装置の判定回路が行う自動周波数制御方法において、
前記第1の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力として0を出力して処理を終了し、
前記第1の相関回路で相関がとれないときに、前記第2の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
前記第1の相関回路および前記第2の相関回路で入力信号との相関がとれないときに、前記第3の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
前記第1の相関回路、前記第2の相関回路および前記第3の相関回路で入力信号との相関がとれないときに、判定回路出力としてα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力し、前記第1の相関回路の相関を調べる手順に戻る
ことを特徴とする自動周波数制御方法。
In the automatic frequency control method performed by the determination circuit of the automatic frequency control device according to claim 3 ,
When the correlation with the input signal is examined by the first correlation circuit and a correlation is obtained, 0 is output as the determination circuit output and the process is terminated.
When the correlation is not obtained by the first correlation circuit, the correlation with the input signal is examined by the second correlation circuit, and when the correlation is obtained, -1/4 of the symbol rate is output as the determination circuit output, Returning to the procedure for examining the correlation of the first correlation circuit,
When the first correlation circuit and the second correlation circuit cannot correlate with the input signal, the third correlation circuit examines the correlation with the input signal and obtains a correlation. Output 1/4 of the symbol rate, and return to the procedure for examining the correlation of the first correlation circuit,
When the first correlation circuit, the second correlation circuit, and the third correlation circuit cannot correlate with an input signal, α is output as a determination circuit output, where α is n / 4 (n Is a value different from an integer), and the procedure returns to the procedure for examining the correlation of the first correlation circuit.
請求項5または請求項6に記載の自動周波数制御方法において、
前記第1の相関回路、前記第2の相関回路、前記第3の相関回路および前記第4の相関回路で入力信号との相関がとれないときに、判定回路出力としてα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力し、前記第1の相関回路の相関を調べる手順に戻る
ことを特徴とする自動周波数制御方法。
In the automatic frequency control method according to claim 5 or 6 ,
When the first correlation circuit, the second correlation circuit, the third correlation circuit, and the fourth correlation circuit cannot correlate with the input signal, α is a decision circuit output (where α is a symbol) An automatic frequency control method characterized by outputting a rate n / 4 (a value different from an integer) and returning to the procedure of examining the correlation of the first correlation circuit.
請求項5〜7のいずれかに記載の自動周波数制御方法において、
前記第2の相関回路と前記第3の相関回路の順番を入れ替えて入力信号との相関を調べる手順とする
ことを特徴とする自動周波数制御方法。
In the automatic frequency control method in any one of Claims 5-7 ,
An automatic frequency control method characterized in that the order of the second correlation circuit and the third correlation circuit is changed to check the correlation with the input signal.
JP2002290119A 2002-10-02 2002-10-02 Automatic frequency control device and automatic frequency control method Expired - Lifetime JP3943474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290119A JP3943474B2 (en) 2002-10-02 2002-10-02 Automatic frequency control device and automatic frequency control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290119A JP3943474B2 (en) 2002-10-02 2002-10-02 Automatic frequency control device and automatic frequency control method

Publications (2)

Publication Number Publication Date
JP2004128877A JP2004128877A (en) 2004-04-22
JP3943474B2 true JP3943474B2 (en) 2007-07-11

Family

ID=32282097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290119A Expired - Lifetime JP3943474B2 (en) 2002-10-02 2002-10-02 Automatic frequency control device and automatic frequency control method

Country Status (1)

Country Link
JP (1) JP3943474B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021041A1 (en) * 2008-08-21 2010-02-25 富士通株式会社 Receiver and receiving method

Also Published As

Publication number Publication date
JP2004128877A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JPH09266499A (en) Digital demodulating circuit, maximum detecting circuit, and reception device
EP1278345B1 (en) Frequency error estimating receiver, and frequency error estimating method
JP4514616B2 (en) Wireless receiver that automatically establishes frequency synchronization or phase synchronization
US8081027B2 (en) Reception device, control method, and program
US7042925B2 (en) Correlation detection improvement by averaging spread spectrum signals
US5914985A (en) Digital demodulator
JP2007174620A (en) Psk receiver, psk demodulating circuit, communication apparatus and psk receiving method
JPH0969862A (en) Digital radio communication receiver
US7046743B2 (en) Demodulator for demodulating digital modulated signals
JP3943474B2 (en) Automatic frequency control device and automatic frequency control method
JP3489493B2 (en) Symbol synchronizer and frequency hopping receiver
JP3773388B2 (en) Clock signal regeneration circuit and clock signal regeneration method
JP3949458B2 (en) Demodulator
JP4485297B2 (en) Demodulated circuit integrated semiconductor integrated circuit, demodulating method and receiver
JP4003386B2 (en) Clock signal reproducing device and receiving device, clock signal reproducing method and receiving method
JP2004166259A (en) Phase error correction circuit and receiver using it
JP2001045082A (en) Frequency offset quantity detector
JPH11103326A (en) Demodulator
JP3382891B2 (en) Demodulation method and digital demodulation device for digitally processing phase modulated signal
JP2010074506A (en) Clock regeneration circuit, demodulation circuit, receiving device, wireless communication system, and method of operating clock regeneration circuit
JP3946422B2 (en) Clock signal regeneration control circuit and clock signal regeneration control method
JP2006287672A (en) Ofdm demodulator and ofdm demodulating method
JP2022072447A (en) Digital receiver
JP4173048B2 (en) Automatic frequency controller
JP5168111B2 (en) Demodulator having phase uncertainty elimination function and carrier slip compensation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Ref document number: 3943474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term