JP3939428B2 - 画像処理方法および装置 - Google Patents

画像処理方法および装置 Download PDF

Info

Publication number
JP3939428B2
JP3939428B2 JP07242898A JP7242898A JP3939428B2 JP 3939428 B2 JP3939428 B2 JP 3939428B2 JP 07242898 A JP07242898 A JP 07242898A JP 7242898 A JP7242898 A JP 7242898A JP 3939428 B2 JP3939428 B2 JP 3939428B2
Authority
JP
Japan
Prior art keywords
image
signal
image processing
image signal
blurred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07242898A
Other languages
English (en)
Other versions
JPH11275365A (ja
Inventor
文人 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP07242898A priority Critical patent/JP3939428B2/ja
Publication of JPH11275365A publication Critical patent/JPH11275365A/ja
Application granted granted Critical
Publication of JP3939428B2 publication Critical patent/JP3939428B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、写真や印刷物等の反射原稿、ネガフィルムおよびリバーサルフィルム等の透過原稿に担持されるカラー原画像から得られる画像信号を可視像として表示、再生するための画像処理方法および装置に関する。
【0002】
【従来の技術】
近年、ネガフィルム、リバーサルフィルム等の写真フィルムや印刷物等に記録された画像情報を光電的に読み取って、読み取った画像をデジタル画像信号とした後、種々の信号処理を施して記録用のデジタル画像信号とし、この画像信号に応じて変調された記録光によって印画紙等の感光材料を走査露光して潜像を記録し、現像処理して仕上がりプリントとするデジタルフォトプリンタが提案され、現在本出願人によって実用化されている。
【0003】
このようなデジタルフォトプリンタは、基本的に、写真フィルムに記録された画像を光電的に読み取るスキャナ等の画像読取装置と、読み取った画像に所望の画像処理を施すとともに画像記録の露光条件を決定する画像処理装置と、決定された露光条件に従って処理済画像を感光材料に走査露光した後、現像処理を施して可視像として再生する画像再生装置とから構成される。
【0004】
デジタルフォトプリンタでは、読取画像がデジタル画像信号化されているため、複数画像の合成や画像の分割等の編集や、文字と画像との編集等のプリント画像のレイアウトや、階調変換、色/濃度修正、変倍、シャープネス強調(輪郭強調)等の各種の画像処理も自由に行うことができ、用途に応じて自由に編集および画像処理を施した仕上りプリントを出力することができる。また、仕上りプリント画像を画像情報としてフロッピーディスク等の記録媒体に保存できるので、焼増し等の際に、原稿となる写真フィルムや印刷物等を用意する必要がなく、かつ再度露光条件を決定する必要がないので迅速かつ簡易に作業を行うことができる。
さらに、従来の直接露光によるプリントでは、分解能、色/濃度再現性等の制約から、フィルム等に記録されている画像をすべて再生することはできないが、デジタルフォトプリンタによればフィルムに記録されている画像(濃度情報)をほぼ100%再生したプリントが出力可能である。
【0005】
ところで、写真フィルム等に撮影された画像の撮影条件は一定ではなく、ストロボ撮影や逆光シーン等、明暗(濃度)の差、すなわちダイナミックレンジが非常に広い場合がある。これに対し、一般に、フィルムの担持画像を再生するための印画紙等の感光材料が記録可能な被写体画像のダイナミックレンジ(輝度レンジ)は、比較的広いものではあるが、印画紙等の感光材料はその最大濃度が制限されているため、フィルムに記録可能な被写体画像のダイナミックレンジ(輝度レンジ)に比べると狭い。
【0006】
このような場合、写真フィルム上のカラー原画像を通常の印画紙に露光してプリントを作成すると、ハイライト部またはシャドウ部のディテールが再現できない場合がある。例えば、人物を逆光下で撮影した場合、人物が明瞭な画像となるように露光を行うと、空のような明るい部分は白く飛んでしまい、逆に、空が明瞭な画像となるように露光を行うと、人物が黒くつぶれてしまう。そこで、従来の写真焼付装置では、覆い焼きやマスキングプリントというような方法が用いられている。
【0007】
覆い焼きとは、シーンの中の中間的な濃度の領域には通常の露光を与え、プリント上で白くとびそうな領域に穴あき遮蔽板を使って選択的に長時間露光を与えたり、逆にプリント上で黒くつぶれそうな領域には遮蔽板を用いて選択的に露光時間を短くすることにより、個々の被写体のコントラストを維持し、かつ明部・暗部のつぶれのないプリントを得る方法である。このように局部的に露光時間を制御する遮蔽板として、原画フィルムのネガポジを反転したボケ像を写真的に作成したものを用いて、原画フィルムとボケ画像フィルムとを重ねてプリントを行う方法が提案されている。しかし、ボケ画像フィルムを作成するには手間と時間がかかる。
【0008】
また、写真原画の照明光源の明るさを部分的に変化させることにより、覆い焼きと同様の効果を得ることができるマスキングプリント方法もよく知られているが、マスキングプリントでは、再生される画像に関係なく用意された複数の遮蔽板を操作するので、極めて高度な技術を必要とする。
このため、本出願人は、デジタルフォトプリンタにおいて、従来の覆い焼きやマスキングプリント方法等と同等もしくはこれ以上の効果を挙げることのできるダイナミックレンジ圧縮技術を特願平8−16646号明細書において提案している。この特願平8−16646号明細書に記載の技術は、カラー原画像に対してメディアンフィルタによるボケ画像を作成し、カラー原画像からボケ画像を減算して差信号を得、この差信号に所定の信号処理を施し、可視画像として再生するものである。
【0009】
【発明が解決しようとする課題】
ところで、上述したデジタルフォトプリンタ等においては、スキャナ等の入力デバイスから読み取られた原画像に対して、階調変換、色修正、あるいはシャープネス強調処理などの画像処理が頻繁に行われているが、階調変換が硬調化であり、色修正が高彩度化である場合も多く、シャープネス強調処理も含め、このような画像処理を原画像に行うと、画像処理の各ステップで原画像に存在するノイズまたは粒状成分が増幅されてしまうという問題があった。
また、上述した特願平8−16646号明細書に記載の技術は、メディアンフィルタを用いることにより、偽輪郭の発生をある程度防止または抑制し、また、コントラストが大きい画像であってもメリハリを失うことなく、ハイライト部のとびやシャドウ部のつぶれをなくし、エッジ付近の違和感を生ずることなく色再現性を向上させる自動覆い焼き処理を目的とするものであり、ノイズを抑制することを目的とした処理ではないが、原画像に存在するノイズ成分である高周波成分は種々の画像処理により強調されてしまっているという問題があった。
【0010】
本発明の目的は、上記従来技術の問題点を解消し、スキャナ等の入力デバイスから読み取られた原画像に対して頻繁に用いられている、階調変換、色修正、あるいはシャープネス強調処理などの画像処理、さらには必要に応じてこれらとともに自動覆い焼き処理を行う際にも、原画像に存在するノイズを増幅させることのない画像処理方法および装置を提供するにある。
【0011】
【課題を解決するための手段】
上記目的を解決するために、本発明は、カラー原画像を表すデジタル原画像信号を可視像として再生するための画像処理信号を得る画像処理方法であって、このデジタル原画像信号に対して、メディアンフィルタおよびローパスフィルタを用いるエッジ保存平滑化フィルタによるフィルタリング処理を施して前記原画像のボケ画像を表すボケ画像信号を生成し、このボケ画像信号に対して所定の画像処理を施して、処理済ボケ画像信号を生成し、この処理済ボケ画像信号と前記ボケ画像信号との差信号を生成し、この差信号と前記原画像信号とを加算して、前記画像処理信号を生成することを特徴とする画像処理方法を提供するものである。
【0012】
ここで、前記原画像信号の占める空間周波数帯域に依存して、前記ボケ画像信号の周波数特性を変化させるのが好ましい。また、前記原画像信号が高周波数帯域を占める場合には、前記ボケ画像信号の周波数を高周波側にし、前記原画像信号が低周波数帯域を占める場合には、前記ボケ画像信号の周波数を低周波側にするのが好ましい。また、前記画像処理が、階調変換処理、色修正処理およびシャープネス処理の少なくとも1つであるのが好ましい。また、前記画像処理の条件が、前記原画像信号あるいはボケ画像信号を分析することにより、自動的に設定されるのが好ましい。
【0013】
また、前記ボケ画像信号は、メディアンフィルタによる第1のボケ画像信号とローパスフィルタによる第2のボケ画像信号とを重み付け演算したものであるのが好ましい。また、前記ローパスフィルタによる前記第2のボケ画像信号は、前記原画像の前記デジタル画像信号の間引き信号を補間することにより生成されるのが好ましい。また、前記ローパスフィルタとして、無限インパルス応答フィルタを用いるのが好ましい。
また前記デジタル原画像信号を明暗信号に変換し、この明暗信号から前記ボケ画像信号を生成するのが好ましい。
【0014】
また、本発明は、カラー原画像を表すデジタル原画像信号を可視像として再生するための画像処理信号を得る画像処理装置であって、このデジタル原画像信号から、メディアンフィルタおよびローパスフィルタを用いるエッジ保存平滑化フィルタによって前記原画像のボケ画像を表すボケ画像信号を生成するフィルタリング処理手段と、このボケ画像信号に所定の画像処理を施して処理済ボケ画像信号を得る画像処理手段と、この処理済ボケ画像信号と前記ボケ画像信号との差信号を得る減算手段と、この差信号と前記原画像信号とを加算して、前記画像処理信号を得る加算手段とを備えたことを特徴とする画像処理装置を提供するものである。
【0015】
【発明の実施の形態】
本発明に係る画像処理方法および装置を添付の図面に示す好適実施例に基づいて詳細に説明する。
【0016】
図1は、本発明の画像処理方法を実施する本発明の画像処理装置を適用する画像再生装置の一実施例の模式図である。
図1に示すように、画像再生装置10は、デジタルフォトプリンタとして構成されるものであって、原稿となる写真フィルムAに撮影されたカラー原画像を光電的に読み取る画像読取装置12と、この画像読取装置12によって読み取られたデジタル画像信号を入力画像情報としてデジタル画像処理して、可視像として再生するための処理済画像信号を出力画像情報として出力する画像処理装置14と、この画像処理装置14から出力された処理済画像信号を、可視像(ハードコピー画像)として感光材料Z上に再生する画像記録装置16および可視像(ソフトコピー画像)として表示画面上に表示するCRT18とを有する。
【0017】
画像読取装置12は、写真フィルムAに撮影された画像を光電的に読み取る装置であって、光源20と、光源20から射出される光量を調整する可変絞り22と、光源20からの光をR(赤)、G(緑)およびB(青)の3色に分解するためのR、GおよびBの3枚の色フィルタを有し、回転して任意の色フィルタを光路に挿入するための色フィルタ板24と、この色フィルタ板24の各色フィルタを透過した光を拡散させて写真フィルムAの2次元平面を均一に照明するための拡散ボックス26と、写真フィルムAを透過した読取光をCCD30に結像するための結像レンズ28と、結像レンズ28によって結像された写真フィルムAの1枚(1コマ)の画像を光電的に読み取るエリア(2次元)センサであるCCD30と、CCD30によって読み取られたRGB3色の画像信号を増幅するアンプ32と、増幅された画像信号をA/D変換するA/D変換器34と、得られたデジタル画像信号を対数(LOG)変換して濃度信号とするための第1のルックアップテーブル(以下、LUTという)36とを有する。
【0018】
このような画像読取装置12においては、光源20から射出され、絞り22によって光量調整され、色フィルタ板24を通過して色分解され、拡散ボックス26で拡散された読取光が写真フィルムAを透過することにより、写真フィルムAに撮影された画像で変調された透過光が得られる。この透過光は、結像レンズ28によって写真フィルムAの画像の1枚(1コマ)分がCCD30の受光面に結像され、CCD30によって光電的に読み取られる。CCD30からの出力信号は、アンプ32で増幅され、A/D変換器34によってデジタル信号化され、LUT36で濃度信号とされた後、写真フィルムAに撮影された画像の濃度変換デジタル画像信号が入力画像情報として画像処理装置14に送られる。画像読取装置12では、このような画像読取を、色フィルタ板24のR、GおよびBの色フィルタを順次光路に挿入することにより、写真フィルムAに撮影された画像をR、GおよびBの3原色に分解して読み取って、入力画像情報を得ることができる。なお、画像読取装置の画像読取方法は、エリアCCD30の代わりにラインセンサを相対的に移動する方法でもよいし、ドラムスキャナのようにスポット測光する方法であってもよい。
【0019】
本発明の画像処理装置14は、本発明の特徴とする部分であって、画像読取装置12から供給されるRGB3色のデジタル画像信号を入力画像情報として各色毎に格納するフレームメモリ38と、フレームメモリ38に格納された入力画像情報を用いて各種の画像処理条件の設定を行う画像処理条件設定部(以下、条件設定部という)40と、設定された画像処理条件に従って本発明の特徴である原画像に存在するノイズ成分を増幅させずに、階調変換、色修正、シャープネス強調処理やダイナミックレンジ圧縮伸長処理等の各種画像処理を行う画像処理部42とを有する。
【0020】
画像読取装置12によって読み取られた写真フィルムAの1コマの画像のRGB3色のデジタル画像信号は、各色毎にフレームメモリ38に格納された後、読み出されて、条件設定部40および画像処理部42に送られる。条件設定部40は、セットアップ部44と、キー入力部46と、パラメータ統合部48とを有する。セットアップ部44は、画像処理条件を設定するためにあり、オートセットアップアルゴリズムを実行するためのCPUを有し、フレームメモリ38に記憶されたデジタル画像信号から、オートセットアップアルゴリズムによって、濃度ヒストグラムの作成、最高濃度、最低濃度およびダイナミックレンジの算出等を行って、ダイナミックレンジ伸縮率を設定し、更に、マトリクス演算、画像処理アルゴリズム、画像処理テーブル等を用いて、色/濃度処理条件等の画像処理条件を設定する。より具体的には、各種の変換テーブル、補正テーブル、処理テーブル等を作成し、あるいは調整する。
【0021】
まず、セットアップ部44で行われる濃度ヒストグラムの作成、ダイナミックレンジの算出およびダイナミックレンジ伸縮率の設定について説明する。
セットアップ部44は、まず、フレームメモリ38から1コマの画像信号を読み出して、オートセットアップアルゴリズムにより、濃度ヒストグラムを作成する。この時、濃度ヒストグラム作成処理の迅速化および簡略化や処理回路の小規模化を図るために、図示しない読み出しタイミングコントローラなどの間引処理装置によってフレームメモリ38から読み出される画像信号を間引いて(読み出した後間引いてまたは間引いて読み出して)、セットアップ部44に供給し、間引かれた画像信号で濃度ヒストグラムを作成するようにしてもよい。なお、濃度ヒストグラムは、RGBの3色についてそれぞれ作成される。
【0022】
セットアップ部44では、これらのRGB3色の濃度ヒストグラムを用いて、図2に示すように、全体の、すなわち明暗(グレイ濃度)についての濃度ヒストグラムを作成する。ここで、全体の(グレイ)濃度ヒストグラムを得る方法は、RGBの各ヒストグラムを加算平均を取る方法、RGBの各成分を明度や輝度に変換する方法などが挙げられる。輝度に変換する方法としては、例えばYIQ規定のY成分を下記式によって算出する方法が挙げられる。
Y=0.3R+0.59G+0.11B
【0023】
こうして、図2に示すように、1コマ中の3種の異なる絵柄(シーン)について、3種の輝度Yについての濃度ヒストグラムが得られたものとする。図2において、実線で示す濃度ヒストグラムaは、中間濃度の頻度が高い晴天時等の画像を表すヒストグラムであり、その濃度ダイナミックレンジDRa はYmax a −Ymin a である。また、一点鎖線で示す濃度ヒストグラムbは、中間濃度の頻度が低いが、高濃度域および低濃度域での頻度が高いためコントラストが高い画像を表すヒストグラムであり、その濃度ダイナミックレンジDRb はYmax b −Ymi n b である。更に、破線で示す濃度ヒストグラムcは、中間濃度のみが多く、高低両濃度が極めて少なく、コントラストの低い曇天時等の画像を表すヒストグラムであり、その濃度ダイナミックレンジDRc はYmax c −Ymin c である。なお、図2には印画紙等にプリントされた標準的なシーンの濃度ダイナミックレンジを、標準濃度レンジDRo として表示している。なお、標準濃度レンジDRo をはみ出るヒストグラムaおよびbの場合、そのままプリントすると、原画像のハイライト部は白く飛び、シャドウ部は黒くつぶれることになる。
【0024】
このため、本発明においては、コントラストの高い画像であっても低い画像であっても、安定して適切な仕上りを得るために、濃度ヒストグラムaおよびbで示される画像は、ダイナミックレンジの圧縮を行い、濃度ヒストグラムcで示される画像は、ダイナミックレンジの伸長を行う必要がある。
そこで、本発明においては、濃度ヒストグラムから最高濃度(Ymax )および最低濃度(Ymin )を算出し、その差を求めて、濃度ダイナミックレンジDR(=Ymax −Ymin )を算出する。
こうして得られた濃度ダイナミックレンジDRを用いて、ダイナミックレンジ圧縮伸長率(以下、伸縮率という)αを下記式に従って算出する。
α=DRo /DR
ここで、DRo は、対象とする感光材料のプリント再現域内に再生可能な、数十種のシーンの平均濃度ダイナミックであり、これらの数十種のシーンの平均濃度のヒストグラムから定まる最高濃度(Ymax o )と最低濃度(Ymin o )との差から求まる標準濃度レンジである。
なお、伸縮率α<1の時、カラー原画像は圧縮されることになり、伸縮率α>1の時、カラー原画像は伸長されることを示す。
【0025】
このようにして、セットアップ部44ではオートセットアップアルゴリズムによって伸縮率αが自動的に算出されるが、本発明においては、オペレータがカラー原画像のシーンを目視・判断して、そのダイナミックレンジの圧縮伸長処理および伸縮率αを決定し、キー入力部46によって入力してもよい。
キー入力部46は、図4に示される調整キー47によるオペレータのキー入力に応じて、上述した伸縮率αを含む各種の画像処理条件の補正量を演算する。
図示例の調整キー47では、一例として、全体濃度(D)、シアン(C)濃度、マゼンタ濃度(M)、イエロー(Y)濃度、階調(γ)、全体の濃度ダイナミックレンジDRの伸縮率(α)、明部(ハイライト側)の伸縮率(αl )、および暗部(シャドー側)の伸縮率(αd )を、それぞれ調整することができる。
【0026】
オペレータは、後述するモニタ18に表示された画像を見ながら検定を行い、必要に応じて各パラメータの(+)キーおよび(−)キーの押圧して、所望の状態に画像を調整することもでき、すなわち画像処理条件の調整を行うこともできる。それぞれの補正量は、キーの押圧回数に応じて調整される。なお、オペレータによる調整は、このようなキー操作以外にも、図1に示すようにモニタ18に調整キー47に対応する表示を行い、例えばGUI(スライダー)を表示し、マウス66やキーボード操作で調整を行う方法であってもよい。
【0027】
パラメータ統合部48は、セットアップ部44によって設定された画像処理条件と、キー入力部46による補正量とを統合して、最終的に設定された画像処理条件とする。従って、調整キー47による入力が無い場合には、ここで最終的に設定される画像処理条件は、セットアップ部44によって設定された画像処理条件となる。
また、パラメータ統合部48は、画像処理条件を統合・設定して、画像処理部42の所定部所(LUT50、60およびMUL56)に送って設定し、各画像情報は、この画像処理条件に応じた処理が施される。従って、調整キー47からの入力があり、先にパラメータ統合部48で設定された画像処理条件が変更されると、これに応じてモニタ18の表示画像も変化する。
条件設定部40は以上のように構成されるが、オペレータによる調整をモニタ18の表示画面におけるGUIのマウス66等による操作で行う場合には、キー入力部46を省略してもよいし、GUIによる出力を、パラメータ統合部48ではなくセットアップ部44に直接反映させる場合にはパラメータ統合部48をも省略してもよい。
【0028】
一方、画像処理部42は、本発明の最も特徴とする部分であり、フレームメモリ38に記憶された画像情報を読み出し、条件設定部40で設定された画像処理条件に応じて所定の画像処理を施し、画像記録装置16によるプリントP出力のための出力画像情報とする部分であって、第2LUT50、マトリックス演算器(MTX)52、フィルタ(FIL)54、乗算器(MUL)56、減算器58および第3LUT60を有する。
第2LUT50は、フレームメモリ38に記憶された入力画像情報を読み出し、グレイバランスの調整、明るさ補正および階調補正を行うもので、それぞれの補正や調整を行うためのテーブルがカスケード接続されて構成されている。
第2LUT50の各補正(調整)テーブルは、前述の条件設定部40のパラメータ統合部48で設定され、あるいは調整される。
【0029】
図4に第2LUT50に設定されるテーブルの一例を示す。
図4(a)はグレイバランスの調整テーブルで、セットアップ部44は、算出された最高濃度および最低濃度から、公知の方法でグレイバランスを取ってこの調整テーブルを作成する。また、前述の調整キー47からの入力があった場合には、キー入力部46で補正量が算出され、パラメータ統合部48でこの補正量とセットアップ部44が作成した調整テーブルとが統合され、調整テーブルのR、GおよびBの各テーブルの傾きが変化する。
図4(b)は明るさ補正の補正テーブルで、セットアップ部44は、作成した濃度ヒストグラムや最高濃度および最低濃度から、公知のセットアップアルゴリズムを用いて、この補正テーブルを作成する。また、この補正テーブルは、グレイバランスの調整テーブルと同様に、前述の調整キー47の濃度(D)キーの入力によって図4(b)に示されるように調整される。
図4(c)は階調の補正テーブルで、セットアップ部44は、作成した濃度ヒストグラムや最高濃度および最低濃度から、公知のセットアップアルゴリズムを用いて、この補正テーブルを作成する。また、この補正テーブルは、グレイバランスの調整テーブルと同様に、前述の調整キー47の階調(γ)キーの入力によって図4(c)に示されるように調整される。
【0030】
MTX52は、マトリックス演算器であって、第2LUT50で処理されたRGB3色の画像信号の色補正を行うもので、得られる出力画像(情報)が適切な色に仕上がるように、フィルムAの分光特性や感光材料(印画紙)Zの分光特性、現像処理の特性等に応じて設定されたマトリクス演算を行い、色補正を行う。MTX52で色補正処理された画像信号は、ダイナミックレンジの圧縮伸長処理を行うためのボケ画像信号を生成するためにフィルタ(FIL)54と、加算器59との両方に送られる。
なお、ダイナミックレンジ圧縮伸長処理を施さない場合は、MTX52と第3LUT60とがバイパスして接続され、ボケ画像信号の生成は行われない。また、このダイナミックレンジで圧縮伸長処理の有無は、オペレータの入力によるモード選択、条件設定部40での演算結果から判断する方法等で設定すればよい。
【0031】
FIL54は、エッジを残したまま高周波成分のみを平滑化するフィルタであって、MTX52で色補正されたRGB3色の画像信号を各色毎にエッジを保存したまま2次元的にボカして、カラー原画像のボケ画像信号を得るためのものである。
本発明に用いられるFIL54は、メディアンフィルタ(MF)とローパスフィルタ(LPF)とを用いる平滑化フィルタである。ここで、メディアンフィルタは、画像信号の中の大きなエッジは保存し、細かい構造は2次元的にぼかすためのボケマスクフィルタであり、図5に示すような特性を有する。ここで、ウィンドウのサイズ(すなわちボケマスクサイズ)が小さ過ぎると細かい構造の濃淡が残ったボケマスクになり、一方、ウィンドウのサイズが大き過ぎると主要被写体が小さいときにボケマスクの効果があまり現れなかったり、演算量が多くなって装置の規模が大きくなってしまうという欠点が生じる。本出願人による各種シーンに対する実験の結果によれば、135フィルムの場合のウィンドウサイズは20×20から5×5程度が好ましい。
ところで、本発明においては、原画像信号の占める空間周波数帯域に依存して、フィルタのマスクサイズを変えてボケ画像信号の周波数特性を変化させるのが好ましい。例えば、原画像信号が高周波数帯域を占める場合、すなわち、ビィジイな画像の場合には、ボケ画像信号の周波数が高周波側に来るようにし、原画像信号が低周波数帯域を占める場合、ゆったりとした変化の少ない画像の場合には、ボケ画像信号の周波数が低周波側に来るようにするのがよい。
【0032】
FIL54としてメディアンフィルタ(MF)を用いることにより、従来のローパスフィルタ(LPF)のみで原画像の低周波成分のみを取り出して、原画像を2次元的にボカしてボケ画像信号を得る場合に生じていたエッジ部分のだれや偽輪郭(オーバーシュート)の発生などを防止することができ、エッジを保存しておいて、平坦部のノイズ(高周波成分)をカットした画像を得ることが可能となる。
ところで、FIL54としてメディアンフィルタを用いると、エッジを保存して平滑化することができるが、上述したようにメディアンフィルタはマスクサイズを適切に選択しなければ、エッジを保存した平滑化フィルタとしてのボケマスク効果を十分に得ることができない場合がある。
【0033】
このため、本発明において用いられるFIL54は、図6に示すようにメディアンフィルタ(MF)とローパスフィルタ(LPF)とを併用する。
図6に示すFIL54は、MTX52で色補正された画像信号をボケマスク処理して原画像の大きなエッジは保存され細かい構造がボケたボケマスク信号1を得るためのメディアンフィルタ(MF)54aと、MTX52で色補正された同じ画像信号をその低周波成分のみを取り出して原画像を2次元的にボカしたボケマスク信号2を得るためのローパスフィルタ(LPF)54bと、MF54aによるボケマスク信号1とLPF54bによるボケマスク信号2とを重み付け加算してボケマスク信号を生成する演算処理手段54cとから構成される。
このように、FIL54としてMF54aとLPF54bとを併用することにより、エッジ情報を十分に保存し、かつ超低周波成分の情報のみを拾うとができる。
【0034】
ここで、本発明に用いられるLPF54bとしては、ボケ画像生成に通常用いられるFIR(Finite Impulse Respones) 型のローパスフィルタを用いてもよいが、小型の回路で大きく画像をボカしたボケ画像情報を生成できる点で、IIR(Infinite Impulse Respones) 型のローパスフィルタを用いるのが好ましい。
図7にIIR型のローパスフィルタの一例を示す。図示例のローパスフィルタは、順方向に加算器が配置され、フィードバック方向に遅延回路が配置されている構成を有するものである。
なお、本発明に用いることのできるIIR型のローパスフィルタとしては、本出願人の出願にかかる特願平7−337509号明細書に開示されたIIR型のローパスフィルタを用いることができる。
【0035】
このようにしてFIL54で生成されたRGB3色の各色のボケマスク信号は、乗算器(MUL)56に送られる。
MUL56は、RGB3色のボケマスク信号を各色毎に条件設定部40において設定されて、送られているダイナミックレンジ圧縮伸長率αを乗数として乗算する演算処理を行って、ボケ画像信号を得るためのものである。
ところで、フィルムAに撮影可能な画像の濃度領域は、一般的に仕上りプリントにおける再現域よりも広く、種々の濃度範囲の被写体がフィルムAに様々な濃度ダイナミックレンジ(DR)を持つ画像として撮影できるようになっている。例えば、晴天時の画像のように広い濃度ダイナミックレンジを持つ画像もあれば、曇天時の画像のように狭い濃度ダイナミックレンジを持つ画像もあるし、広いダイナミックレンジを持ち、コントラストの高い画像もある。また、雪中シーンや逆光シーンやストロボ撮影の画像などのように、明部(ハイライト)側また暗部(シャドウ)側に、仕上りプリントの再現域を大きく超えて偏った濃度範囲の画像の場合もある。さらに、フィルムAの露光状態は常に適正な訳ではなく、いわゆる、アンダー/オーバー露光のものも多数存在する。
【0036】
図2に示すように、フィルムAの画像情報からセットアップ部44で作成された濃度ヒストグラムが曲線aおよびbで示される画像では、その濃度ダイナミックレンジDRがプリント再現域に対応する標準濃度レンジDRo より広いため、全画素を仕上りプリントに再現することはできず、再現域に対応する標準濃度レンジを超える高濃度部(読み取りの信号強度弱)すなわち暗部の画素はつぶれて黒くなり(仕上りプリントでは明部がとぶ)、逆に、標準濃度レンジを超える低濃度部すなわち明部の画素は白くとんでしまう(仕上りプリントでは暗部がつぶれる)。そのため、原画像の全てを再現した画像を得るためには、原画像のダイナミックレンジを圧縮して、仕上りプリントの再現域に対応した標準濃度レンジDRo に合わせる必要がある。
一方、図2において曲線cのヒストグラムで示される画像では、その濃度ダイナミックレンジDRが標準濃度レンジDRo より狭いため、白の抜けが悪く、また黒の締まりが悪く、コントラストのない、メリハリのない画像として再生されてしまうため、ダイナミックレンジを伸長して、標準濃度レンジDRo に合わせる必要がある。
【0037】
また、雪中シーンや逆光シーンなどのように明部(ハイライト)側の画像情報の頻度が高い場合は、特に暗部(シャドウ)側を強く圧縮することにより、全体のダイナミックレンジを圧縮するのが効果的なものや、ストロボ撮影画像のように暗部(シャドウ)側の画像情報の頻度が高い場合いは、明部(ハイライト)側を強く圧縮することにより、全体のダイナミックレンジを圧縮するのが効果的である場合もある。このように従来の直接露光による覆い焼きと同様の効果を付与するように、好ましくは、中間濃度部分の階調を変化させずに明部および暗部の濃度を調整して、ダイナミックレンジを圧縮するように画像情報を処理するのがよい場合もある。
【0038】
さらに、原稿となるフィルムAの画像がオーバー露光の場合には、暗部側が全体的に黒く(仕上りプリントでは明部に濃度が乗って白の抜けが悪くなる)メリハリのない画像に成りがちである。逆にアンダー露光の場合には、明部側の濃度が上り(仕上りプリントでは暗部の濃度が下がり黒の締まりが悪くなる)やはりメリハリのない画像に成りがちである。
そのため、この際に高画質な画像を得るためには、階調を立ててコントラストを上げる必要があり、標準濃度レンジ内で、オーバー露光の場合には暗部の階調を立て、アンダー露光の場合には、明部の階調を立てるようにダイナミックレンジを伸長する必要がある。このように、アンダー/オーバー露光を修正する際には、好ましくは中間濃度部分の階調を変化させずに、ダイナミックレンジを伸長するのがよい場合もある。
【0039】
以上のように、本発明においては、カラー原画像がシーンに応じたダイナミックレンジの圧縮伸長処理を施すことができるが、そのために、前述したように条件設定部40のセットアップ部44において自動的にカラー原画像のシーンに応じてダイナミックレンジ圧縮伸長率αを適切に設定することもできるし、キー入力部46からオペレータが原画像を目視して決定したダイナミックレンジ圧縮伸長率αを入力することもできる。
この時、雪中シーン、逆光シーン、ストロボ撮影シーンなどや、アンダー露光、オーバー露光などのように、濃度ダイナミックレンジの一部、特に明部(ハイライト)側および暗部(シャドウ)側のいずれか一方または両方を部分的に圧縮伸長するのが効果的である場合には、明部の伸縮率αl および暗部の伸縮率αd をこれらのシーンをセットアップ部44で自動判別して、自動算出し、もしくは、オペレータがキー入力部46から入力し、他の部分の伸縮率αと異なるように非線形関数として設定し、画像全体の濃度ダイナミックレンジDRを標準濃度レンジDRo 内に収まるようにしてもよい。
【0040】
図示例においては、ボケマスク信号に伸縮率αを乗算するために、乗算器(MUL)56を用いているが、本発明はこれに限定されず、LUTを用いるように構成してもよい。特に、伸縮率αが非線形関数として与えられる場合には、LUTを用いるのが好ましい。
なお、LUTを用いたダイナミックレンジの圧縮伸長の方法は、本出願人の出願に係る特願平7−337509号明細書および同8−157200号明細書に開示された方法も用いることができる。
【0041】
このようにしてMUL56でダイナミックレンジ圧縮伸長処理されたRGB3色の各色のボケ画像信号は、画像補正部57および減算器58に送られる。
画像補正部57では、各色のボケ画像信号に階調変換処理、色修正処理およびシャープネス処理などのような画像処理を行って、処理済ボケ画像信号を生成する。画像補正部57で階調変換処理、色修正処理およびシャープネス処理などの画像処理を行うと、不可避的にノイズや粒状をも増幅させるが、画像補正部57で得られる処理済ボケ画像信号は、FIL54によって中高周波成分が除去された低周波成分のみからなる画像信号であるので、高周波成分から成るノイズや粒状は増幅されない。このような画像処理は、LUTやMTXなどを用いて行ってもよいし、関数などを用いて演算処理を行うものであってもよいが、これらの画像処理の条件は、原画像信号あるいはボケ画像信号を分析することにより、自動的に設定されるようにするのが好ましい。
【0042】
画像補正部57で、ボケ画像信号にこのような画像処理を施すのは、これらが原画像信号に対して頻繁に行われる処理であり、階調変換が硬調化であり、色修正が高彩度化である場合も多く、シャープネス強調処理も含め、このような画像処理を原画像に行うと、画像処理の各ステップで原画像に存在するノイズまたは粒状成分が増幅されてしまうからである。
なお、画像補正部57において、ボケ画像信号に施す画像処理は、階調変換処理、色修正処理およびシャープネス処理に限定されず、原画像に存在するノイズまたは粒状成分を増幅する恐れのある画像処理であれば、どのような画像処理であってもよい。本発明法においては、画像補正部57では、このような画像処理の少なくとも1つの画像処理を行えばよいが、原画像に存在するノイズまたは粒状成分を増幅させたくない、例えばソフトフォーカス的な効果を出したい場合は、全ての画像処理を画像補正部57で行うのが好ましい。なお、画像補正部57で階調変換、あるいは色修正処理を行う場合には、LUT50あるいはMTX52による階調変換、あるいは色補正を行わなくても良く、従って、LUT50あるいはMTX52そのものを設けなくても良い。
【0043】
このようにして画像補正部57で種々の画像処理が施された処理済ボケ画像信号も、減算器58に送られる。
ここで、減算器58では、画像補正部57で種々の画像処理が施されたRGB各色の処理済ボケ画像信号からMUL56で生成されて直接送られたRGB各色のボケ画像信号をそれぞれ減算して、各色の差信号を得ることができる。この差信号は、画像補正部57における種々の画像処理によって変化した変化分のみからなる信号である。
こうして減算器58で得られた差信号は、加算器59に送られる。加算器59では、MTX52から色補正されて直接送られているカラー原画像信号と減算器58で生成された差信号とを加算し、本発明による画像処理済信号を生成する。こうして加算器59で得られた画像処理済信号は、高周波成分は保存され、エッジを保存した低周波成分のみに階調変換処理、色修正処理およびシャープネス処理などの頻繁に行われる画像処理や、ダイナミックレンジ圧縮伸長処理などが施され、標準濃度レンジを持ち、偽輪郭などの発生がなく、ノイズや粒状が増幅されず、目立つことのない適切な高画質画像を再生することのできる画像信号である。
【0044】
なお、本発明において得られる画像は、カラー画像のエッジを保存した低周波成分のみに階調変換、色修正およびシャープネス強調などの画像処理を施しているので、従来の覆い焼き処理画像に比べノイズや粒状が低下し、カラー原画像に比べノイズや粒状は増幅されていないが、ソフトフォーカス的な画像となる場合がある。しかし、ポートレートやゆったりとした画像などのように画像の占める空間周波数が低周波側にある場合には、ソフトフォーカス的な仕上げは好まれるものであるので、そのまま仕上がりプリントとして出力することができる。一方、画像の変化が激しくビィジイな画像などのように画像の占める空間周波数が高周波側にある場合や、画像におけるエッジのダレが特に嫌われる画像の場合には、本発明においても、フィルタリング処理の条件を変え、ボケ画像の周波数特性を高周波側にすることにより、シャープネス強調処理などの画像処理の効き目を強くして、高周波成分を増幅することなく、エッジのだれなどを抑制することにより、適切な画像処理が施された、メリハリのある高画質画像を得ることができる。
また、画像読取装置(スキャナ)12の性能によっては、色を的確に捉えられず、彩度があまり高く取れない場合があるし、デジタルカメラの場合にも同様に色が的確に捉えられず、彩度があまり高く取れないので、彩度を上げる処理を行うのが良いが、通常彩度を上げると、粒状などのノイズ成分も増幅される。従って、このような場合、本発明法を適用することにより、ノイズ成分を増幅させずに彩度を上げることができ、好ましく仕上げられた画像を得ることができるので効果的である。
【0045】
こうして得られた画像処理済信号は、第3LUT60に送られる。第3LUT60は、加算器59による加算で得られた画像処理済信号を最終的な出力媒体、例えばCRTモニタ18や画像記録装置16で用いられる印画紙等の感光材料などの特性に応じた出力画像信号に変換する階調変換テーブルである。従って、画像処理済信号は第3LUT60によって最終的な出力媒体に応じた画像信号に階調変換されて、出力画像情報として画像記録装置16およびモニタ18に向けて出力される。なお、画像補正部57の説明の中で記述した理由により、画像補正部57で第3LUT60の階調変換を行って、第3LUT60における階調変換を省略してもよいし、第3LUT60自体を省略することもできる。
【0046】
このようにして第3LUT60において階調(濃度)変換された画像信号は、信号変換器62に入力され、信号変換器62によってモニタ18に対応する信号に変換された後、D/A変換器64に入力されてアナログ画像信号に変換され、モニタ18に可視像として表示される、もしくは画像記録装置16に入力され、画像記録装置16において仕上がりプリント画像Pが可視像として出力される。
ここで、モニタ18に表示される画像と、画像記録装置16に送られて再生される仕上がりプリント画像は、ダイナミックレンジ圧縮伸長処理を含む各種の画像処理がノイズを増幅させることなく適切に施された全く同一の画像信号から得られたものであるので、同様のダイナミックレンジ圧縮伸長効果をもち、同様にノイズや粒状などが目立つことのない適切な高画質画像であることは言うまでもない。
【0047】
なお、前述したように、オペレータはモニタ20に表示された画像を見て検定を行うことができ、必要に応じて、調整キー47の各キーを押圧して、全体濃度、C濃度、M濃度、Y濃度、階調、全体のダイナミックレンジ圧縮伸長、明部の圧縮伸長および暗部の圧縮伸長の調整を行い、仕上りプリントに記録される画像の調整を行うことができる。
オペレータによる調整キー47のキー入力は、キー入力部46に送られ、伸縮率αを含む画像処理条件の補正量とされ、パラメータ統合部48おいて、この補正量とセットアップ部44が設定した伸縮率αを含む画像処理条件とが統合されて、キー補正後の新たな画像処理条件が設定される。すなわち、MUL56に供給される伸縮率α、αl 、αd ならびに前述の第2LUT50の補正テーブルおよび第3LUT60における階調変換テーブルは、調整キー47によるキー入力によって調整あるいは再設定される。その結果、それに応じて、モニタ18に表示される画像も変化するし、画像記録装置16から出力される仕上がりプリント画像Pも変化する。
【0048】
ところで、図1に示すモニタ18のように、表示画面に再生画像とともに伸縮率α、αl 、αd などをGUIとして表示して、マウス66などによって調整もしくは再設定できるようにしてもよい。 図8は、ダイナミックレンジ圧縮伸長処理済画像が表示されたモニタ18の表示画面の一例を示す。このモニタ18の表示画面には処理済画像を表示するとともに、表示された画像の伸縮率をマウス66などにより調整するためのGUI(調整用スライダー)18aが表示されており、表示画像のシーンの判別を行って、伸縮率α、αl 、αd の微調整、再設定を行うことができる。こうして調整された伸縮率α、αl 、αd は、条件設定部40のセットアップ部44またはパラメータ統合部48に入力され、最終的に画像処理部42のMUL56に乗数として設定される。
本発明の画像処理装置14は、基本的に以上のように構成される。
【0049】
つぎに、画像記録装置16は、出力画像情報として、画像処理装置14の画像処理部42の第3LUT60での階調変換処理が終了した仕上りプリントの画像記録に応じた画像信号を受け、この出力画像情報に応じて、光ビーム走査によって感光材料Zを走査露光し、露光を終了した感光材料Zを現像処理して、仕上がりプリント画像Pを可視像として出力するものであって、図10に示すように、ドライバ88と、画像露光部90と、現像部92とを有するものである。
画像処理装置14の画像処理部42より出力された画像信号は、ドライバ88に転送され、内部の図示しないD/A変換器によって、アナログ画像信号に変換される。
ドライバ88は、D/A変換されたアナログ画像信号に応じて、画像露光部90の走査光ビームを変調するために、画像露光部90の音響光学変調器(AOM)94を駆動する。
【0050】
一方、画像露光部90は、光ビーム走査によって感光材料Zを走査露光して、前記画像情報の画像を感光材料Zに記録するもので、図10に概念的に示されるように、感光材料Zに形成されるR感光層の露光に対応する狭帯波長域の光ビームを射出する光源96R、以下同様にG感光層の露光に対応する光源96G、およびB感光層の露光に対応する光源96Bの各光ビームの光源、各光源より射出された光ビームを、それぞれ記録画像に応じて変調するAOM94R、94Gおよび94B、光偏向器としてのポリゴンミラー98、fθレンズ100と、感光材料Zの副走査搬送手段を有する。
光源96(96R、96G、96B)より射出され、互いに相異なる角度で進行する各光ビームは、それぞれに対応するAOM94(94R、94G、94B)に入射する。各AOM94には、ドライバ88より記録画像に応じたR、GおよびBそれぞれの駆動信号が転送されており、入射した光ビームを記録画像に応じて強度変調する。
【0051】
AOM94によって変調された各光ビームは、ポリゴンミラー98の略同一点に入射して反射され、主走査方向(図中矢印x方向)に偏向され、次いでfθレンズ94によって所定の走査位置zに所定のビーム形状で結像するように調整され、感光材料Zに入射する。なお、画像露光部90には、必要に応じて光ビームの整形手段や面倒れ補正光学系が配置されていてもよい。
【0052】
一方、感光材料Zはロール状に巻回されて遮光された状態で所定位置に装填されている。このような感光材料Zは引き出しローラ(図示省略)に引き出され、副走査手段を構成する走査位置zを挟んで配置される搬送ローラ対102aおよび102bによって、走査位置zに保持されつつ主走査方向と直交する副走査方向(図中矢印y方向)に副走査搬送される。光ビームは主走査方向に偏向されているので、副走査方向に搬送される感光材料Zは光ビームによって全面を2次元的に走査露光され、感光材料Zに画像処理装置14の画像処理部42より転送された画像情報の画像(潜像)が記録される。
【0053】
露光を終了した感光材料Zは、次いで搬送ローラ対104によって現像部92に搬入され、現像処理を施され仕上りプリントPとされる。
ここで、例えば感光材料Zが銀塩写真感光材料であれば、現像部92は発色現像槽106、漂白定着槽108、水洗槽110a、110b、110cおよび110d、乾燥部およびカッタ(図示せず)等より構成され、感光材料Zはそれぞれの処理槽において所定の処理を施され、乾燥された後、カッタによってプリント1枚に対応する所定長に切断され、仕上りプリントPとして出力される。
画像記録装置16は、基本的に以上のように構成される。
【0054】
画像再生装置10は、基本的に以上のように構成されるが、以下に、その作用および本発明の画像処理方法について、図面を参照して簡単に説明する。
画像再生装置10が立ち上げられ、画像読取装置12において、光源20の光量が安定し、絞り22の開放基準値の設定、現像部92の温度調整等の所定の作業が終了した後、原画となるフィルムAが所定位置に装填され、プリント作成開始の指示が出されると、まず、フィルムAの画像の読み取りが開始される。
【0055】
画像読取装置12において読み取りが開始されると、光源20から射出され、絞り22で光量調整され、色フィルタ板24を通過して色調整(例えばG光)され、拡散ボックス26で拡散された読取光がフィルムAを通過することで、フィルムAのG画像を担持する投影光となり、結像レンズ28によってCCDセンサ30に結像され、光電的に読み取られる。CCDセンサ30からの出力信号は、アンプ32で増幅され、A/D変換器34によってデジタル信号化され、LUT36でlog変換されて濃度信号とされた後、画像処理装置14に送られ、そのフレームメモリ38のG画像用フレームメモリに記憶される。
次いで、色フィルタ板24が切り替えられて、Rフィルタが光路に作用して、同様にしてR画像が読み取られてフレームメモリ38のR画像用フレームメモリに記憶され、同様にB画像が読み取られてフレームメモリ38のB画像用フレームメモリに記憶され、読み取りが終了する。
【0056】
一方、画像処理装置14において、条件設定部40のセットアップ部44は、画像読取装置12による読み取りが終了した時点で、フレームメモリ38からデジタル画像信号を読み出し、濃度ヒストグラムの作成や最高濃度および最低濃度や濃度レンジの算出等を行って、ダイナミックレンジ圧縮伸長率αや明部の伸縮率αl や暗部の伸縮率αd などを算出または設定し、さらに第2LUT50のグレイバランス調整テーブル、明るさ補正テーブルおよび階調補正テーブル、および第3LUT60の階調変換テーブルを作成して画像処理条件を設定し、パラメータ統合部48に出力する。
パラメータ統合部48は、送られた伸縮率αなどの画像処理条件を、画像処理部42のMUL56に乗数として転送するとともに、各LUT50および60に転送し、画像処理用のテーブルとして設定する。
【0057】
画像処理条件が設定されると、画像処理部42の第2LUT50がフレームメモリ38から原画像のRGB各色のデジタル画像信号を読み出し、設定された各テーブルによる処理を行い、次いで、MTX52で色補正が施される。MTX52で色補正されたRGB各色の画像信号は、各色毎に加算器59およびFIL54に送られる。
FIL54は、各色毎に、送られた画像信号にメディアンフィルタ(MF)54aによるフィルタリング処理を行って、好ましくは、図6に示すように、メディアンフィルタ(MF)54aおよびローパスフィルタ(LPF)54bによるフィルタリング処理ならびに重み付け加算手段54cによる演算処理を行って、ボケマスク信号を生成する。こうして生成されたボケマスク信号は、MUL56において、条件設定部40のパラメータ統合部48から送られた伸縮率α(αl ,αd )によって乗算され、ダイナミックレンジの圧縮伸長処理がなされたボケ画像信号に変換される。
【0058】
こうしてFIL54で得られたボケ画像信号は、画像補正部57および減算器58に送られる。画像補正部57では、FIL54で得られたボケ画像信号に階調変換(特に、階調を立てる変換処理)、色修正(特に高彩度化)処理、シャープネス強調処理などの画像処理が施され、処理済ボケ画像信号が生成され、減算器58に送られる。減算器58では、画像補正部57で処理された処理済ボケ画像信号から直接入力されたボケ画像信号が引き算され、差信号が生成され、加算器59に送られる。
次に、加算器59では、MTX52で処理された画像信号と減算器58で生成された差信号が加算され、原画像にノイズや粒状を増幅させず、また目立たせることなく、適切な種々の画像処理が施され、原画像のダイナミックレンジが圧縮伸長された処理済画像信号が生成される。
加算器59から出力された処理済画像信号は、LUT60においてモニタ18による表示に応じた画像となるように階調変換され、信号変換器62によってモニタ18による表示に応じた信号に変換され、D/A変換器64でアナログ信号とされて、モニタ18に表示される。
【0059】
オペレータは、モニタ18に表示された画像を見て検定を行い、必要に応じて調整キー47を用いて各種の調整を行う。調整キー47による入力があると、キー入力部46で伸縮率α等の画像処理条件の補正量が演算されて、パラメータ統合部48によって、この補正量とセットアップ部44が設定した画像処理条件とが統合されて、画像処理条件が再設定あるいは変更される。新たな伸縮率αが画像処理部42のMUL56に、その他の新たな画像処理条件がLUT50および60に転送され、MUL56での乗数やLUT50、60で設定されるテーブルの内容が変更され、これらに基づいて上述した画像処理部42による画像処理が再び行われて、モニタ18の画像が変化する。
【0060】
オペレータが画像が適正であると判断すると(検定OK)、出力の指示が出され、画像処理装置14の画像処理部42のLUT60からRGB各色のダイナミックレンジ圧縮伸長処理済デジタル画像信号が、出力画像情報として画像記録装置16に送られる。
なお、上記検定は必ずしも行われる必要はなく、例えば、フルオートモード等を設定して、検定なしで自動的に画像記録装置16にてプリント作成を行うように構成してもよい。
【0061】
画像記録装置16が出力画像情報としてダイナミックレンジ圧縮伸長処理済デジタル画像信号を受けると、この処理済デジタル画像信号はドライバ88に入力され、記録用アナログ画像信号にD/A変換される。
画像記録装置16において、各光源96から光ビームが射出され、この光ビームがドライバ88によって記録画像信号に応じて駆動される各AOM94によって記録画像に応じて変調され、ポリゴンミラー98によって主走査方向に変更され、fθレンズ100を経て、副走査方向に搬送される感光材料を2次元的に走査露光して潜像を形成する。
露光済感光材料は、発色現像槽106、漂白定着槽108、水洗槽110で所定の処理を施され、乾燥された後、カッタによってプリント1枚(コマ)に対応する所定長に切断され、仕上りプリントPとして出力される。
こうして得られた仕上りプリント画像Pは、高コントラスト画像であっても、低コントラスト画像であっても、偽輪郭の発生や明部や暗部のつぶれがなく、ダイナミックレンジが適切に圧縮伸長されためりはりのある高画質画像である。
【0062】
すなわち、本発明の画像処理方法の好ましい態様の特徴は、図9に示すように、予め原画像から濃度ヒストグラムを作成して濃度レンジを算出し、次いでダイナミックレンジ圧縮伸長率αを算出しておき、原画像からメディアンフィルタ(MF)によって生成されたボケ画像1とローパスフィルタ(LPF)によって生成されたボケ画像2とを重み付け加算した後、予め算出された圧縮伸長率αを用いて圧縮伸長することにより、ボケ画像を生成し、生成されたボケ画像に階調変換、色修正、シャープネス強調処理などの画像補正処理を施し、得られた処理済ボケ画像から処理されていないボケ画像を引き算して、処理済差画像を生成し、最後に得られた処理済差画像と原画像とを加算することにより、高コントラスト画像であっても、低コントラスト画像であっても、ノイズや粒状を増幅させることなくシャープネス処理などの画像処理が適正に掛かり、ダイナミックレンジが適切に圧縮伸長され、偽輪郭の発生や明部や暗部のつぶれがなく、メリハリのある高画質画像を得ることにある。
【0063】
ところで、図1に示す画像再生装置10においては、プレスキャンを行うことなく、フィルムAからカラー原画像の読み取りを1回行うのみで画像情報の処理を行うことができるため、画像の読み取りおよび処理を迅速に行うことができるが、本発明はこれに限定されず、プレスキャンを行うものであってもよい。
図11に示す画像再生装置10Aは、図1に示す画像再生装置10と、画像処理装置14Aの構成、具体的には画像処理装置14の構成に加え、さらにプレスキャンメモリ68と、プレスキャン画像処理部70とを有している点を除いて、全く同一の構成を有しているので、同一の構成要素には、同一の符号を付し、その詳細な説明は省略する。
【0064】
図11に示す画像再生装置10Aにおいては、画像読取装置12において、出力のための画像情報を得るための画像読取(本スキャン)に先立ち、低解像度で画像を粗に読み取るプレスキャンを行う。画像処理装置14Aは、プレスキャンで得られた画像情報から各種の画像処理条件を設定(セットアップ)し、この画像処理条件に応じて本スキャンの画像情報を画像処理して、画像記録装置16による画像記録ための出力画像情報とする。なお、プレスキャンと本スキャンにおける画像読取方法は、基本的に同様であるが、両者の違いは、読取画像の解像度が異なることだけである。
プレスキャンの際には、CCDセンサ30で読み取られた画像は、画像処理装置14Aのプレスキャンメモリ68に接続されるタイミングコントローラ72による制御で画素が間引され、解像度の低い粗な画像情報とされてプレスキャン画像処理部70において画像処理される。
【0065】
図示例の画像処理装置14Aは、画像読取装置12から入力されるデジタル画像信号に対して、ダイナミックレンジ圧縮伸長処理を含む各種の画像処理を行うものであって、本スキャン画像メモリとして用いられるフレームメモリ38と、画像処理条件設定部40と、本スキャン画像の画像処理部42とに加え、プレスキャンメモリ68と、プレスキャン画像処理部(以下、表示画像処理部という)70とを有する。また、プレスキャンメモリ68およびフレームメモリ38には、画像情報の画素毎の読み出しを制御するタイミングコントローラ72が接続される。
画像読取装置12によるプレスキャンの画像情報はプレスキャンメモリ68に、本スキャンの画像情報はフレームメモリ38にそれぞれ送られ、記憶される。
プレスキャンメモリ68は、基本的に本スキャンメモリであるフレームメモリ38と同様の構成を有するものであり、共に、画像読取装置12から供給されたR画像情報、G画像情報およびB画像情報を、それぞれ記憶する3つのフレームメモリから構成される。なお、必要に応じて、プレスキャンメモリ68とフレームメモリ38の記録容量を異なるものとしてもよい。
【0066】
プレスキャンメモリ68に記憶された画像情報は表示画像処理部70および条件設定部40に、フレームメモリ38に記憶された画像情報は画像処理部42に、それぞれ読み出される。
条件設定部40は、プレスキャンメモリ68から記憶された画像情報を受け取る点が図1に示す画像処理装置14の条件設定部40と異なるが、セットアップ部44と、キー入力部46と、パラメータ統合部48とを有し、ダイナミックレンジの算出や圧縮伸長率α等の算出などの種々の画像処理条件の設定において全く同様に機能する。
なお、条件設定部40のセットアップ部44において算出された圧縮伸長率α、αl 、αd 等は、パラメータ統合部48から画像処理部42のMUL56に送られ、乗数として設定されるのみならず、表示画像処理部70の第3LUT78にも送られ、乗数もしくはダイナミックレンジ圧縮伸長テーブルとして設定される。また、セットアップ部44において設定された他の各種の画像処理条件(テーブル等を含む)は、パラメータ統合部48から画像処理部42の第2および第3LUT50および60のみならず、表示画像処理部70の第2LUT74にも送られ、各種の画像処理テーブル等が設定される。
【0067】
表示画像処理部70は、プレスキャンメモリ68に記憶されたプレスキャン画像情報を読み出し、条件設定部40で設定された画像処理条件に応じた各種の画像処理を施し、モニタ18表示用の画像情報とする部分で、第2LUT74、MTX76、第3LUT78および信号変換器62を有する。
ここで第2LUT74は、画像処理部42の第2LUT50と全く同様の機能を有し、プレスキャンメモリ68に記憶された画像情報を読み出し、グレイバランスの調整、明るさ補正および階調補正を行う。
MTX76は、画像処理部42のMTX52と全く同様の機能を有し、第2LUT74で処理された画像情報の色補正を行う。
【0068】
表示画像処理部70においては、MTX76で処理された画像情報は、フィルタリング処理(ボケマスク処理)によるボケ画像情報を使ったダイナミックレンジ圧縮伸長処理を行わずに、直接第3LUT78に入力される。
第3LUT78は、ダイナミックレンジ圧縮伸長処理を施さずに、MTX76で色補正されたプレスキャン画像情報をモニタ18に表示する場合には、画像処理部42の第3LUT60と全く同様の階調変換機能を有し、色補正プレスキャン画像情報をモニタ18に表示するのに適した画像情報に階調変換、濃度変換する。一方、色補正プレスキャン画像情報にもダイナミックレンジ圧縮伸長処理を施す場合には、第3LUT78は、このような階調変換機能に加え、条件設定部40から送られた伸縮率α、αl 、αd を乗数とする乗算機能または倍率変換機能を有し、色補正プレスキャン画像情報に設定伸縮率α、αl 、αd の圧縮伸長処理および階調変換、濃度変換処理を施して、ダイナミックレンジが適切で、モニタ18への表示に適した画像信号に変換する。
【0069】
このようにして、第3LUT78で変換されたプレスキャン画像情報は、出力され、信号変換器62によってモニタ18に対応する信号に変換され、さらに、D/A変換器64によってD/A変換されて、モニタ18に表示される。
ここで、モニタ18に表示される画像は、ダイナミックレンジ圧縮伸長処理が施されている場合、画像記録装置16に送られて再生される仕上りプリント画像Pと各種の画像処理や圧縮伸長処理として、同様の処理が施されたものであり、従って、モニタ18には、仕上りプリント画像Pと同様の画像が表示される。
なお、図11に示す例ではモニタ18に接続されるマウス66が省略されている。
【0070】
オペレータはモニタ18に表示されたプレスキャン画像を見て検定を行い、必要に応じて、条件設定部40の調整キー47の各キーを押圧して、各種の調整が行われるのは前述のとおりである。
オペレータによる調整キー47のキー入力は、条件設定部40のキー入力部46に送られ、画像処理条件の補正量とされ、パラメータ統合部48おいて、この補正量とセットアップ部44が設定した画像処理条件とが統合されて、キー補正後の新たな画像処理条件が設定される。ここで調整キー47によるキー入力によって、画像処理部42では、第2LUT50の各補正テーブル、MUL56の乗数α等および第3LUT60における階調変換テーブルが調整あるいは再設定され、表示画像処理部70でも、第2LUT74の各補正テーブルおよび第3LUT78における伸縮率αによるダイナミックレンジ圧縮伸長および階調変換テーブルが調整あるいは再設定され、また、これに応じて、モニタ18に表示される画像も変化する。
オペレータが画像が適正であると判断すると(検定OK)、出力の指示が出され、画像処理部42の第2LUT50がフレームメモリ38から本スキャン画像情報を読み出す。
【0071】
以下、画像処理装置14Aの画像処理部42においても、こうして読み出された本スキャン画像情報に対して、図1に示す画像再生装置10の画像処理装置14の画像処理部42と全く同様に、ダイナミックレンジ圧縮伸長処理を含む各種の画像処理を行って、画像記録のための出力画像情報を生成し、画像記録装置16に送られる。
なお、上記検定は必ずしも行われる必要はなく、例えば、フルオートモード等を設定して、検定なしでプリント作成を行うように構成してもよい。この場合には、例えば、セットアップ部44が画像処理条件を設定し、パラメータ統合部48が画像処理部42にこれらの画像処理条件を設定した時点で、第2LUT50が本スキャン画像情報を読み出しを開始し、画像処理を行う。
【0072】
画像記録装置16は、出力画像情報を受けると、同様にして仕上りプリント画像Pを出力する。こうして得られた仕上りプリント画像Pも同様に、高コントラスト画像であっても、低コントラスト画像であっても、偽輪郭の発生や明部や暗部のつぶれがなく、ダイナミックレンジが適切に圧縮伸長されためりはりのある高画質画像である。
本態様の画像再生装置10Aにおいては、プレスキャンを行って得た低画素密度の(本スキャン画像に比較して画素数の少ない)プレスキャン画像を用いて、条件設定部40のセットアップ部44でオートセットアップアルゴリズムを行うことができるので、条件設定部40の処理およびモニタ18への表示のための画像信号の画像処理を迅速かつ簡単なものとすることができ、条件設定部40や表示画像処理部70の構成を簡素化でき、それらの回路規模を簡単なものとすることができる。
【0073】
また、図1および図11に示す画像再生装置10および10Aにおいては、ボケ画像情報を作成する際に、RGBの3色の各色のデジタル画像信号についてそれぞれ、画像処理装置14および14Aの画像処理部42のフィルタ(FIL54)によるフィルタリング処理を行ってボケマスク信号を生成しているが、本発明はこれに限定されず、図12に示す画像再生装置10Bのように、RGBの3色のデジタル画像信号を明暗画像信号に変換した後に、フィルタ(FIL54)によるフィルタリング処理を行ってボケマスク信号を生成するように構成してもよい。
【0074】
図12に示す画像再生装置10Bは、図11に示す画像再生装置10Aと、画像処理装置14Bの構成、具体的には画像処理部42Bでは、第1のMTX52とFIL54との間に明暗画像信号に変換するための第2のMTX80を有している点と、条件設定部40がセットアップ部44のみで構成されている点と、プレスキャン画像処理部70が、ダイナミック伸長圧縮および階調変換してモニタ18に表示するのに適した画像信号にするためのLUT78のみで構成されている点を除いて、全く同一の構成を有しているので、同一の構成要素には、同一の符号を付し、その詳細な説明は省略する。
【0075】
図12に示す画像再生装置10Bの画像処理装置14Bの画像処理部42Bにおいては、第1のMTX52で色補正されたRGB3色の画像信号は、加算器59に送られるとともに、ダイナミックレンジの圧縮伸長等の画像処理を行うためのボケマスク信号を生成するFIL54にも送られることになるが、直接送られるのではなく、予め明暗画像信号に変換されるために、FIL54より先に第2のMTX80に送られる。
第2のMTX80は、第1のMTX52から送られるR、GおよびBの画像信号から、カラー原画像の明暗画像信号を生成する。
明暗画像信号の生成方法としては、R、GおよびBの画像信号の平均値の3分の1を取る方法、YIQ規定を用いてカラー画像信号を明暗画像信号に変換する方法等が例示される。
YIQ規定を用いて明暗画像信号を得る方法としては、例えば、下記式により、YIQ規定のY成分のみを、R、GおよびBの画像信号から算出する方法が例示される。
Y=0.3R+0.59G+0.11B
【0076】
こうして第2のMTX80で得られた明暗画像信号は、ボケマスク信号を生成するためにFIL54に送られる。FIL54で生成されたボケマスク信号はMUL56に送られ、伸縮率αでダイナミックレンジ圧縮伸長処理されて、ボケ画像信号とされた後、画像補正部57および減算器58に送られる。ボケ画像信号は、画像補正部57で階調変換、色修正およびシャープネス強調処理などの画像処理を行い、処理済ボケ画像信号とした後、減算器58に送られる。減算器58では、画像補正部57からの処理済ボケ画像信号とMUL56からのボケ画像信号とを差し引いて差信号が生成される。減算器58で得られた差信号は、加算器59に送られ、第1のMTX52から送られた色補正RGB3色の画像信号と各色毎に加算される。
以下、同様にして、第3LUT60にて階調変換されて、画像記録装置16に向けて送られ、可視再生像として仕上がりプリント画像が出力される。
本実施例では、フィルタリング処理によるボケ画像信号をカラー原画像のデジタル画像信号から変換された明暗画像信号に基づいて作成しているので、再生可視画像、特に被写体のエッジ部分の明るさは変化しても、色の再現性は変化しないため、適切なダイナミックレンジを持ち、高低濃度部のつぶれのない、メリハリのある画像であるのはもちろん、シャープネス強調処理などの種々の画像処理が施されているにもかかわらず、ノイズや粒状が増幅されていないので、ノイズや粒状が目立たず、カラー原画像と同様の不自然さのない画像を再生することができる。
【0077】
また、図6に示す実施例では、エッジを保存した平滑化フィルタ(FIL)54として、メディアンフィルタ(MF)54aおよびローパスフィルタ(LPF)54bを用い、これらのフィルタ54aおよび54bでMTX52で色補正された、同一のデジタル画像信号をフィルタリング処理して、それぞれのボケマスク信号1および2(それぞれボケ画像1および2)を生成しているが、本発明はこれに限定されず、図13に示す実施例のように、MF54aでは同様にMTX52で色補正された本スキャン画像信号をフィルタリング処理してボケマスク信号1(ボケ画像1)を生成し、LPF54bでは表示画像処理部70のMTX76で色補正されたプレスキャン画像信号、すなわち画素密度が低く、本スキャン画像信号に比べて間引かれた画素についての間引き画像信号をフィルタリング処理した後、本スキャン画像信号と同じ画素密度になるように補間してボケマスク信号2(ボケ画像2)を生成するようにしてもよい。なお、ローパスフィルタによるボケ画像のみならず、メディアンフィルタによるボケ画像もカラー原画像の間引き信号を補間して作成してもよい。
こうすることにより、画素数の少ないプレスキャン画像信号に基づいてボケマスク処理を行えるので、大規模な回路構成を必要とするボケマスクフィルタが不要となり、装置構成を簡易なものとすることができる。
【0078】
なお、偽輪郭の発生をさらに低減するために、メディアンフィルタとして複数のレベルの異なる中間値を出力する、またはマスクサイズの異なる複数のメディアンフィルタを用意し、ボケ画像信号を作成するためのデジタル画像信号の信号分布に応じて中間値のレベルまたはマスクサイズを選択するようにしてもよい。また、図11および図12に示す画像処理装置14Aおよび14Bにおいては、プレスキャン画像のための表示画像処理部70(またはセットアップ部44のみ)と、本スキャン画像のための画像処理部42(または42B)とを異なるものとしているが、本発明はこれに限定されず、両画像処理部42(または42B)および70を処理対象画素規模(画素数、容量)を除いて、同様に、または全く同一に構成してもよい。
【0079】
上述した例においては、乗算器(MUL)56において、フィルタ(FIL)54で得られたボケマスク信号にダイナミックレンジ圧縮伸長率αを乗算して、画像のダイナミックレンジの圧縮伸長を行っているが、本発明はこれに限定されず、ダイナミックレンジ圧縮伸長処理、従って、自動覆い焼き処理を行わなくてもよいし、この場合にはMUL56自体を設けなくてもよいし、条件設定部40のセットアップ部44においてダイナミックレンジの算出およびダイナミックレンジ伸長率αの設定を行わなくてもよいことはもちろんである。
【0080】
以上、本発明の画像処理方法および装置について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、種々の改良や設計の変更等を行ってもよいのはもちろんである。
【0081】
【発明の効果】
以上詳述したように、本発明によれば、コントラストの大きいカラー原画像であっても、偽輪郭が発生することがなく、適切なダイナミックレンジを持ち、高低濃度部のつぶれのない、メリハリのある画像であるのはもちろん、シャープネス強調処理などの種々の画像処理が施されているにもかかわらず、ノイズや粒状が増幅されておらず、ノイズや粒状が目立たず、カラー原画像と同様の不自然さのない画像を再現する画像信号を得ることができる。
【図面の簡単な説明】
【図1】 本発明に係る画像処理方法を実施する画像処理装置を適用する画像再生装置の一実施例の模式図である。
【図2】 図1に示される画像再生装置に用いられる本発明の画像処理装置で得られる濃度ヒストグラムの一例を表すグラフである。
【図3】 図1に示される本発明の画像処理装置に接続される調整キーの一実施例の概念図である。
【図4】 図1に示される本発明の画像処理装置の第2LUTに設定されるテーブルの特性図の一例であって、それぞれ、(a)はグレイバランス調整テーブルを、(b)は明るさ補正テーブルを、(c)は階調補正テーブルを示す。
【図5】 図1に示される本発明の画像処理装置に用いられるメディアンフィルタの特性の一例を説明する説明図である。
【図6】 図1に示される画像処理装置のフィルタ(FIL)の一実施例を含む一部分を示すブロック図である。
【図7】 図1に示される本発明の画像処理装置に用いられるIIR型のローパスフィルタの一例を示す回路図である。
【図8】 図1に示される画像再生装置に用いられるモニタの一実施例の概念図である。
【図9】 本発明に係る画像処理方法の一例の特徴部分のフローを示す図である。
【図10】 図1に示される画像再生装置に用いられる画像記録装置の一実施例の模式的斜視図である。
【図11】 本発明に係る画像処理方法を実施する画像処理装置を適用する画像再生装置の別の実施例の模式図である。
【図12】 本発明に係る画像処理方法を実施する画像処理装置を適用する画像再生装置の別の実施例の模式図である。
【図13】 本発明に係る画像再生装置に用いられる本発明の画像処理装置の別の実施例のブロック図である。
【符号の説明】
10 画像再生装置
12 画像読取装置
14 画像処理装置
16 画像記録装置
18 モニタ
20,96 光源
22 可変絞り
24 色フィルタ板
26 拡散ボックス
28 結像レンズ
30 CCDセンサ
32 アンプ
34 A/D変換器
36 LUT(ルックアップテーブル)
38 フレームメモリ
40 条件設定部
42 画像処理部
44 セットアップ部
46 キー入力部
47 調整キー
48 パラメータ統合部
50,74 第2LUT(ルックアップテーブル)
52,76 MTX(マトリクス)
54 FIL(フィルタ)
54a メディアンフィルタ
54b LPF(ローパスフィルタ)
54c 重み付け加算器
56 MUL(乗算器)
57 画像補正部
58 減算器
59 加算器
60,78 第3LUT(ルックアップテーブル)
62 信号変換器
64 D/A変換器
66 マウス
68 プレスキャンメモリ
70 表示画像処理部
80 第2のMTX(マトリクス)
88 ドライバ
90 画像露光部
92 現像部
94 AOM(音響光学変調器)
98 ポリゴンミラー
100 Fθレンズ
102,104 搬送ローラ対
106 発色現像槽
108 漂白定着槽
110 水洗槽
A フィルム
Z 感光材料
P プリント

Claims (10)

  1. カラー原画像を表すデジタル原画像信号を可視像として再生するための画像処理信号を得る画像処理方法であって、
    このデジタル原画像信号に対して、メディアンフィルタおよびローパスフィルタを用いるエッジ保存平滑化フィルタによるフィルタリング処理を施して前記原画像のボケ画像を表すボケ画像信号を生成し、
    このボケ画像信号に対して所定の画像処理を施して、処理済ボケ画像信号を生成し、
    この処理済ボケ画像信号と前記ボケ画像信号との差信号を生成し、
    この差信号と前記原画像信号とを加算して、前記画像処理信号を生成することを特徴とする画像処理方法。
  2. 前記原画像信号の占める空間周波数帯域に依存して、前記ボケ画像信号の周波数特性を変化させる請求項1に記載の画像処理方法。
  3. 前記原画像信号が高周波数帯域を占める場合には、前記ボケ画像信号の周波数を高周波側にし、前記原画像信号が低周波数帯域を占める場合には、前記ボケ画像信号の周波数を低周波側にする請求項1または2に記載の画像処理方法。
  4. 前記画像処理が、階調変換処理、色修正処理およびシャープネス処理の少なくとも1つである請求項1〜3のいずれかに記載の画像処理方法。
  5. 前記画像処理の条件が、前記原画像信号あるいはボケ画像信号を分析することにより、自動的に設定される請求項4に記載の画像処理方法。
  6. 前記ボケ画像信号は、メディアンフィルタによる第1のボケ画像信号とローパスフィルタによる第2のボケ画像信号とを重み付け演算したものである請求項1〜5のいずれかに記載の画像処理方法。
  7. 前記ローパスフィルタによる前記第2のボケ画像信号は、前記原画像の前記デジタル画像信号の間引き信号を補間することにより生成される請求項6に記載の画像処理方法。
  8. 前記ローパスフィルタとして、無限インパルス応答フィルタを用いる請求項6または7に記載の画像処理方法。
  9. 前記デジタル原画像信号を明暗信号に変換し、この明暗信号から前記ボケ画像信号を生成する請求項1〜8のいずれかに記載の画像処理方法。
  10. カラー原画像を表すデジタル原画像信号を可視像として再生するための画像処理信号を得る画像処理装置であって、
    このデジタル原画像信号から、メディアンフィルタおよびローパスフィルタを用いるエッジ保存平滑化フィルタによって前記原画像のボケ画像を表すボケ画像信号を生成するフィルタリング処理手段と、
    このボケ画像信号に所定の画像処理を施して処理済ボケ画像信号を得る画像処理手段と、
    この処理済ボケ画像信号と前記ボケ画像信号との差信号を得る減算手段と、
    この差信号と前記原画像信号とを加算して、前記画像処理信号を得る加算手段とを備えたことを特徴とする画像処理装置。
JP07242898A 1998-03-20 1998-03-20 画像処理方法および装置 Expired - Lifetime JP3939428B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07242898A JP3939428B2 (ja) 1998-03-20 1998-03-20 画像処理方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07242898A JP3939428B2 (ja) 1998-03-20 1998-03-20 画像処理方法および装置

Publications (2)

Publication Number Publication Date
JPH11275365A JPH11275365A (ja) 1999-10-08
JP3939428B2 true JP3939428B2 (ja) 2007-07-04

Family

ID=13489022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07242898A Expired - Lifetime JP3939428B2 (ja) 1998-03-20 1998-03-20 画像処理方法および装置

Country Status (1)

Country Link
JP (1) JP3939428B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390485B2 (en) 2014-03-07 2016-07-12 Ricoh Company, Ltd. Image processing device, image processing method, and recording medium
US9390479B2 (en) 2013-11-20 2016-07-12 Ricoh Company, Ltd. Image processing device and image processing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248928B2 (ja) * 2008-06-09 2013-07-31 富士フイルム株式会社 撮影制御装置およびその方法並びにプログラム
JP4861506B2 (ja) * 2010-09-08 2012-01-25 キヤノン株式会社 画像処理装置およびその制御方法
EP4206819A4 (en) * 2020-08-25 2024-03-06 Fujifilm Corp IMAGE EXPOSURE DEVICE, IMAGE EXPOSURE METHOD AND PROGRAM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390479B2 (en) 2013-11-20 2016-07-12 Ricoh Company, Ltd. Image processing device and image processing method
US9390485B2 (en) 2014-03-07 2016-07-12 Ricoh Company, Ltd. Image processing device, image processing method, and recording medium

Also Published As

Publication number Publication date
JPH11275365A (ja) 1999-10-08

Similar Documents

Publication Publication Date Title
JP4081219B2 (ja) 画像処理方法及び画像処理装置
US6674544B2 (en) Image processing method and apparatus
US6473198B1 (en) Image processing apparatus
US6603885B1 (en) Image processing method and apparatus
JP3584389B2 (ja) 画像処理方法および画像処理装置
JP2007096509A (ja) 画像処理装置、および画像処理方法
JP3913356B2 (ja) 画像処理方法
JP4172663B2 (ja) 画像処理方法
JP3696345B2 (ja) 画像処理方法及び装置
US6459500B1 (en) Image processing apparatus
JP4064031B2 (ja) 画像処理方法
JP3405266B2 (ja) 画像処理方法および装置
JP2000156785A (ja) 画像処理方法および画像処理装置
JP3408770B2 (ja) 画像処理装置
JPH11191871A (ja) 画像処理装置
JP3939428B2 (ja) 画像処理方法および装置
JPH1153535A (ja) 画像再生方法および装置
JP2001222710A (ja) 画像処理装置および画像処理方法
JPH1013680A (ja) 画像処理方法および画像処理装置
JPH11353477A (ja) 画像処理装置、画像処理方法およびこれを行うソフトウエアを記録した記録媒体
JP4063971B2 (ja) 画像処理方法および装置
JP2001245153A (ja) 画像処理方法および装置
JP4091220B2 (ja) 画像処理方法および装置並びに記録媒体
JP4667072B2 (ja) 画像処理装置、画像処理方法およびプログラム
JPH11243493A (ja) 画像処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term