JP3942766B2 - Phosphor - Google Patents

Phosphor Download PDF

Info

Publication number
JP3942766B2
JP3942766B2 JP07217799A JP7217799A JP3942766B2 JP 3942766 B2 JP3942766 B2 JP 3942766B2 JP 07217799 A JP07217799 A JP 07217799A JP 7217799 A JP7217799 A JP 7217799A JP 3942766 B2 JP3942766 B2 JP 3942766B2
Authority
JP
Japan
Prior art keywords
phosphor
voltage
light emission
resistance
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07217799A
Other languages
Japanese (ja)
Other versions
JP2000265168A (en
Inventor
清 田村
文昭 片岡
均 土岐
裕司 野村
寛治 田中
香 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Futaba Corp
Original Assignee
Nichia Corp
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp, Futaba Corp filed Critical Nichia Corp
Priority to JP07217799A priority Critical patent/JP3942766B2/en
Publication of JP2000265168A publication Critical patent/JP2000265168A/en
Application granted granted Critical
Publication of JP3942766B2 publication Critical patent/JP3942766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、還元処理することによって導電性を高めた蛍光体に関する。
【0002】
【従来の技術】
加速電圧が1kV以下で使用される所謂低速電子線用蛍光体は、蛍光体自体の抵抗が低いことが求められる。現在、このような条件を満たす材料としてはZnS:Ag等のような所謂硫化物蛍光体が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、硫化物蛍光体は電子線照射によって分解飛散し、素子内のカソードの劣化を引き起こし、ひいては素子の寿命を低下させる等、信頼性の点で問題を抱えている。
【0004】
このような問題を解決するために、電子線により分解し難い組成の材料が求められているが、このような材料の殆どは絶縁物であることが多い。絶縁性の蛍光体にInO2 等の導電物質を添加して蛍光体膜の抵抗を下げるという提案もある。しかし、この方法では導電物質による無効電流が増加し、これに起因して発生する発熱が信頼性低下の原因となる。
【0005】
高抵抗の蛍光体の抵抗値を何らかの方法で下げることができれば、低速電子線用として使用可能である。
【0006】
5kV以上の加速電圧で使用されている高抵抗の蛍光体としては、赤色に高効率で発光するY2 3 :Eu蛍光体が従来ブラウン管や投射管等の蛍光体として使用されており、既に知られている。しかしながら、この蛍光体は蛍光体自体の抵抗が高く、1kV以下の低速電子線の領域ではチャージアップが生じて十分な発光を示さない。
【0007】
従って、このような高抵抗の蛍光体は、せいぜい数十Vの駆動電圧である通常の蛍光発光管では全く使用できないし、駆動陽極電圧が400〜1kV程度の電界放出型発光素子(FED)においても十分な発光は得にくい。
【0008】
本発明は、従来高加速電圧で使用されていた高抵抗の蛍光体において、蛍光体自体の発光効率を損なうことなく蛍光体に導電性を付与し、その抵抗を簡単な手法によって低下させることを目的としている。
【0009】
【課題を解決するための手段】
請求項1に記載された蛍光体は、還元性雰囲気でアニール処理された蛍光体であって、FED又は蛍光表示管に用いられるA 2 3-X :Eu蛍光体(但し、AはY又はGdからなる希土類元素、1×10 -6 <X<5×10 -4 )であることを特徴としている。
【0012】
【実施例】
▲1▼実施例1
原料(Y0.965 Eu0.035 2 3 4kgと、フラックスとしてのNaCl4.0kgを秤量して十分に混合する。これをルツボに充填して1400℃で6時間焼成する。これによって得られた試料を純水に入れ、攪拌・デカンテーションを行い、フラックス分を水洗する。その後、脱水を行い110℃で乾燥させたのちにふるいに通し、Y2 3 :Eu蛍光体を得る。この試料の一部を比較用蛍光体として別にしておく。
【0013】
前記Y2 3 :Eu蛍光体400gをルツボに充填して炭素還元雰囲気で900〜1300℃の温度および1〜4時間の範囲で還元量を変化させてアニールを行い、条件の異なる各試料を冷却後にふるいに通して目的のY2 3-X :Eu蛍光体(還元蛍光体)を得る。
【0014】
前記比較用蛍光体と還元蛍光体とを、それぞれ異なる蛍光表示管の陽極に実装して発光状態を比較した。即ち、各蛍光体をエチルセルロースバインダーを含むビークルを用いてペーストにし、アノード基板上のITO電極にスクリーン印刷法で塗布し、500℃で大気中で焼成してバインダーを除去し、蛍光体塗布アノード基板を作製した。このアノード基板を用い、フィラメント、グリッド等を実装し、さらに容器部を封着して蛍光表示管を作製した。
【0015】
図1は、アノード電圧400Vの時のSIMS等の質量分析法を用いて測定した酸素とイットリウムの比で表した酸素欠陥量と輝度の関係を相対値で示したものである。図2は、同様に発光開始電圧との関係を示したものである。図3は、寿命試験における酸素欠陥量と輝度維持率の関係を示したものである。
【0016】
図2において、酸素欠陥量の増大に伴って発光開始電圧が低くなるということは、蛍光体表面でのチャージアップが低い電圧で解消されることを意味し、すなわち蛍光体の抵抗値が小さくなっていることを示している。
【0017】
以上の結果から、還元処理によって初期および寿命特性に効果があることが判明した。なお、還元の強度が強すぎると逆に酸素欠陥が発光を阻害する。よって、Xの値は、1×10-6から5×10-4の範囲が最適である。
【0018】
なお、本実施例においては、蛍光体の還元は炭素還元雰囲気で行ったが、炭素還元雰囲気としては蛍光体にカーボンの粉末を直接混合してもよいし、2重るつぼを用いてもよい。
【0019】
▲2▼実施例2
(Y0.955 Eu0.035 Sm0.012 3 蛍光体についても還元強度を変えて評価を行った。その結果、発光開始電圧は実施例1と同様に低くなり、酸素欠陥量X=1×10-5の時の初期発光効率が130%になり、寿命特性が約10倍に改善された。
【0020】
以上説明した実施例1、2においては、発光中心の濃度が0.1mol%/Yから10mol%/Yの範囲、共賦活剤の濃度が0mol%/Yから5mol%/Yの範囲で特に良好な結果が得られた。
【0021】
▲3▼実施例3
蛍光体の母体としてのGd2 3 に前述したのと略同様の物質を添加した蛍光体についても実施例1、2と略同様に試験した。その結果、実施例1、2と同様な効果が得られた。
【0022】
▲4▼実施例4
さらに、その他の稀土類元素と、その他種々の添加物質についても、多くの組合わせで実験を行った。その結果、一般にA2 3-X :Re蛍光体(但し、Aは稀土類元素、ReはEu、Tb、Er、Tm、Dy、Ho、Nd、Pr、Sm、Ceから選択された1以上の元素)について実施例1−3と略同様の導電性改善による同様の効果が見られた。
【0023】
以上説明した実施例では、炭素還元雰囲気で蛍光体の還元を行ったが、水素雰囲気を用いて還元を行ってもよい。特に、FEDに適用する蛍光体について水素雰囲気で還元を行うと、蛍光体に吸蔵された水素が実装後に外囲器内で放出され、エミッタの電子放出性能を良くするなどFEDの外囲器内の雰囲気を改善する効果が得られる。
【0024】
【発明の効果】
本発明の蛍光体によれば、還元することによって導電性を改善し、従来は使用できなかったような低い陽極電圧にも対応できるようになった。例えば、本発明の蛍光体であれば1kV程度の陽極電圧であるFEDには十分に使用可能であり、In等の導電物質を添加すれば数十Vの陽極電圧の蛍光表示管にも使用することができる。
【図面の簡単な説明】
【図1】実施例1において、アノード電圧400Vの時の酸素とイットリウムの比で表した酸素欠陥量と輝度の関係を相対値で示した図である。
【図2】実施例1において、図1と同様の駆動条件で酸素とイットリウムの比で表した酸素欠陥量と発光開始電圧との関係を相対値で示した図である。
【図3】実施例1において、図1と同様の駆動条件における寿命試験での酸素欠陥量と輝度維持率の関係を示した図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phosphor whose conductivity is increased by reduction treatment.
[0002]
[Prior art]
The so-called low-energy electron beam phosphor used at an acceleration voltage of 1 kV or less is required to have a low resistance of the phosphor itself. Currently, a so-called sulfide phosphor such as ZnS: Ag is known as a material that satisfies such conditions.
[0003]
[Problems to be solved by the invention]
However, sulfide phosphors have problems in terms of reliability, such as being decomposed and scattered by electron beam irradiation, causing deterioration of the cathode in the device, and thus reducing the lifetime of the device.
[0004]
In order to solve such a problem, a material having a composition that is difficult to be decomposed by an electron beam is required, but most of such a material is often an insulator. There is also a proposal to reduce the resistance of the phosphor film by adding a conductive material such as InO 2 to the insulating phosphor. However, in this method, the reactive current due to the conductive material is increased, and the heat generated due to this increases the reliability.
[0005]
If the resistance value of the high-resistance phosphor can be lowered by some method, it can be used for a low-speed electron beam.
[0006]
As a high-resistance phosphor used at an acceleration voltage of 5 kV or more, a Y 2 O 3 : Eu phosphor that emits red light with high efficiency has been used as a phosphor such as a cathode ray tube or a projection tube. Are known. However, this phosphor has a high resistance itself, and in a region of a low-speed electron beam of 1 kV or less, charge-up occurs and does not show sufficient light emission.
[0007]
Therefore, such a high-resistance phosphor cannot be used at all in a normal fluorescent light emitting tube having a driving voltage of several tens of volts at most, and in a field emission light emitting device (FED) having a driving anode voltage of about 400 to 1 kV. However, it is difficult to obtain sufficient light emission.
[0008]
The present invention provides a phosphor having high resistance that has been conventionally used at a high acceleration voltage, imparting conductivity to the phosphor without impairing the luminous efficiency of the phosphor itself, and reducing its resistance by a simple method. It is aimed.
[0009]
[Means for Solving the Problems]
The phosphor described in claim 1 is a phosphor annealed in a reducing atmosphere, and is an A 2 O 3 -X : Eu phosphor used in an FED or a fluorescent display tube (where A is Y or It is a rare earth element made of Gd, 1 × 10 −6 <X <5 × 10 −4 ) .
[0012]
【Example】
(1) Example 1
4 kg of raw material (Y 0.965 Eu 0.035 ) 2 O 3 and 4.0 kg of NaCl as a flux are weighed and mixed thoroughly. This is filled in a crucible and baked at 1400 ° C. for 6 hours. The sample thus obtained is put into pure water, stirred and decanted, and the flux is washed with water. Then, after dehydrating and drying at 110 ° C., it is passed through a sieve to obtain a Y 2 O 3 : Eu phosphor. A part of this sample is separately provided as a comparative phosphor.
[0013]
400 g of the above Y 2 O 3 : Eu phosphor is filled in a crucible and annealed by changing the reduction amount in a carbon reducing atmosphere at a temperature of 900 to 1300 ° C. and in a range of 1 to 4 hours. object through a sieve after cooling of Y 2 O 3-X: obtaining Eu phosphor (reduced phosphor).
[0014]
The comparative phosphor and the reduced phosphor were mounted on anodes of different fluorescent display tubes, and the light emission states were compared. That is, each phosphor is made into a paste using a vehicle containing an ethyl cellulose binder, applied to the ITO electrode on the anode substrate by screen printing, and baked in the atmosphere at 500 ° C. to remove the binder, and the phosphor-coated anode substrate Was made. Using this anode substrate, a filament, a grid and the like were mounted, and the container part was further sealed to produce a fluorescent display tube.
[0015]
FIG. 1 shows the relative relationship between the oxygen defect amount and the luminance expressed by the ratio of oxygen and yttrium measured by using mass spectrometry such as SIMS when the anode voltage is 400V. FIG. 2 similarly shows the relationship with the light emission start voltage. FIG. 3 shows the relationship between the amount of oxygen defects and the luminance maintenance rate in the life test.
[0016]
In FIG. 2, the fact that the light emission starting voltage decreases as the oxygen defect amount increases means that the charge-up on the phosphor surface is eliminated at a low voltage, that is, the phosphor resistance value decreases. It shows that.
[0017]
From the above results, it has been found that the reduction treatment has an effect on the initial and life characteristics. On the other hand, if the intensity of reduction is too strong, oxygen defects inhibit light emission. Therefore, the value of X is optimally in the range of 1 × 10 −6 to 5 × 10 −4 .
[0018]
In this embodiment, the phosphor is reduced in a carbon reducing atmosphere. However, as the carbon reducing atmosphere, carbon powder may be directly mixed with the phosphor, or a double crucible may be used.
[0019]
(2) Example 2
The (Y 0.955 Eu 0.035 Sm 0.01 ) 2 O 3 phosphor was also evaluated by changing the reduction intensity. As a result, the light emission start voltage was lowered as in Example 1, the initial light emission efficiency when the oxygen defect amount X = 1 × 10 −5 was 130%, and the lifetime characteristics were improved about 10 times.
[0020]
In Examples 1 and 2 described above, the concentration of the luminescent center is particularly good in the range of 0.1 mol% / Y to 10 mol% / Y, and the concentration of the coactivator is in the range of 0 mol% / Y to 5 mol% / Y. Results were obtained.
[0021]
(3) Example 3
A phosphor obtained by adding a substance similar to that described above to Gd 2 O 3 as the phosphor matrix was also tested in the same manner as in Examples 1 and 2. As a result, the same effect as in Examples 1 and 2 was obtained.
[0022]
(4) Example 4
In addition, experiments were conducted in many combinations with other rare earth elements and other various additive substances. As a result, in general, A 2 O 3 -X : Re phosphor (where A is a rare earth element, Re is selected from Eu, Tb, Er, Tm, Dy, Ho, Nd, Pr, Sm, Ce) The same effect due to the improvement in conductivity was almost the same as in Example 1-3.
[0023]
In the embodiment described above, the phosphor is reduced in a carbon reducing atmosphere. However, the reduction may be performed in a hydrogen atmosphere. In particular, when the phosphor applied to the FED is reduced in a hydrogen atmosphere, the hydrogen stored in the phosphor is released in the envelope after mounting, improving the electron emission performance of the emitter, etc. The effect of improving the atmosphere is obtained.
[0024]
【The invention's effect】
According to the phosphor of the present invention, the conductivity is improved by reduction, and it is possible to cope with a low anode voltage that cannot be used conventionally. For example, the phosphor of the present invention can be sufficiently used for an FED having an anode voltage of about 1 kV, and can be used for a fluorescent display tube having an anode voltage of several tens of volts by adding a conductive material such as In. be able to.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between an oxygen defect amount and luminance expressed as a ratio of oxygen and yttrium at an anode voltage of 400 V in Example 1 as a relative value.
2 is a graph showing a relative value of the relationship between the amount of oxygen defects expressed as a ratio of oxygen and yttrium and the light emission start voltage under the same driving conditions as in FIG. 1 in Example 1. FIG.
3 is a diagram showing the relationship between the amount of oxygen defects and the luminance maintenance rate in a life test under the same driving conditions as in FIG. 1 in Example 1. FIG.

Claims (1)

還元性雰囲気でアニール処理された蛍光体であって、FED又は蛍光表示管に用いられる2 3-X Eu蛍光体(但し、AはY又はGdからなる希土類元素、1×10-6<X<5×10-4)。A phosphor that has been annealed in a reducing atmosphere and is used for FED or fluorescent display tube, A 2 O 3-x : Eu phosphor (where A is a rare earth element consisting of Y or Gd , 1 × 10 −6 <X <5 × 10 −4 ).
JP07217799A 1999-03-17 1999-03-17 Phosphor Expired - Fee Related JP3942766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07217799A JP3942766B2 (en) 1999-03-17 1999-03-17 Phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07217799A JP3942766B2 (en) 1999-03-17 1999-03-17 Phosphor

Publications (2)

Publication Number Publication Date
JP2000265168A JP2000265168A (en) 2000-09-26
JP3942766B2 true JP3942766B2 (en) 2007-07-11

Family

ID=13481696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07217799A Expired - Fee Related JP3942766B2 (en) 1999-03-17 1999-03-17 Phosphor

Country Status (1)

Country Link
JP (1) JP3942766B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120394A (en) * 2000-10-16 2002-04-23 Futaba Corp Electron beam excited light emission type print head

Also Published As

Publication number Publication date
JP2000265168A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
CN1855352B (en) Electron beam excited fluorescence emitting device
EP1995295A1 (en) Phosphor for display and field emission display
WO2001077254A1 (en) Phosphor for display and field-emission display
JP2000073053A (en) Phosphor and cathode-ray tube using the same
JP2002226847A (en) Fluorescent substance for display device and field emission type display device using thereof
JP3686159B2 (en) Phosphor for low-energy electron beam excitation
Yamamoto et al. Problems and progress in cathode-ray phosphors for high-definition displays
JP3942766B2 (en) Phosphor
JP2002138279A (en) Fluorescent material for display unit, its manufacturing method and field emission type display unit using the same
JP2006335967A (en) Phosphor for displaying device and electric field-emission type displaying device
EP1555306A1 (en) Fluorescent material for display unit, process for producing the same and color display unit including the same
JP2004123786A (en) Phosphor for display device, its production method, and color display device using the same
TWI390576B (en) Three primary color field emission display and its phosphor powder
JP3879298B2 (en) Field emission display
US20060145591A1 (en) Green light emitting phosphor for low voltage/high current density and field emission type display including the same
JPH10140150A (en) Phosphor and production of phosphor
JP3705765B2 (en) Red light emitting phosphor and color display device using the same
JP3729912B2 (en) Red light emitting phosphor and cathode ray tube
JP2007177078A (en) Fluorophor for display device and field emission-type display device
JPH0559359A (en) Fluorescent display tube using fluorescent substance for slow electron
JP2004339293A (en) Blue light-emitting fluorescent substance for low voltage and high current density and field emission display device using the same
JPH0747733B2 (en) Blue light emitting phosphor
JP3707131B2 (en) Phosphor
JPS63135481A (en) Phosphor excited with electron beam
JP2008184528A (en) Phosphor for displaying device and field emission type displaying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees