JP3942320B2 - Scanning probe microscope and operation method thereof - Google Patents

Scanning probe microscope and operation method thereof Download PDF

Info

Publication number
JP3942320B2
JP3942320B2 JP26047199A JP26047199A JP3942320B2 JP 3942320 B2 JP3942320 B2 JP 3942320B2 JP 26047199 A JP26047199 A JP 26047199A JP 26047199 A JP26047199 A JP 26047199A JP 3942320 B2 JP3942320 B2 JP 3942320B2
Authority
JP
Japan
Prior art keywords
sample
scanning probe
probe microscope
probe
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26047199A
Other languages
Japanese (ja)
Other versions
JP2001083066A (en
Inventor
木 進 青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP26047199A priority Critical patent/JP3942320B2/en
Publication of JP2001083066A publication Critical patent/JP2001083066A/en
Application granted granted Critical
Publication of JP3942320B2 publication Critical patent/JP3942320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する分野】
本発明は元素分析機能を備えた走査プローブ顕微鏡及びその動作方法に関する。
【0002】
【従来の技術】
最近、探針付きカンチレバーと試料を接近させて対向配置し、探針により試料表面を走査することにより、探針と試料間に働く原子間力,或いは磁気力,或いは静電気力等を測定し、該測定に基づいて試料表面の凹凸像を得るように成した走査プローブ顕微鏡や、探針と試料を接近させて対向配置し、且つ探針と試料間にバイアス電圧を印加し、探針により試料表面を走査することにより、探針と試料間に流れるトンネル電流を測定し、該測定に基づいて試料表面の凹凸象などを得るように成した走査プローブ顕微鏡が注目されている。
【0003】
所で、この様な走査プローブ顕微鏡では、試料表面の原子1個1個の観察が可能であるが、その原子の同定が出来ない。
【0004】
【発明が解決しようとする課題】
最近、走査プローブ顕微鏡の1つである走査型トンネル顕微鏡に質量分析機能を取り付け、所望の1個又は少数個の原子の元素同定を可能にしたたものが提案されている(特開平8−64170号)。この提案では、試料表面の原子を一旦探針に吸着させ、次に、試料を支持している試料ホルダーを取り除き、該吸着させた原子を電界脱離させ、そのイオンの飛行時間から質量分析し、元素を同定するようにしている。しかし、この様な提案では、試料ホルダーを走査型トンネル顕微鏡から取り外す操作が必要であり、又、試料ホルダーを取り外す為の機構が必要となる。又、試料表面原子を一旦探針に吸着させるために、探針を形成している材料の原子と該探針に吸着した原子とが化合物を作ってしまい、目的とする試料の原子の質量分析が出来ないことがある。
【0005】
本発明は、この様な問題を解決する新規な走査プローブ顕微鏡及びその動作方法を提供することを目的としたものである。
【0006】
【課題を解決するための手段】
本発明の走査プローブ顕微鏡は、探針と試料を接近させて対向配置し、探針と試料との相対的位置を変化させ、試料表面の像情報を得るように成した走査プローブ顕微鏡であって、パルス電源からのパルス電圧又はパルスレーザ源からのパルスレーザーのうちの何れか一方によるエネルギーを試料に与えて試料表面の原子をイオン化するように成し、該イオンをイオン検出器に検出させるように成すとともに、当該エネルギーの付与と同時に探針を試料表面から退避させるように成したことを特徴とする。
【0007】
本発明の走査プローブ顕微鏡の動作方法は、探針と試料を接近させて対向配置し、探針と試料との相対的位置を変化させ、試料表面の像情報を得るとともに、パルス電源又はパルスレーザ源とイオン検出器を備えた走査プローブ顕微鏡の動作方法であって、パルス電源からのパルス電圧又はパルスレーザ源からのパルスレーザーのうちの何れか一方によるエネルギーを試料に与えて試料表面の原子をイオン化し、該イオンをイオン検出器に検出させるようにするとともに、当該エネルギーの付与と同時に探針を試料表面から退避させるようにしたことを特徴とする。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0009】
図1は本発明の一例として示した走査型トンネル顕微鏡の如き走査プローブ顕微鏡の概略を示したものである。
【0010】
図中1は探針、2は探針保持体、3は試料、4はバイアス電源、5はスキャナー、6はZ移動機構、7はステージ、8は電流検出及び増幅回路、9は制御装置、10は表示装置である。尚、図の上下方向をZ軸方向とし、該Z軸方向に直交する面をX−Y平面とする。
【0011】
前記スキャナー5はX,Y及びZ方向駆動用の圧電素子から成り、前記探針1のX,Y及びZ軸方向の位置を可変させるものであり、その位置の可変量は前記制御装置9からの制御電圧によって制御される。前記Z移動機構6は前記探針1と圧電素子5を一体としてZ軸方向の位置を可変させるもので、例えば、モータで構成されており、その可変量は前記制御装置9からの制御信号によって制御される。従って、制御装置9は、前記探針1のZ軸方向の位置を大きく変える場合には前記Z移動機構6を駆動し、微小量変える場合には前記スキャナー5のZ軸方向駆動用圧電素子を駆動する。
【0012】
前記ステージ7はX,Y方向駆動用のステージから成り、前記制御装置9からの制御信号に基づいて作動するモータ等から成る駆動機構(図示せず)によりそれぞれX,Y方向に移動する。
【0013】
前記電流検出及び増幅回路8は前記探針1からのトンネル電流を検出し、増幅するもので、その出力を前記制御装置9に送るものである。
【0014】
図中11は前記試料3にパルス電圧を印加するためのパルス電源、12は直流阻止用コンデンサ、13は前記試料1に高電圧を印加するための高電圧電源である。
【0015】
14はイオン検出器で、試料表面からの蒸発した原子をイオンとして検出するものである。15は電子タイマーで、該イオンが該イオン検出器に到着するまでの時間を測定するものである。
【0016】
尚、前記探針1,探針保持体2、試料3,スキャナー5、Z移動機構6,ステージ7及びイオン検出器14は高真空チャンバー(図示せず)内に収容されており、バイアス電源4,電流検出及び増幅回路8,制御装置9,表示装置10,パルス電源11,コンデンサ12,高電圧電源13及び電子タイマー15は高真空チャンバー外に設けられている。
【0017】
この様な構成の走査プローブ顕微鏡の動作を次に説明する。
【0018】
高真空チャンバー(図示せず)内を高真空(例えば、10-7Torr以下)に排気した状態で、既に試料3がセットされているステージ7を移動させ、試料3を所定の位置に持ってくる。そして、Z移動機構6及びスキャナー5のZ方向駆動用の圧電素子により探針1を試料3に数nm以下に近づける。その状態で、バイアス電源4から探針1,試料3間にバイアス電圧をかけ、スキャナー5のX,Y方向駆動用の圧電素子により探針1で試料上で二次元方向に走査する。該走査により、探針1と試料3間に流れるトンネル電流を電流検出及び増幅回路8により検出,増幅する。該増幅されたトンネル電流は制御装置9に送られる。制御装置9は、入力されてくるトンネル電流信号と基準信号とを比較し、その差に基づいて前記スキャナー5のZ方向駆動用の圧電素子5を制御する。その結果、探針1と試料の間の距離は常に一定に保たれると共に、前記差に基づいた凹凸の像が表示装置10に表示される。この様にして、試料表面の原子レベルでの観察が行われる。
【0019】
この様な観察を行った後、前記スキャナー5のZ方向駆動用の圧電素子により探針1を、試料3に対し、数nm〜数μmの範囲で位置調整する。この状態において、パルス電源11と高電圧電源13を作動させ(オンの状態にし)、該パルス電源からのパルス電圧(例えば、パルス幅が数nsecで、数V〜数KVのパルス電圧)の印加により探針1の先端と対向した試料3表面の原子を電界蒸発させる。この時、試料3にはバイアス電圧と高電圧電源13からの正の高電圧(例えば、数KV〜10KV程度の高電圧)が加算された電圧が印加されているので、前記試料表面から電界蒸発した原子の内、正イオン化したものはイオン検出器14方向に加速され、イオン検出器14に到達する。この際、前記パルス電源11からパルス電圧が試料3に印加されると同時に、該パルス電圧に対応した電圧信号が電子タイマー15に送られており、この電圧信号により電子タイマーは計時をスタートする。又、該電子タイマーは、前記イオン検出器14がイオンを検出すると、該検出したことを表す信号によって計時をストップし、前記計時スタート時とストップ時の時間差をイオンの飛行時間として算出して、前記制御装置9に送る。
【0020】
該制御装置は、例えば、キーボード等の入力装置(図示せず)から、予め、比例定数C、試料からイオン検出器までの距離Dが与えられており、前記高電圧源13からの高電圧に対応した電圧信号Vと、イオン検出器に検出されたイオンの飛行時間tが送られて来るので、式(1)に基づいて、検出されたイオンの原子の質量を求めて、その原子の元素を同定する。尚、mは該原子の質量、nはイオン価数である。
【0021】
【数1】

Figure 0003942320
さて、この様な装置において、試料3と探針1との間の距離が極めて短い為に、試料3から電界蒸発したイオン化原子の飛行を探針1が妨げたり、探針自体に吸着してしまう現象が発生する。そこで、この様な現象の発生を妨げるために、前記パルス電源11の作動開始と共に、探針1を試料表面から退避させるように成している。例えば、パルス電源作動により最初に試料3に印加されたパルス電圧に対応した電圧信号が制御装置9に送られるようになっており、該制御装置はこの様な電圧信号を受け取ると、前記スキャナー5のZ方向駆動用の圧電素子を制御して、探針1を試料3から離れるように移動させる。この移動距離は、試料からの原子の飛行を妨げたり、付着させたりしない距離であればよい。
【0022】
尚、探針1を前記Z移動機構6で退避させても良い。又、パルス電源11の作動と同時に探針1を退避させるようにしても良い。又、Z方向ではなく、X,Y方向駆動用の圧電素子を制御して、探針1をイオン検出器14方向ではない方向に探針1を移動させるようにしても良し、Z方向及びX,Y方向に移動させるようにしても良い。
【0023】
尚、図2は図1の一部である試料3とイオン検出器14及びそれらの空間部を示したものであるが、図に示す様に、試料3とイオン検出器14の間に、例えば、円錐台形状の引出電極16を配置し、この電極に高電圧電源17から負の高電圧を印加し、試料3の表面からの原子を引き出し易くしても良い。
【0024】
又、図3は本発明の他の例を示した走査型トンネル顕微鏡の如き走査プローブ顕微鏡の概略図で、図中1で使用した記号と同一記号の付されたものは同一構成要素である。
【0025】
図1では、試料3側に高電圧電源13から正の高電圧を印加しているが、この例では、高電圧電源18からイオン検出器14に負の高電圧を印加し、該イオン検出器14がイオンを検出した時に、イオンを検出したことを表す信号を直流阻止用コンデンサ19を介して電子タイマー15に送るように成している。
【0026】
又、前記例では試料にパルス電圧を印加する事により試料表面から原子を電界蒸発させたが、パルス電源に代えてパルスレーザ源を設け、パルス電圧の印加に代えて試料にパルスレーザービームを照射して試料表面から原子を電界蒸発させる様にしても良い。
【0027】
又、前記例のトンネル顕微鏡用の探針に代えて、先端に探針が付いているカンチレバーを探針保持体に取り付けるようにしても良い。
本発明によれば、試料ホルダーを走査型トンネル顕微鏡から取り外す機構を備える必要がなく、同時にその様な取り外し作業が不要となる。又、試料表面から直接電界蒸発させた原子をイオンとして検出しているので、試料表面からの原子を一旦探針に吸着させることがなく、その為、探針を形成している材料の原子と該探針に吸着した原子とが化合するということがない。更に、試料表面から原子が電界蒸発され始める際、探針を試料表面から退避させるので、試料表面から電界蒸発した原子を、イオンとして効率よくイオン検出器に検出させることが出来る。
【図面の簡単な説明】
【図1】 本発明の一例として示した走査型トンネル顕微鏡の如き走査プローブ顕微鏡の概略を示したものである。
【図2】 図1の一部である試料3とイオン検出器14及びそれらの空間部を示したものである。
【図3】 本発明の他の例を示した走査型トンネル顕微鏡の如き走査プローブ顕微鏡の概略図である。
【符号の説明】
1…探針
2…探針保持体
3…試料
4…バイアス電源
5…スキャナー
6…Z移動機構
7…ステージ
8…電流検出及び増幅回路
9…制御装置
10…表示装置
11…パルス電源
12,19…直流阻止用コンデンサ
13,17,18…高電圧電源
14…イオン検出器
15…電子タイマー
16…引出電極[0001]
[Field of the Invention]
The present invention relates to a scanning probe microscope having an elemental analysis function and an operation method thereof .
[0002]
[Prior art]
Recently, a cantilever with a probe and a sample are placed close to each other, and the surface of the sample is scanned with the probe to measure the atomic force, magnetic force, electrostatic force, etc. acting between the probe and the sample. A scanning probe microscope configured to obtain a concavo-convex image of the sample surface based on the measurement, a probe and a sample are placed close to each other, a bias voltage is applied between the probe and the sample, and the sample is detected by the probe. Attention has been focused on a scanning probe microscope in which a tunnel current flowing between a probe and a sample is measured by scanning the surface, and an uneven surface of the sample surface is obtained based on the measurement.
[0003]
However, with such a scanning probe microscope, it is possible to observe one atom at a time on the sample surface, but the atom cannot be identified.
[0004]
[Problems to be solved by the invention]
Recently, a scanning tunneling microscope, which is one of scanning probe microscopes, has been proposed in which a mass analysis function is attached to enable element identification of a desired one or a small number of atoms (JP-A-8-64170). issue). In this proposal, the atoms on the sample surface are once adsorbed by the probe, and then the sample holder supporting the sample is removed, the adsorbed atoms are desorbed by electric field, and mass analysis is performed from the flight time of the ions. , Trying to identify the elements. However, in such a proposal, an operation for removing the sample holder from the scanning tunneling microscope is required, and a mechanism for removing the sample holder is required. In addition, since the sample surface atoms are once adsorbed to the probe, the atoms of the material forming the probe and the atoms adsorbed on the probe form a compound, and mass analysis of the target sample atoms is performed. May not be possible.
[0005]
An object of the present invention is to provide a novel scanning probe microscope and an operation method thereof that solve such problems.
[0006]
[Means for Solving the Problems]
The scanning probe microscope of the present invention is a scanning probe microscope in which the probe and the sample are placed close to each other and faced to change the relative position between the probe and the sample to obtain image information on the sample surface. The sample is supplied with energy from either a pulse voltage from a pulse power source or a pulse laser from a pulse laser source to ionize atoms on the sample surface, and the ions are detected by an ion detector. together formed to the, characterized in that simultaneously probe and application of the energy was formed so as to retract from the sample surface.
[0007]
The method of operating the scanning probe microscope of the present invention is such that the probe and the sample are placed close to each other, the relative position between the probe and the sample is changed to obtain image information on the sample surface, and a pulse power supply or pulse laser is obtained. A method of operating a scanning probe microscope comprising a source and an ion detector, wherein energy from either a pulse voltage from a pulse power source or a pulse laser from a pulse laser source is applied to the sample to cause atoms on the sample surface It is characterized in that it is ionized and the ions are detected by an ion detector, and the probe is retracted from the sample surface simultaneously with the application of the energy .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0009]
FIG. 1 shows an outline of a scanning probe microscope such as a scanning tunneling microscope shown as an example of the present invention.
[0010]
In the figure, 1 is a probe, 2 is a probe holder, 3 is a sample, 4 is a bias power supply, 5 is a scanner, 6 is a Z moving mechanism, 7 is a stage, 8 is a current detection and amplification circuit, 9 is a control device, Reference numeral 10 denotes a display device. In addition, let the up-down direction of a figure be a Z-axis direction, and let a surface orthogonal to this Z-axis direction be an XY plane.
[0011]
The scanner 5 is composed of piezoelectric elements for driving in the X, Y, and Z directions, and varies the position of the probe 1 in the X, Y, and Z axis directions. Controlled by the control voltage. The Z moving mechanism 6 is a unit that varies the position in the Z-axis direction by integrating the probe 1 and the piezoelectric element 5, and is composed of, for example, a motor. The variable amount is determined by a control signal from the control device 9. Be controlled. Therefore, the control device 9 drives the Z moving mechanism 6 when the position of the probe 1 in the Z-axis direction is greatly changed, and controls the Z-axis direction driving piezoelectric element of the scanner 5 when changing the minute amount. To drive.
[0012]
The stage 7 is composed of a stage for driving in the X and Y directions, and is moved in the X and Y directions by a drive mechanism (not shown) composed of a motor or the like that operates based on a control signal from the control device 9, respectively.
[0013]
The current detection and amplification circuit 8 detects and amplifies the tunnel current from the probe 1 and sends its output to the control device 9.
[0014]
In the figure, 11 is a pulse power source for applying a pulse voltage to the sample 3, 12 is a DC blocking capacitor, and 13 is a high voltage power source for applying a high voltage to the sample 1.
[0015]
An ion detector 14 detects atoms evaporated from the sample surface as ions. An electronic timer 15 measures the time until the ions arrive at the ion detector.
[0016]
The probe 1, the probe holder 2, the sample 3, the scanner 5, the Z moving mechanism 6, the stage 7 and the ion detector 14 are accommodated in a high vacuum chamber (not shown), and the bias power source 4 The current detection and amplification circuit 8, the control device 9, the display device 10, the pulse power supply 11, the capacitor 12, the high voltage power supply 13 and the electronic timer 15 are provided outside the high vacuum chamber.
[0017]
Next, the operation of the scanning probe microscope having such a configuration will be described.
[0018]
With the inside of the high vacuum chamber (not shown) evacuated to a high vacuum (for example, 10 −7 Torr or less), the stage 7 on which the sample 3 is already set is moved, and the sample 3 is held at a predetermined position. come. Then, the probe 1 is brought close to the sample 3 to several nm or less by the Z moving mechanism 6 and the piezoelectric element for driving the Z direction of the scanner 5. In this state, a bias voltage is applied between the probe 1 and the sample 3 from the bias power source 4, and the probe 1 scans the sample in a two-dimensional direction with the probe 1 by a piezoelectric element for driving the X and Y directions of the scanner 5. By this scanning, the tunnel current flowing between the probe 1 and the sample 3 is detected and amplified by the current detection and amplification circuit 8. The amplified tunnel current is sent to the control device 9. The control device 9 compares the input tunnel current signal with the reference signal and controls the piezoelectric element 5 for driving the Z direction of the scanner 5 based on the difference. As a result, the distance between the probe 1 and the sample is always kept constant, and an uneven image based on the difference is displayed on the display device 10. In this way, observation at the atomic level on the sample surface is performed.
[0019]
After performing such observation, the position of the probe 1 is adjusted with respect to the sample 3 in the range of several nm to several μm with the piezoelectric element for driving the Z direction of the scanner 5. In this state, the pulse power supply 11 and the high voltage power supply 13 are operated (turned on), and a pulse voltage (for example, a pulse voltage of several V to several KV with a pulse width of several nsec) is applied from the pulse power supply. Thus, the atoms on the surface of the sample 3 facing the tip of the probe 1 are evaporated. At this time, since a voltage obtained by adding a bias voltage and a positive high voltage (for example, a high voltage of about several KV to 10 KV) from the high voltage power supply 13 is applied to the sample 3, field evaporation from the sample surface. The positively ionized atoms are accelerated in the direction of the ion detector 14 and reach the ion detector 14. At this time, a voltage signal corresponding to the pulse voltage is sent to the electronic timer 15 at the same time as the pulse voltage is applied to the sample 3 from the pulse power source 11, and the electronic timer starts measuring time by this voltage signal. In addition, when the ion detector 14 detects ions, the electronic timer stops the time measurement by a signal indicating the detection, and calculates a time difference between the time measurement start time and the stop time as an ion flight time, Send to the controller 9.
[0020]
The control device, for example, is given in advance a proportionality constant C and a distance D from the sample to the ion detector from an input device (not shown) such as a keyboard, and the high voltage from the high voltage source 13 is increased. Since the corresponding voltage signal V and the flight time t of the detected ion are sent to the ion detector, the mass of the atom of the detected ion is obtained based on the equation (1), and the element of the atom Is identified. Here, m is the mass of the atom, and n is the ionic valence.
[0021]
[Expression 1]
Figure 0003942320
In such an apparatus, since the distance between the sample 3 and the probe 1 is extremely short, the probe 1 hinders the flight of ionized atoms evaporated from the sample 3 or adsorbs to the probe itself. Will occur. Therefore, in order to prevent the occurrence of such a phenomenon, the probe 1 is retracted from the sample surface when the pulse power supply 11 is started. For example, a voltage signal corresponding to the pulse voltage first applied to the sample 3 by the pulse power supply operation is sent to the control device 9. When the control device receives such a voltage signal, the scanner 5 The probe 1 is moved away from the sample 3 by controlling the piezoelectric element for driving in the Z direction. This moving distance may be a distance that does not hinder or adhere to the flight of atoms from the sample.
[0022]
The probe 1 may be retracted by the Z moving mechanism 6. Further, the probe 1 may be retracted simultaneously with the operation of the pulse power supply 11. Alternatively, the probe 1 may be moved not in the direction of the ion detector 14 by controlling the piezoelectric elements for driving in the X and Y directions instead of the Z direction. , May be moved in the Y direction.
[0023]
FIG. 2 shows the sample 3, the ion detector 14 and their space portions which are a part of FIG. 1, but as shown in the figure, between the sample 3 and the ion detector 14, for example, Alternatively, a frustoconical extraction electrode 16 may be arranged, and a negative high voltage may be applied to the electrode from the high voltage power supply 17 to facilitate extraction of atoms from the surface of the sample 3.
[0024]
FIG. 3 is a schematic view of a scanning probe microscope such as a scanning tunneling microscope showing another example of the present invention. In FIG. 3, the same reference numerals as those used in FIG.
[0025]
In FIG. 1, a positive high voltage is applied from the high voltage power supply 13 to the sample 3 side. In this example, a negative high voltage is applied from the high voltage power supply 18 to the ion detector 14, and the ion detector is applied. When 14 detects ions, a signal indicating that ions have been detected is sent to the electronic timer 15 via the DC blocking capacitor 19.
[0026]
In the above example, the atom was evaporated from the surface of the sample by applying a pulse voltage to the sample. However, a pulse laser source was provided instead of the pulse power supply, and the sample was irradiated with a pulse laser beam instead of applying the pulse voltage. Then, atoms may be evaporated from the surface of the sample.
[0027]
Further, instead of the probe for the tunnel microscope of the above example, a cantilever having a probe at the tip may be attached to the probe holder.
According to the present invention, it is not necessary to provide a mechanism for detaching the sample holder from the scanning tunnel microscope, and at the same time, such detachment work is not necessary. In addition, since the atoms directly evaporated from the sample surface are detected as ions, the atoms from the sample surface are not once adsorbed to the probe, so the atoms of the material forming the probe The atoms adsorbed on the probe do not combine. Furthermore, when the atoms start to be evaporated from the sample surface, the probe is retracted from the sample surface, so that the atoms evaporated from the sample surface can be efficiently detected as ions by the ion detector.
[Brief description of the drawings]
FIG. 1 shows an outline of a scanning probe microscope such as a scanning tunneling microscope shown as an example of the present invention.
FIG. 2 shows a sample 3, an ion detector 14 and a space portion thereof which are a part of FIG.
FIG. 3 is a schematic view of a scanning probe microscope such as a scanning tunneling microscope showing another example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Probe 2 ... Probe holder 3 ... Sample 4 ... Bias power supply 5 ... Scanner 6 ... Z moving mechanism 7 ... Stage 8 ... Current detection and amplification circuit 9 ... Control device 10 ... Display device 11 ... Pulse power sources 12, 19 ... DC blocking capacitors 13, 17, 18 ... high voltage power supply 14 ... ion detector 15 ... electronic timer 16 ... lead electrode

Claims (11)

探針と試料を接近させて対向配置し、探針と試料との相対的位置を変化させ、試料表面の像情報を得るように成した走査プローブ顕微鏡であって、パルス電源からのパルス電圧又はパルスレーザ源からのパルスレーザーのうちの何れか一方によるエネルギーを試料に与えて試料表面の原子をイオン化するように成し、該イオンをイオン検出器に検出させるように成すとともに、当該エネルギーの付与と同時に探針を試料表面から退避させるように成した走査プローブ顕微鏡。Opposite arranged close to the probe and the sample, changing the relative position between the probe and the sample, a scanning probe microscope form to obtain image information of the sample surface, the pulse voltage from the pulse power supply or form any energy by one of the pulse laser from the pulsed laser source to ionize the atoms of the sample surface by applying to the sample, the ion with formed to so as to detect the ion detector, of the energy applying at the same time formed the scanning probe microscope so as to retract the probe from the sample surface. イオンを加速してイオン検出器に検出させるように成した請求項記載の走査プローブ顕微鏡。Scanning probe microscope according to claim 1, wherein the form has to be detected to accelerate ions to the ion detector. 試料に高電圧を印加してイオンを加速するように成した請求項記載の走査プローブ顕微鏡。The scanning probe microscope according to claim 2 , wherein ions are accelerated by applying a high voltage to the sample. イオン検出器に高電圧を印加してイオンを加速するように成した請求項記載の走査プローブ顕微鏡。 3. A scanning probe microscope according to claim 2 , wherein ions are accelerated by applying a high voltage to the ion detector. 試料とイオン検出器の間に、加速されて来るイオンの極性と逆の極性の高電圧が印加された引出電極を配置した請求項1乃至4何れか記載の走査プローブ顕微鏡。The scanning probe microscope according to any one of claims 1 to 4, wherein an extraction electrode to which a high voltage having a polarity opposite to that of the accelerated ion is applied is disposed between the sample and the ion detector. 前記検出したイオンの飛行時間に基づいてそのイオンの質量を分析し、元素同定するように成した請求項1乃至5何れか記載の走査プローブ顕微鏡。The scanning probe microscope according to any one of claims 1 to 5 , wherein the mass of an ion is analyzed based on the detected time of flight of the ion to identify the element. 探針と試料を接近させて対向配置し、探針と試料との相対的位置を変化させ、試料表面の像情報を得るとともに、パルス電源又はパルスレーザ源とイオン検出器を備えた走査プローブ顕微鏡の動作方法であって、パルス電源からのパルス電圧又はパルスレーザ源からのパルスレーザーのうちの何れか一方によるエネルギーを試料に与えて試料表面の原子をイオン化し、該イオンをイオン検出器に検出させるようにするとともに、当該エネルギーの付与と同時に探針を試料表面から退避させるようにした走査プローブ顕微鏡の動作方法。A scanning probe microscope equipped with a pulse power source or a pulse laser source and an ion detector, while the probe and the sample are placed close to each other, and the relative position between the probe and the sample is changed to obtain image information on the sample surface. In this method, energy from either a pulse voltage from a pulse power supply or a pulse laser from a pulse laser source is applied to the sample to ionize atoms on the sample surface, and the ions are detected by an ion detector. And a method of operating the scanning probe microscope in which the probe is retracted from the sample surface simultaneously with the application of the energy. イオンを加速してイオン検出器に検出させるようにした請求項7記載の走査プローブ顕微鏡の動作方法。8. The method of operating a scanning probe microscope according to claim 7, wherein ions are accelerated and detected by an ion detector. 試料に高電圧を印加してイオンを加速するようにした請求項8記載の走査プローブ顕微鏡の動作方法。The method of operating a scanning probe microscope according to claim 8, wherein ions are accelerated by applying a high voltage to the sample. イオン検出器に高電圧を印加してイオンを加速するようにした請求項8記載の走査プローブ顕微鏡の動作方法。9. The method of operating a scanning probe microscope according to claim 8, wherein ions are accelerated by applying a high voltage to the ion detector. 前記検出したイオンの飛行時間に基づいてそのイオンの質量を分析し、元素同定するようにした請求項7乃至10何れか記載の走査プローブ顕微鏡の動作方法。11. The method of operating a scanning probe microscope according to claim 7, wherein the mass of the detected ions is analyzed based on the detected time of flight of the ions to identify the element.
JP26047199A 1999-09-14 1999-09-14 Scanning probe microscope and operation method thereof Expired - Fee Related JP3942320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26047199A JP3942320B2 (en) 1999-09-14 1999-09-14 Scanning probe microscope and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26047199A JP3942320B2 (en) 1999-09-14 1999-09-14 Scanning probe microscope and operation method thereof

Publications (2)

Publication Number Publication Date
JP2001083066A JP2001083066A (en) 2001-03-30
JP3942320B2 true JP3942320B2 (en) 2007-07-11

Family

ID=17348419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26047199A Expired - Fee Related JP3942320B2 (en) 1999-09-14 1999-09-14 Scanning probe microscope and operation method thereof

Country Status (1)

Country Link
JP (1) JP3942320B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287404A (en) * 1988-05-13 1989-11-20 Shimadzu Corp Composite analyzing device for surface of solid body
JPH06124680A (en) * 1992-10-12 1994-05-06 Jeol Ltd Mass spectrometer for secondary neutral particle
JPH0727771A (en) * 1993-07-09 1995-01-31 Hitachi Ltd Scanning probe microscope
JP2999127B2 (en) * 1994-08-19 2000-01-17 科学技術振興事業団 Analytical equipment for ultra-fine area surface
JPH0894646A (en) * 1994-09-22 1996-04-12 Shimadzu Corp Surface analyzer

Also Published As

Publication number Publication date
JP2001083066A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
EP0195349A2 (en) Low-energy scanning transmission electron microscope
US6566653B1 (en) Investigation device and method
CN102207472A (en) Automated slice milling for viewing a feature
US20060219908A1 (en) Charged particle beam equipment
JP2004053550A (en) Semiconductor device inspection apparatus
JP5009126B2 (en) Method for processing needle-shaped sample for atom probe and focused ion beam apparatus
JP4616180B2 (en) Scanning electron microscope
JP2009037910A (en) Composite charged particle beam device, and process observation method
US10319561B2 (en) Object preparation device and particle beam device with an object preparation device and method for operating the particle beam device
JP3942320B2 (en) Scanning probe microscope and operation method thereof
US11094503B2 (en) Method of preparing thin film sample piece and charged particle beam apparatus
JP2009019943A (en) Scanning probe microscope
JPH01130460A (en) Scanning type spot ion source
JPH0894646A (en) Surface analyzer
JP4032932B2 (en) Sample surface measuring device
JPH01287404A (en) Composite analyzing device for surface of solid body
JP2003014606A (en) Atom probe electric field ion microscope
JPH03257302A (en) Positioning apparatus of probe and scanning-type tunnel microscope
JP2009110713A (en) Sample holder-electrode holder integrated unit, positioning base, atom probe, and assembly method of sample and electrode onto device
JP3746641B2 (en) Transmission electron microscope
JP2002279925A (en) High-resolution compound microscope
JP2004108979A (en) Inspection method and device using scanning electron microscope
JP2005059104A (en) Manipulation device and manipulation method
JPH05151925A (en) Surface analyzer
JP3401158B2 (en) Ultra-high vacuum surface observation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees