JP3941498B2 - Method for measuring concentration of components contained in liquid - Google Patents

Method for measuring concentration of components contained in liquid Download PDF

Info

Publication number
JP3941498B2
JP3941498B2 JP2001391017A JP2001391017A JP3941498B2 JP 3941498 B2 JP3941498 B2 JP 3941498B2 JP 2001391017 A JP2001391017 A JP 2001391017A JP 2001391017 A JP2001391017 A JP 2001391017A JP 3941498 B2 JP3941498 B2 JP 3941498B2
Authority
JP
Japan
Prior art keywords
concentration
liquid
edta
ions
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001391017A
Other languages
Japanese (ja)
Other versions
JP2003194800A (en
Inventor
純一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2001391017A priority Critical patent/JP3941498B2/en
Publication of JP2003194800A publication Critical patent/JP2003194800A/en
Application granted granted Critical
Publication of JP3941498B2 publication Critical patent/JP3941498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、水等の液体中に含まれる成分の濃度を測定する方法に関する。
【0002】
【従来の技術】
一般に液体中に含まれる成分の濃度としては、溶存酸素濃度,金属イオン濃度,水素イオン濃度(pH)等がある。たとえば、溶存酸素濃度を測定する方法として、吸光光度法が知られている。この方法は、酸素と反応して変色する指示薬を被測定液中に注入し、それによって生じる被測定液の色相の変化を吸光光度分析することによって被測定液中の溶存酸素濃度を測定する方法である。
【0003】
しかし、前記吸光光度法で溶存酸素濃度等を測定する場合には、指示薬の発色の程度を示す吸光度を測定する吸光光度計が必要になるため、採水現場での測定を行うことは困難である。
【0004】
【発明が解決しようとする課題】
この発明は、前記課題に鑑み、吸光光度計を必要とせず、採水現場での濃度測定を実現することである。
【0005】
【課題を解決するための手段】
この発明は、前記課題を解決するためになされたものであって、被測定液に指示薬を添加して対象物質の有無を検出する検出工程と、検出工程において対象物質の存在を検出したとき、段階的に滴定することにより濃度を測定する濃度測定工程とを含んでいる。
【0006】
【発明の実施の形態】
この発明の濃度測定方法を液体中に含まれる成分の濃度として金属イオン濃度を測定する場合について説明する。この発明は、被測定液に指示薬を添加して金属イオンの有無を検出する検出工程と、検出工程において金属イオンの存在を検出したとき、段階的に滴定することにより濃度を測定する濃度測定工程とを行うことにより、金属イオンの濃度を測定する。
【0007】
金属イオンとしては、被測定液を構成する成分,すなわち被測定液に含まれる対象物質である。具体的には、カルシウムイオン,マグネシウムイオン,アルミニウムイオン,鉄イオン,銅イオン,鉛イオン,マンガンイオン,カドミニウムイオンおよび亜鉛イオン等がある。
【0008】
被測定液,たとえばボイラへの供給水(以下、「ボイラ給水」と云う。)に含まれるカルシウムイオン濃度を測定する場合は、ボイラ給水の一部を採取して検水とし、これに指示薬を添加し、カルシウムイオンの有無を検出する。具体的に、指示薬として,エリオクロムブラックT(以下、「EBT」と云う。)を添加し、検水の色が青から赤に変化した場合は、「カルシウムイオンが存在する」と云う検出結果が得られる。逆に、EBTを添加した後の検水の色が青のまま変化しない場合には、「カルシウムイオンが存在しない」と云う検出結果が得られる(検出工程)。
【0009】
前記検出工程においてカルシウムイオンの存在を検出(検水の色が赤に変化したことを検出)したとき、段階的に滴定剤(所定の当量のカルシウムイオンと反応する試薬)を検水へ攪拌しながら添加する。この滴定剤として、所定量のエチレンジアミン四酢酸(以下、「EDTA」と云う。)を含む固体状の薬剤を一個攪拌しながら添加する。この添加操作を検水の色が赤から青に変化するまで段階的に(すなわち、2個目の添加,3個目の添加,・・・と云うように)、繰り返して行う。そして、検水の色が赤から青に変化したとき、EDTAを含む薬剤の添加を停止し、このEDTAを含む薬剤の添加数により(すなわち、添加個数が何個目かにより)、カルシウムイオンの当量を求める。そして、ボイラ給水中のカルシウムイオン濃度は、この当量を検水の量,すなわち検水の体積で割ることにより求める(濃度測定工程)。
【0010】
具体的には、カルシウムイオンの濃度を測定するためにEDTAを滴定剤として用いる場合、1molのEDTAは、1molのカルシウムイオンをキレート化する。たとえば、検水として100ミリリットル採取し、カルシウム10mg/リットルに相当するEDTAを含む薬剤(たとえば、一定当量になるように成形した錠剤)を滴定剤として、検水の色が赤から青に変化するまで、繰返し,すなわち段階的に一個ずつ添加する。この場合、「検水の色が赤から青に変化するまでに要したEDTAを含む薬剤の個数」×「10mg/リットル」がカルシウム濃度(mg/リットル)になる。
【0011】
ここにおいて、カルシウムイオンの有無を検出する指示薬としては、EBTの他にもカルマガイト等を用いることができる。
【0012】
また、滴定剤としては、EDTAの他、EDTAの塩,ニトリロトリ酢酸(以下、「NTA」と云う。)およびその塩等が挙げられる。EDTAの塩としては、EDTA−Na,EDTA−K,EDTA−NH4,EDTA−2Na,EDTA−2K,EDTA−2NH4,EDTA−3Na,EDTA−3K,EDTA−3NH4,EDTA−4Na,EDTA−4KおよびEDTA−NH4等が挙げられる。また、NTAの塩としては、NTA−Na,NTA−K,NTA−NH4,NTA−2Na,NTA−2K,NTA−2NH4,NTA−3Na,NTA−3KおよびNTA−3NH4等が挙げられる。この滴定剤は、粉末状,固体状および液体状の各状態のものを用いることができるが、とくにボイラ
給水と混合しやすい液体状のものが好ましい。
【0013】
前記実施の形態では、ボイラ給水に含まれるカルシウムイオンの濃度を測定する場合について説明したが、この発明の濃度測定方法はこれに限定されるものではない。たとえば、ボイラ給水のカルシウムイオン以外の金属イオン,溶存酸素,酸消費量(pH4.8),酸消費量(pH8.3),アルカリ消費量(pH8.3),アルカリ消費量(pH4.3),塩化物イオン,残留塩素,亜硫酸塩,ヒドラジンおよびクロム(VI)酸イオン等に対し、この発明の濃度測定方法は同様に適用することができる。さらには、ボイラ給水以外の被測定液,たとえば地下水,工業用水,水道水等に対しても、この発明の濃度測定方法は同様に適用することができる。
【0014】
前記各成分の濃度をこの発明の濃度測定方法を用いて測定する場合は、表1および表2に示すそれぞれの成分に対応した指示薬を被測定液に添加して対象物質の有無を検出し、検出結果において対象物質の存在を検出したとき、表1および表2に示すそれぞれの成分の滴定剤を段階的に用いて濃度を測定する。
【0015】
【表1】

Figure 0003941498
【0016】
【表2】
Figure 0003941498
【0017】
また、前記実施の形態では、対象物質の有無を検出する指示薬(以下、「検出指示薬」と云う。)と対象物質の濃度を測定する指示薬(以下、「滴定指示薬」と云う。)が同一の場合について説明したが、この発明の濃度測定方法は、これに限定されるものではない。たとえば、ボイラ給水中の硫酸イオンの有無を検出する検出指示薬として塩化バリウムを用いる。具体的には、ボイラ給水の一部を検水として採取する。その検水中に硫酸イオンが存在する場合には、硫酸イオンがバリウムイオンと反応し、硫酸バリウムの白濁物質となる。逆に、検水中に硫酸イオンが存在しない場合には、バリウムイオンと反応する硫酸イオンが存在しないため、白濁せずに無色の状態で維持される(検出工程)。
【0018】
検出工程で硫酸イオンの存在を検出したとき、クレゾールフタレインコンプレクソン(以下、「PC」と云う。)を滴定指示薬として検水に添加し、赤色に呈色させる。そして、段階的に滴定剤を検水へ攪拌しながら添加する。この滴定剤として、所定量のEDTAを含む固体状の薬剤を一個攪拌しながら添加する。この添加操作を検水の色が赤から無色に変化するまで段階的に、繰り返して行う。そして、検水の色が赤から無色に変化したとき、滴定剤の添加を停止し、この滴定剤の添加数により(すなわち、添加個数が何個目かにより)、硫酸イオンの当量を求める。そして、ボイラ給水中の硫酸イオン濃度は、「検水の色が赤から無色に変化するまでに要した滴定剤の個数」×「滴定剤中のEDTAの濃度」が硫酸イオン濃度(mg/リットル)になる(濃度測定工程)。
【0019】
前記実施の形態のように、検出指示薬と滴定指示薬が異なる対象物質の場合は、表3に示すそれぞれの成分に対応した検出指示薬を被測定液に添加して対象物質の有無を検出し、検出結果において対象物質の存在を検出したとき、表3に示すそれぞれの滴定指示薬を添加し、それぞれの成分の滴定剤を用いて濃度を測定する。
【0020】
【表3】
Figure 0003941498
【0021】
そして、前記実施の形態における前記滴定剤として、一定当量の錠剤を用いて段階的に滴定する場合について説明したが、前記滴定剤はこれに限定されず、必ずしも一定当量となるように成形されている必要はなく、2倍当量,3倍当量,…の前記滴定剤をそれぞれ予め用意し、これらを適宜段階的に組合せて滴定することもできる。
【0022】
さらに、前記滴定剤は、錠剤に限定されず、一定当量の液状の滴定剤および一定当量の粉状の滴定剤とすることもできる。
【0023】
【発明の効果】
以上のように、この発明によれば、吸光光度計を必要とせず、採水現場での濃度測定を実現することができる。[0001]
BACKGROUND OF THE INVENTION
This invention relates to a method for measuring the concentration of Ingredient that is part of in a liquid such as water.
[0002]
[Prior art]
In general, the concentration of a component contained in a liquid includes dissolved oxygen concentration, metal ion concentration, hydrogen ion concentration (pH), and the like. For example, an absorptiometric method is known as a method for measuring the dissolved oxygen concentration. In this method, an indicator that reacts with oxygen and changes color is injected into the liquid to be measured, and a change in the hue of the liquid to be measured caused thereby is measured by spectrophotometric analysis, thereby measuring the dissolved oxygen concentration in the liquid to be measured. It is.
[0003]
However, when measuring the dissolved oxygen concentration or the like by the absorptiometry, an absorptiometer that measures the absorbance indicating the degree of color development of the indicator is required, so it is difficult to measure at the sampling site. is there.
[0004]
[Problems to be solved by the invention]
In view of the above problems, the present invention is to realize concentration measurement at a water sampling site without requiring an absorptiometer.
[0005]
[Means for Solving the Problems]
This invention was made to solve the above-mentioned problem, and when detecting the presence of the target substance in the detection step, the detection step of detecting the presence or absence of the target substance by adding an indicator to the liquid to be measured, And a concentration measuring step of measuring the concentration by titrating stepwise.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The concentration measuring method of the present invention as the concentration of components contained in the liquid, it will be described for measuring the metal ion concentration. The present invention relates to a detection step for detecting the presence or absence of metal ions by adding an indicator to the liquid to be measured, and a concentration measurement step for measuring the concentration by titrating stepwise when the presence of metal ions is detected in the detection step. To measure the concentration of metal ions.
[0007]
The metal ion is a component constituting the liquid to be measured, that is, a target substance contained in the liquid to be measured. Specific examples include calcium ions, magnesium ions, aluminum ions, iron ions, copper ions, lead ions, manganese ions, cadmium ions, and zinc ions.
[0008]
When measuring the calcium ion concentration in the liquid to be measured, for example, the feed water to the boiler (hereinafter referred to as “boiler feed water”), a part of the boiler feed water is sampled and used as the test water. Add and detect the presence or absence of calcium ions. Specifically, when Eriochrome Black T (hereinafter referred to as “EBT”) is added as an indicator, and the color of the test water changes from blue to red, the detection result that “calcium ions are present” is detected. Is obtained. On the contrary, when the color of the sample water after the addition of EBT remains blue, a detection result that “calcium ions do not exist” is obtained (detection step).
[0009]
When the presence of calcium ions is detected in the detection step (detection that the color of the sample water has changed to red), a titrant (a reagent that reacts with a predetermined equivalent amount of calcium ions) is gradually stirred into the sample water. Add while adding. As this titrant, one solid drug containing a predetermined amount of ethylenediaminetetraacetic acid (hereinafter referred to as “EDTA”) is added with stirring. This addition operation is repeated stepwise (ie, second addition, third addition,...) Until the sample color changes from red to blue. Then, when the color of the sample water changes from red to blue, the addition of the drug containing EDTA is stopped, and the number of calcium ions is increased depending on the number of the drug containing EDTA (that is, depending on what number is added). Find the equivalent. And the calcium ion concentration in boiler feed water is calculated | required by dividing this equivalent by the quantity of test water, ie, the volume of test water (concentration measurement process).
[0010]
Specifically, when EDTA is used as a titrant to measure calcium ion concentration, 1 mol of EDTA chelates 1 mol of calcium ions. For example, 100 ml of sample water is collected, and the color of the sample water is changed from red to blue using a drug containing EDTA corresponding to 10 mg / liter of calcium (for example, a tablet formed to have a constant equivalent) as a titrant. Add repeatedly, ie, step by step. In this case, “the number of drugs containing EDTA required until the color of the test water changes from red to blue” × “10 mg / liter” is the calcium concentration (mg / liter).
[0011]
Here, as an indicator for detecting the presence or absence of calcium ions, in addition to EBT, karmagite can be used.
[0012]
Examples of the titrant include EDTA, EDTA salt, nitrilotriacetic acid (hereinafter referred to as “NTA”), and salts thereof. The EDTA salts, EDTA-Na, EDTA-K , EDTA-NH 4, EDTA-2Na, EDTA-2K, EDTA-2NH 4, EDTA-3Na, EDTA-3K, EDTA-3NH 4, EDTA-4Na, EDTA -4K and EDTA-NH 4 and the like. Examples of the salt of NTA include NTA-Na, NTA-K, NTA-NH 4 , NTA-2Na, NTA-2K, NTA-2NH 4 , NTA-3Na, NTA-3K and NTA-3NH 4. . As the titrant, powders, solids, and liquids can be used, but liquids that are easily mixed with boiler feed water are particularly preferable.
[0013]
In the above embodiment, the case of measuring the concentration of calcium ions contained in boiler feed water has been described, but the concentration measuring method of the present invention is not limited to this. For example, metal ions other than calcium ions in boiler feed water, dissolved oxygen, acid consumption (pH 4.8), acid consumption (pH 8.3), alkali consumption (pH 8.3), alkali consumption (pH 4.3) , Chloride ions, residual chlorine, sulfites, hydrazine and chromic (VI) ions, etc., the concentration measuring method of the present invention can be similarly applied. Furthermore, the concentration measuring method of the present invention can be similarly applied to liquids to be measured other than boiler feed water, such as ground water, industrial water, and tap water.
[0014]
When measured using the method for measuring the concentration Concentration of this invention for each species component to detect the presence or absence of the target substance by the addition of an indicator corresponding to each of the components shown in Table 1 and Table 2 in the test solution When the presence of the target substance is detected in the detection result, the concentration is measured using the titrants of the respective components shown in Table 1 and Table 2 in stages.
[0015]
[Table 1]
Figure 0003941498
[0016]
[Table 2]
Figure 0003941498
[0017]
In the embodiment, the indicator for detecting the presence or absence of the target substance (hereinafter referred to as “detection indicator”) and the indicator for measuring the concentration of the target substance (hereinafter referred to as “titration indicator”) are the same. Although the case has been described, the concentration measurement method of the present invention is not limited to this. For example, barium chloride is used as a detection indicator for detecting the presence or absence of sulfate ions in boiler feed water. Specifically, a part of boiler feed water is collected as test water. When sulfate ions are present in the test water, the sulfate ions react with barium ions to become a cloudy substance of barium sulfate. On the contrary, when there is no sulfate ion in the test water, since there is no sulfate ion that reacts with barium ion, the sample is maintained in a colorless state without being clouded (detection step).
[0018]
When the presence of sulfate ions is detected in the detection step, cresolphthalein complexone (hereinafter referred to as “PC”) is added to the test water as a titration indicator and colored red. Then, the titrant is added stepwise to the sample water with stirring. As this titrant, one solid drug containing a predetermined amount of EDTA is added with stirring. This addition operation is repeated stepwise until the color of the test water changes from red to colorless. Then, when the color of the sample water changes from red to colorless, the addition of the titrant is stopped, and the equivalent of sulfate ion is determined by the number of titrants added (that is, by what number is added). The sulfate ion concentration in the boiler feed water is expressed as “the number of titrants required for the color of the test water to change from red to colorless” × “the concentration of EDTA in the titrant” is the sulfate ion concentration (mg / liter). (Concentration measurement step).
[0019]
When the detection indicator and titration indicator are different target substances as in the above embodiment, detection indicators corresponding to the respective components shown in Table 3 are added to the liquid to be measured to detect the presence or absence of the target substance, and detection When the presence of the target substance is detected in the result, each titration indicator shown in Table 3 is added, and the concentration is measured using the titrant of each component.
[0020]
[Table 3]
Figure 0003941498
[0021]
And, as the titrant in the above embodiment, the case where titration is performed stepwise using a fixed equivalent tablet has been described, but the titrant is not limited to this, and is not necessarily limited to a constant equivalent. It is not necessary to prepare the titrant of 2 times equivalent, 3 times equivalent,... In advance, and these can be titrated by combining them stepwise as appropriate.
[0022]
Furthermore, the titrant is not limited to a tablet, and may be a constant equivalent liquid titrant and a constant equivalent powder titrant.
[0023]
【The invention's effect】
As described above, according to the present invention, the concentration measurement at the sampling site can be realized without requiring an absorptiometer.

Claims (1)

被測定液に指示薬を添加して対象物質の有無を検出する検出工程と、
前記検出工程において対象物質の存在を検出したとき、段階的に滴定することにより濃度を測定する濃度測定工程とを含む、
液体中に含まれる成分の濃度測定方法。
A detection step of detecting the presence or absence of a target substance by adding an indicator to the liquid to be measured;
A concentration measurement step of measuring the concentration by titrating stepwise when the presence of the target substance is detected in the detection step,
A method for measuring the concentration of a component contained in a liquid.
JP2001391017A 2001-12-25 2001-12-25 Method for measuring concentration of components contained in liquid Expired - Lifetime JP3941498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391017A JP3941498B2 (en) 2001-12-25 2001-12-25 Method for measuring concentration of components contained in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391017A JP3941498B2 (en) 2001-12-25 2001-12-25 Method for measuring concentration of components contained in liquid

Publications (2)

Publication Number Publication Date
JP2003194800A JP2003194800A (en) 2003-07-09
JP3941498B2 true JP3941498B2 (en) 2007-07-04

Family

ID=27598730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391017A Expired - Lifetime JP3941498B2 (en) 2001-12-25 2001-12-25 Method for measuring concentration of components contained in liquid

Country Status (1)

Country Link
JP (1) JP3941498B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263632A (en) * 2006-03-28 2007-10-11 Miura Co Ltd Method and kit for measuring chelating agent
JP2017101813A (en) * 2016-02-05 2017-06-08 株式会社オンダ製作所 Pipe and pipe construction method

Also Published As

Publication number Publication date
JP2003194800A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
Oudot et al. Precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with a commercial system 1
CN102128833A (en) Reagent kit for detecting residual chlorine in water
US8065906B2 (en) Detection of free chlorine in water
EP2601515A1 (en) Simultaneous determination of multiple analytes in industrial water system
CN108535251A (en) Fast check reagent box of ammonia nitrogen and preparation method thereof and the fast detecting method of ammonia nitrogen
JP3941498B2 (en) Method for measuring concentration of components contained in liquid
US3697224A (en) Titration of excess chelating agent
Chanla et al. Application of smartphone as a digital image colorimetric detector for batch and flow-based acid-base titration
Kozak et al. Titrimetry| Overview
Laitinen et al. Amperometric Titration of Calcium
Thajee et al. Colorimetric ionophore-based coextraction titrimetry of potassium ions
AU2022246368A1 (en) A method for measuring the concentration of a chemical species using a reagent baseline
Mtewa et al. Titrimetry
JP3192490B2 (en) Residual chlorine detection method and reagent used therefor
Vasjari et al. Potentiometric characterisation of acid rains using corrected linear plots
CN104374771B (en) A kind of kit and its detection method of quick detection water body ammonia-nitrogen content
KR100537647B1 (en) The method of analysis for Chemical Oxygen Demand by Potassium Permanganate Method
CN110455792A (en) Basicity concentration quick detection reagent and its detection method in a kind of water
CN108490036A (en) The assay method of salinity in a kind of water
US3479152A (en) Chelometric zinc titration
Abdalgader et al. Development & Validation of Compleximetric Titration Method for Analysis of Atorvastatin calcium In Raw Material and Tablet Dosage Form
Kalbus et al. Titration of chromate-dichromate mixtures
JP3600821B2 (en) Analysis method of trace aluminum
Khattab Spectrophotometric determination of some pharmaceutically active amides and imides
RU2011197C1 (en) Method for separate determination of 0-2-ethylhexylmethylphosphonates of zinc and calcium in stabfon preparation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Ref document number: 3941498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250