JP3939426B2 - Pressure embedding method for copper wiring film - Google Patents

Pressure embedding method for copper wiring film Download PDF

Info

Publication number
JP3939426B2
JP3939426B2 JP06343998A JP6343998A JP3939426B2 JP 3939426 B2 JP3939426 B2 JP 3939426B2 JP 06343998 A JP06343998 A JP 06343998A JP 6343998 A JP6343998 A JP 6343998A JP 3939426 B2 JP3939426 B2 JP 3939426B2
Authority
JP
Japan
Prior art keywords
wiring film
pressure
embedding
copper
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06343998A
Other languages
Japanese (ja)
Other versions
JPH11260820A (en
Inventor
隆男 藤川
孝彦 石井
成川  裕
誠 門口
洋治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP06343998A priority Critical patent/JP3939426B2/en
Publication of JPH11260820A publication Critical patent/JPH11260820A/en
Application granted granted Critical
Publication of JP3939426B2 publication Critical patent/JP3939426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ULSIに代表される半導体の製造工程における配線膜の形成に関するものであり、とくに湿式の成膜方法、化学蒸着法、または物理蒸着法により形成された配線材料被膜の下に不可避的に残存する気孔を埋めるとともに密着性を改善して、健全な銅系の配線被膜を形成する方法に関するものである。より、具体的には、これらの成膜方法により形成された被膜を持つ半導体基板を、高温下で高圧のガス圧力を作用させて上記の気孔を圧潰して気孔を除去して低電気抵抗で密着性に優れた配線膜を製造する方法に関するものである。
【0002】
【従来の技術】
特許第2660040号(登録:平成9年6月6日)の特許公報には、「スパッタリング法、CVD法、真空蒸着法等の真空被膜形成法により、凹状部を有する基板上に金属薄膜を形成する工程と、基板上に形成された金属薄膜全体を加熱して流動化させる工程と、流動化した金属薄膜の金属を気体で加圧して、凹状部内に金属薄膜の金属を凹状部内で空洞の発生しないように埋め込む工程とを含むことを特徴とする真空成膜方法」が開示されている。
【0003】
また、特開平7−193063号公報には、「物品の処理方法であって、該物品は表面を有し、該表面は表面内に少なくとも一つの凹部を有する物品の処理方法において、該表面の少なくとも一部の上に層を形成することを含み、該層は該凹部の上方を延びており、更に、該物品および該層を、該層の一部が該凹部を埋めるように変形せしめられるのに十分な高い圧力および高い温度にさらすことを含む、物品の処理方法」が開示されている。
本公知資料には、該物品が半導体ウェーハで、該凹部が半導体ウェーハに形成された穴、溝およびヴィア等で、該層がアルミ等の金属からなることが記載されている。また、該層がアルミニウムの場合には温度として350〜650℃、圧力3000psi以上で加圧にはガスも使用できること、穴あるいは溝の上に形成される層の厚さは少なくとも穴の幅と等しい厚さが必要なことが、それぞれ開示されている。さらに、半導体ウェーハ自体は複数個の特性の異なった層を含み、これを形成するために複数の段階を含む製造プロセスの結果として得られることが記載されている。
【0004】
このように、これらの公知技術には、主として半導体の配線膜の導電性改善のために前記の穴や溝に形成された空隙を埋める方法として、高温下で高い圧力にさらすことが効果的であることが示されている。しかし、これら公知の資料に示されたAl配線膜は、配線材料として、今後のULSIの微細化に伴なって要求されている、対EM(Electron Migration)性や、低電気抵抗化の点で限界に来ており、これらの点でAlに勝るとされているCuに期待が寄せられている。
【0005】
本発明者らは、これら公知技術を銅系の配線膜に適用して実験等により検討した結果、このような効果は確認されたものの、工業生産に用いるにはさらに幾つかの問題点があることを見出した。
【0006】
【発明が解決しようとする課題】
まず第1に、加圧埋込処理により穴や溝部に気孔のない組織を形成するには、成膜時点で成膜材料がこれらの穴や溝を完全に覆った状態にしておくことが重要である。成膜方法としては、スパッタリング法に代表されるPVD法のほかに、CVD法や電気メッキ法が適用可能であるが、CVD法では非常に微細な穴まで充填が可能であるものの、原料となるガスが限定されかつ非常に高価であるという工業的な利用という点で決定的な欠点を持っている。また、電気メッキ状では電解液の使用に起因する膜内への電解液の混入や水素の巻込み現象が回避できず、これらを除去して組織を安定化させるために熱処理が必須であるほか、廃液としての電解液の処理が工業化の点で重要な課題となり、既設の工場でなく、全く新たな専用工場から建てなければならない、という問題を抱えている。
【0007】
PVD法、とくにスパッタリング法は実際にAl配線膜の製造方法を広く用いられており、これが銅系の配線膜に適用できれば、これまでの設備の利用が可能であることを含めて、プロセスの大幅な変更をすることなく、実現できて、最も好ましいと言える。
このスパッタリング法は、配線膜材料をターゲットとしたカソードにArイオンを衝突させて配線膜材料を飛出させて対象部材の表面にデポジットさせる方法で、ターゲットと対象物との距離やArイオンのもつエネルギーにより付着の状態を制御することが可能である。ただ、材料によって配線膜粒子の飛出す方向や分布(指向性)も変化することなどがあって、成膜の条件の設定は非常に重要である。また、成膜された膜の性質には対象物の温度も大きな影響を与える。
【0008】
本発明者らは、Al配線膜の形成でしばしば用いられているスパッタリング技術としてのロングスロースパッタリング(ターゲットと対象物の距離を350〜400mmまで大きくする)等を用いて実験を行った結果、前記の加圧埋込を前提とした穴や溝を完全に覆った状態の膜を形成するには、条件の最適化が重要であることを見出した。
また、銅系配線膜として純銅(純度99.99%以上)を形成すると、穴の径が0.5μm以下のように小さい場合には、加圧埋込処理の条件として450℃の温度でも100MPa以上の圧力が必要であり、加圧埋込処理時における温度を低く抑える方法を勘案して絶縁膜層の変質や成膜された配線膜の電気特性を確保することが重要であること、とくに、200MPa以上もの高圧力で力によって気孔を埋め込むと、配線膜の下地として形成されたTiNやTaNバリア膜が、穴中に無理矢理押込まれる銅系の配線膜材料の侵入時に剥がれてしまう問題などが見出された。
【0009】
本発明は以上述べた従来技術の問題点(課題)を解消した銅系配線膜の加圧埋込方法を提供することが目的である。
【0010】
【課題を解決するための手段】
本発明は、孔又は溝が形成された基板の絶縁膜の表面を物理蒸着法により配線膜材料で被覆した後、該配線膜材料の融点以下の温度でガス圧力を作用させ該配線膜材料を塑性流動又は拡散クリープさせることにより、被膜に残存する気孔を埋込んで消滅させる銅系配線膜の加圧埋込方法において、前述の目的を達成するために、次の技術的手段を講じている。
すなわち、本発明では、前記配線膜材料として、Cuを主成分にSi,Ti,Sb,Sn,Pdの1種又は2種以上の合金元素を含み前記合金元素の総添加量が5〜10原子パーセントである銅合金を使用し、前記基板の温度が200〜400℃で前記物理蒸着法による被覆を行った後、ガス圧力を作用させて埋込み処理を行うことを特徴とするものである。
【0011】
また、他の本発明にかかる銅系配線膜の加圧埋込方法は、前記配線膜材料として、Cuを主成分にSi,Ti,Sb,Sn,Pdの1種又は2種以上の合金元素を含み前記合金元素の総添加量が5〜10原子パーセントである銅合金を使用し、前記物理蒸着法による被覆を、前記基板が室温で行う第1段成膜と前記基板の温度が200〜400℃で行う第2段成膜との少なくとも2段階で行った後、ガス圧力を作用させて埋込み処理を行うことを特徴とするものである。
述において、基板はSi半導体ウェーハであることが望ましく、また、物理蒸着法は、スパッタリング法が望ましく、更に、前記埋込み処理後の圧力温度操作において、圧力を10MPa以下に下げた後温度を下げることが望ましく、また、前記埋込み処理時の圧力媒体ガスに窒素を使用することが望ましい。
【0012】
【発明の実施の形態】
以下に、実施例を表1および表2を参照しつつ、本発明を詳細に説明する。
【0013】
【表1】

Figure 0003939426
【0014】
【表2】
Figure 0003939426
【0015】
表1および表2は、配線膜材料にCuもしくはCu系の合金を用いて、直径200mmのSiウェーハ上に形成されたコンタクトホール(孔、穴)もしくはコンタクトホールが底部に形成された配線溝にスパッタリング法により配線膜を形成した後、高圧ガス圧力を利用した加圧埋込処理を行うことにより配線膜を製造する実験を行った結果を示したものである。
表1中A.R.(Aspect Ratio)はコンタクトホールの深さと穴径の比を示す。また、表2で埋込結果の欄に示した記号は、◎がコンタクトホールが完全に配線膜材料で埋め込まれて気孔が残存していなかったことを、×は気孔が残存していたことを、また、△は気孔は残存していないが、下地のTiN層が剥離したなど完全ではないことを示す。
【0016】
成膜にはスパッタリング装置を用い、ターゲットと基板との距離は、38mm、80mm、380mmの3種類を用いた。配線膜材料としては、高純度の純銅(膜で99.99%)、Cu−Si合金系、Cu−Ti合金系、Cu−Sn合金系、Cu−Si−Ti合金系を選択した。加圧埋込処理時のガスには、この種の処理で用いられているアルゴンおよび窒素(実施例10)を用いた。装置には、最高圧力200MPa、最高処理温度2000℃のHIP装置を用いた。
実施例1および比較例1−A〜比較例1−Cは、直径0.25μm、AR=3,4のコンタクトホールの形成されたSiウェーハ(基板)にTiNバリア層を5〜10nmのオーダで付与した後、純銅配線膜をスパッタリング法により厚さ約1.2μmで形成して、処理を行ったものである。圧力は実施例1では120MPa、比較例では150MPaとした。実施例1と比較例1−A、比較例1−Bでは、スパッタリング時の基板の温度を変化させた点(実施例1では300℃、比較例1−Aでは室温(R.T)、比較例1−Bでは190℃)が大きな違いである。実施例1と比較例1−Cでは、加圧埋込処理時後の減圧と降温の操作に違いがある(表2中の備考参照)。
【0017】
実施例1の結果から判るように、スパッタリング時の基板温度を300℃程度の高温として、基本的な操作方法により、完全埋込みが達成されると同時に製造された配線膜の体積固有抵抗値も純銅の1.55〜1.6μΩcmにほぼ近い約1.7μΩcmが得られる。このコンタクトホールの中に埋め込まれた配線膜材料の結晶学的なモーフォロジは極めて特徴的で、Al合金の場所のように穴の中央部に結晶粒界が観察されず、上部の膜部分と同一の結晶粒からなるほぼ単結晶となっている。このため、多結晶の場合と異なり、結晶粒界により電子の散乱に伴う電気抵抗の発生がないため、低抵抗化にも寄与しているものと推定される。
【0018】
一方、比較例1−Aおよび比較例1−Bに示すようにスパッタリング時の温度を200℃より低い温度や室温(RT)にすると、実施例1よりも高い圧力で加圧埋込操作を行ってもコンタクトホール中の気孔を埋め込むことは困難であった。
また、比較例1−Cは加圧埋込処理、すなわち450℃、150MPaで5分の処理を行った後の降温と圧力の減圧の仕方を実施例1のように圧力を下げてから温度を下げるという順序ではなく、温度を先にさげてから圧力を抜いたものでは、気孔は完全に埋まっているものの、下地のバリア層の局部的な剥れが観察されると同時に、穴の内部の配線膜材料部には双晶が発生しており、特有の縞模様が観察された。これは、気孔内部の銅が減圧時に体積膨張して応力が発生したためと推定される。バリア層の剥離も同様の原因によるものと推定される。
【0019】
実施例2、比較例2−Aおよび比較例2−Bは、実施例1よりもアスペクトレイショ(AR)が大きな、すなわち、孔の奥まで埋め込むことが難しい形状(AR6である)のコンタクトホールを対象部材とした実験結果を示している。
実施例2では、加圧埋込後、圧力を150MPaから10MPaに降圧後に温度450℃からの降温を開始したもので実施例1と同様な結果を得た。
一方、処理時の温度を室温とした比較例2−A、2−Bでは埋め込み処理時の保持時間を長く(30分)にしても、また、圧力を200MPaまで上げても完全な埋込を行うことは困難であった。
【0020】
実施例3は、いわゆるデュアルダマシンといわれる構造の配線形成手法によるコンタクトホールと配線溝の製造を行ったものである。この構造を図1に模式的に示す。溝の底面に形成されたコンタクトホールの穴径は0.25μmで穴部の深さは0.7μmである。この場合、スパッタリングは2回行い、1回目のスパッタリングは室温で、ターゲットと基板の距離を若干大きくして(ターゲット距離80mm)孔の奥への配線膜材料の着きまわりを良くするように配慮し、2回目のスパッタリングはターゲット距離38mmに小さくし孔と同時に溝全体を覆うように高温(300℃)で行った。実施例1の場合と同様、このような複雑な構造であっても完全な埋込が可能で電気抵抗的にも良い配線膜が得られることが実証された。比較例3は2回のスパッタリングを両方とも室温で行ったものである。比較例1−Aと同様、埋込はほとんどできない状況であった。
【0021】
以上の実験から、スパッタリングの条件により埋め込みができない最大の原因が、スパッタリング後の孔や溝の上が配線膜材料によって完全に覆われているか、否かによっていることが判明した。すなわち、室温でスパッタリングを行うと、純銅では融点が1083℃と結構高いことから、図2に示すように、ターゲットと基板の距離を小さくしても、飛んできて孔の外縁部に付着した銅粒子の温度がすぐに下がって硬くなるため、次に銅粒子が飛んできて衝突しても変形せず、孔の外縁に沿ってほとんど垂直にしか堆積せず、結果として孔や溝がそのまま残ってしまうためと推定される。基板温度を200℃以上に上げることにより、付着した銅粒子に次の粒子が衝突した際には、面方向に押しつぶされるように変形を起こし、これが連続して生じるという現象が促進されて、容易に孔や溝を覆うように成膜されると考えられる。
【0022】
以上の結果により、純銅による配線膜の製造が可能なことが実証されたが、実用化という観点では、実施例1〜3に示したような加圧埋込処理の圧力・温度はいずれも高すぎるといわざるを得ない。加圧埋込時の温度を下げる、あるいは圧力を下げるための方策としては、銅に合金元素を添加して、より低い温度で圧力による塑性変形流動あるいは拡散クリープ現象を発現するようにすることが考えられる。
実施例4〜10はこのような観点から、少しの添加量で銅の融点を下げ、かつ電気抵抗に大きな影響を与えず、かつSiなど至近に存在する構成材料との反応等の問題を生じないような元素を添加したものである。表2の膜材質の欄に添加元素と量(原子%)を示した。実施例4〜10および比較例4〜7から明らかなように、このような銅合金を採用することにより加圧埋込時の温度および圧力を低下できることが明らかである。一方、このように合金化してもスパッタリング時の温度を室温としたままでは、やはり埋込が不可能なことも実証された。合金元素の添加量は、多ければ多いほど融点を下げることが可能であるが、それと同時に形成された膜の電気抵抗の増大も顕著となる。Al合金膜とほぼ同等(3〜3.5μΩcm)以下を目安とすれば、最大添加量は10原子%程度である。添加する合金元素としては、表1に示したSi,Ti,Snのほか、Sb,Pd等が上げられ、また、これら元素を1種又は2種類以上添加することも本発明の範囲に含まれる。
【0023】
なお、スパッタリングを2回とする場合、実施例9、10に示すように1回目は純銅とし、2回目以降を前述した合金元素を添加したものとするとともにターゲット距離を表1で示すように変化させ、しかも1回目(1段目)は基板温度が低温(100℃であるが室温近傍を含む意である)で行い、2回目(2段目)は高温(300℃を示している)で行うことも推奨され、このような構成とすることにより、電気抵抗値を低くすることも可能である。
また、加圧埋込処理を行う場合、圧力媒体として通常はアルゴンガスが用いられるが、処理コストを低減するためには、より安価な窒素ガスを用いることも推奨される。この場合、高圧の窒素は材料によっては窒化される可能性があるので、処理物はもちろん、加圧埋込処理に用いる装置の高温部構成部材の選定にも配慮することが推奨される。
【0024】
更に、加圧するとき、配線膜材料の再結晶温度以上でかつ融点以下の温度で行うことも推奨される。
また、実施例11で示すように、基板温度の上限は400℃であっても良いが望ましくは200〜300℃程度が有利であり、基板としてはSi半導体ウェーハが推奨されるが、該基板としてはGa等であっても良いし、また、物理蒸着法による成膜を複数段で行うときは、前段に対して後段の温度を高くして行う限りにおいてその回数は3段以上であっても良い。
【0025】
【発明の効果】
以上述べたように、本発明により、今後、ますます微細化と多層化が進むULSI半導体の製造において大きな課題となりつつある配線膜の低電気抵抗化、対EM性の改善の観点から注目されている銅系合金配線膜の製造を、従来から用いられているスパッタリング技術とガス圧による加圧埋込技術の組合せで実現できることとなり、加圧埋込処理が本来持っている歩留まり改善効果を享受できるようになった。さらに、Al配線膜用に設置された既存のスパッタリング設備をそのまま用いて銅配線膜のULSIを製造できることとなり、多大な設備投資が不要となるほか、処理コストの観点から、工業生産への利用が非常に容易となる。このように、本発明は、ULSI業界の今後の発展に寄与するところは非常に大きい。
【図面の簡単な説明】
【図1】 デュアルダマシン構造の配線形成手法を示す斜視図である。
【図2】 埋込状況不調を示す断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the formation of a wiring film in a manufacturing process of a semiconductor represented by ULSI. In particular, the present invention is unavoidable under a wiring material film formed by a wet film forming method, a chemical vapor deposition method, or a physical vapor deposition method. In addition, the present invention relates to a method for filling a pore remaining in the substrate and improving adhesion to form a sound copper-based wiring film. More specifically, a semiconductor substrate having a film formed by these film forming methods is subjected to a high-pressure gas pressure at a high temperature to crush the pores and remove the pores, thereby reducing the electrical resistance. The present invention relates to a method for manufacturing a wiring film having excellent adhesion.
[0002]
[Prior art]
Patent No. 2660040 (Registered: June 6, 1997) states that “a thin metal film is formed on a substrate having a concave portion by a vacuum film forming method such as sputtering, CVD, or vacuum deposition. A step of heating and fluidizing the entire metal thin film formed on the substrate, and pressurizing the metal of the fluidized metal thin film with a gas so that the metal of the metal thin film is hollowed in the concave portion. And a step of embedding so as not to occur.
[0003]
Japanese Patent Application Laid-Open No. 7-193063 discloses “a method for treating an article, wherein the article has a surface, and the surface has at least one recess in the surface. Forming a layer over at least a portion, the layer extending over the recess, and further deforming the article and the layer such that a portion of the layer fills the recess. A process for treating an article comprising exposing to a sufficiently high pressure and high temperature.
This known document describes that the article is a semiconductor wafer, the concave portion is a hole, groove, or via formed in the semiconductor wafer, and the layer is made of a metal such as aluminum. When the layer is aluminum, the temperature is 350 to 650 ° C., the pressure is 3000 psi or more, and gas can be used for pressurization. The thickness of the layer formed on the hole or groove is at least equal to the width of the hole. Each is disclosed that a thickness is required. Further, it is described that the semiconductor wafer itself includes a plurality of layers with different properties and is obtained as a result of a manufacturing process that includes a plurality of stages to form it.
[0004]
Thus, in these known techniques, it is effective to expose to high pressure at high temperature as a method of filling the voids formed in the holes and grooves mainly for improving the conductivity of the semiconductor wiring film. It is shown that there is. However, the Al wiring films shown in these publicly known materials are required as the wiring material in the future with further miniaturization of ULSI, in terms of resistance to EM (Electron Migration) and low electrical resistance. There are expectations for Cu, which has reached its limits and is said to be superior to Al in these respects.
[0005]
The present inventors applied these known techniques to copper-based wiring films and studied them through experiments and the like. As a result, although these effects were confirmed, there are some problems in using them for industrial production. I found out.
[0006]
[Problems to be solved by the invention]
First, in order to form a structure without pores in the holes and grooves by the pressure embedding process, it is important that the film forming material completely covers these holes and grooves at the time of film formation. It is. As a film forming method, in addition to the PVD method typified by the sputtering method, a CVD method or an electroplating method can be applied. However, although a very fine hole can be filled by the CVD method, it becomes a raw material. It has a decisive disadvantage in terms of industrial use where the gas is limited and very expensive. In addition, in electroplating, the electrolyte cannot be mixed into the membrane due to the use of the electrolyte or the phenomenon of hydrogen entrainment, and heat treatment is indispensable to remove these and stabilize the structure. However, the treatment of the electrolytic solution as a waste liquid becomes an important issue in terms of industrialization, and has a problem that it must be built from a completely new dedicated factory instead of an existing factory.
[0007]
The PVD method, especially the sputtering method, actually uses a wide range of Al wiring film manufacturing methods. If this method can be applied to copper-based wiring films, the use of existing equipment can be greatly improved. It can be realized without any significant changes, and is the most preferable.
This sputtering method is a method in which Ar ions collide with a cathode whose target is a wiring film material, and the wiring film material is ejected and deposited on the surface of a target member. The state of adhesion can be controlled by energy. However, the direction and distribution (directivity) of the wiring film particles may vary depending on the material, and the setting of film forming conditions is very important. In addition, the temperature of the object greatly affects the properties of the film formed.
[0008]
As a result of experiments using long throw sputtering (increasing the distance between a target and an object to 350 to 400 mm) or the like as a sputtering technique often used in the formation of Al wiring films, It was found that optimization of conditions is important for forming a film that completely covers holes and grooves on the premise of pressure embedding.
Further, when pure copper (purity 99.99% or more) is formed as the copper wiring film, if the hole diameter is as small as 0.5 μm or less, the pressure embedding treatment condition is 100 MPa even at a temperature of 450 ° C. The above pressure is necessary, and it is important to ensure the quality of the insulating film layer and the electrical characteristics of the formed wiring film in consideration of the method of keeping the temperature low during the pressure embedding process. When the pores are embedded by force under a high pressure of 200 MPa or more, the TiN or TaN barrier film formed as the base of the wiring film is peeled off when the copper wiring film material is forced into the hole. Was found.
[0009]
It is an object of the present invention to provide a pressure-embedding method for a copper-based wiring film that solves the problems (problems) of the prior art described above.
[0010]
[Means for Solving the Problems]
In the present invention, the surface of the insulating film of the substrate in which holes or grooves are formed is coated with a wiring film material by a physical vapor deposition method, and then a gas pressure is applied at a temperature equal to or lower than the melting point of the wiring film material. In the pressure embedding method of a copper-based wiring film that embeds and disappears pores remaining in the film by plastic flow or diffusion creep, the following technical means are taken in order to achieve the above-mentioned object. .
That is, in the present invention, the wiring film material contains Cu as a main component and includes one or more alloy elements of Si, Ti, Sb, Sn, and Pd, and the total addition amount of the alloy elements is 5 to 10 atoms. A copper alloy which is a percentage is used, and the substrate is coated by the physical vapor deposition method at a temperature of 200 to 400 ° C., and then embedded by applying a gas pressure.
[0011]
In another method of embedding a copper-based wiring film according to the present invention, as the wiring film material, one or more alloy elements of Si, Ti, Sb, Sn, and Pd containing Cu as a main component are used. A first stage film formation in which the substrate is coated at room temperature and a temperature of the substrate is 200 to 200, using a copper alloy containing 5 to 10 atomic percent in total. After performing at least two stages of the second stage film formation performed at 400 ° C., the embedding process is performed by applying a gas pressure.
Before mentioned, the substrate desirably is Si semiconductor wafer, also the physical vapor deposition method, a sputtering method is desirable, furthermore, a pressure temperature operation after the embedding process, lowering the temperature after lowering the pressure below 10MPa It is desirable to use nitrogen as the pressure medium gas during the embedding process.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to Tables 1 and 2.
[0013]
[Table 1]
Figure 0003939426
[0014]
[Table 2]
Figure 0003939426
[0015]
Tables 1 and 2 show contact holes (holes) formed on a Si wafer having a diameter of 200 mm or wiring grooves in which contact holes are formed at the bottom using Cu or a Cu-based alloy as a wiring film material. 3 shows the result of an experiment for manufacturing a wiring film by forming a wiring film by a sputtering method and performing a pressure embedding process using a high-pressure gas pressure.
In Table 1, A. R. (Aspect Ratio) indicates the ratio between the depth of the contact hole and the hole diameter. In Table 2, the symbol shown in the column of the embedding result indicates that the contact hole is completely filled with the wiring film material and no pores remain, and the × indicates that the pores remain. Further, Δ indicates that the pores do not remain, but the underlying TiN layer is not completely removed.
[0016]
A sputtering apparatus was used for film formation, and three types of distances between the target and the substrate were 38 mm, 80 mm, and 380 mm. As the wiring film material, high purity pure copper (99.99% in the film), Cu—Si alloy system, Cu—Ti alloy system, Cu—Sn alloy system, and Cu—Si—Ti alloy system were selected. Argon and nitrogen (Example 10) used in this type of process were used as the gas during the pressure embedding process. As the apparatus, an HIP apparatus having a maximum pressure of 200 MPa and a maximum processing temperature of 2000 ° C. was used.
In Example 1 and Comparative Examples 1-A to 1-C, a TiN barrier layer is formed on the order of 5 to 10 nm on a Si wafer (substrate) in which contact holes having a diameter of 0.25 μm and AR = 3,4 are formed. After the application, a pure copper wiring film was formed by sputtering to a thickness of about 1.2 μm and processed. The pressure was 120 MPa in Example 1 and 150 MPa in the comparative example. In Example 1, Comparative Example 1-A, and Comparative Example 1-B, the temperature of the substrate during sputtering was changed (300 ° C. in Example 1, room temperature (RT) in Comparative Example 1-A), comparison In Example 1-B, 190 ° C.) is a big difference. In Example 1 and Comparative Example 1-C, there is a difference in operation of pressure reduction and temperature decrease after the pressure embedding process (see remarks in Table 2).
[0017]
As can be seen from the results of Example 1, the substrate temperature at the time of sputtering was set to a high temperature of about 300 ° C., and the volume resistivity of the wiring film manufactured at the same time as the complete embedding was achieved by the basic operation method was also pure copper About 1.7 .mu..OMEGA.cm, which is approximately close to 1.55-1.6 .mu..OMEGA. The crystallographic morphology of the wiring film material embedded in this contact hole is extremely characteristic, and no crystal grain boundary is observed at the center of the hole like the location of the Al alloy, and it is the same as the upper film part. It is almost a single crystal composed of crystal grains. For this reason, unlike the case of polycrystal, there is no generation of electrical resistance due to electron scattering due to the crystal grain boundary, and it is presumed that this also contributes to a reduction in resistance.
[0018]
On the other hand, as shown in Comparative Example 1-A and Comparative Example 1-B, when the sputtering temperature is lower than 200 ° C. or room temperature (RT), the pressure embedding operation is performed at a pressure higher than that in Example 1. However, it was difficult to fill the pores in the contact hole.
Further, Comparative Example 1-C is a pressure embedding process, that is, a method of lowering the temperature and reducing the pressure after performing a process at 450 ° C. and 150 MPa for 5 minutes, after reducing the pressure as in Example 1, and then changing the temperature. In the case where the temperature is first reduced and the pressure is released, the pores are completely filled, but local peeling of the underlying barrier layer is observed, and at the same time, Twinning was generated in the wiring film material portion, and a unique stripe pattern was observed. This is presumed to be because the copper inside the pores expanded during the decompression to generate stress. The peeling of the barrier layer is presumed to be caused by the same cause.
[0019]
In Example 2, Comparative Example 2-A and Comparative Example 2-B, a contact hole having a larger aspect ratio (AR) than that of Example 1, that is, a shape that is difficult to be embedded to the back of the hole (AR6) is formed. The experimental result made into the object member is shown.
In Example 2, after pressure embedding, the pressure was lowered from 150 MPa to 10 MPa, and then the temperature was lowered from 450 ° C., and the same result as in Example 1 was obtained.
On the other hand, in Comparative Examples 2-A and 2-B in which the temperature at the time of treatment is room temperature, complete embedding is possible even if the holding time at the time of embedding is increased (30 minutes) or the pressure is increased to 200 MPa. It was difficult to do.
[0020]
In the third embodiment, contact holes and wiring grooves are manufactured by a wiring forming method having a so-called dual damascene structure. This structure is schematically shown in FIG. The diameter of the contact hole formed on the bottom surface of the groove is 0.25 μm and the depth of the hole is 0.7 μm. In this case, the sputtering is performed twice, and the first sputtering is performed at room temperature, and the distance between the target and the substrate is slightly increased (target distance 80 mm) so that the wiring film material is placed in the hole deeply. The second sputtering was performed at a high temperature (300 ° C.) so that the target distance was reduced to 38 mm and the entire groove was covered simultaneously with the hole. As in the case of Example 1, it was proved that a wiring film that can be completely embedded and has good electrical resistance can be obtained even with such a complicated structure. In Comparative Example 3, both sputterings were performed at room temperature. As in Comparative Example 1-A, the embedding was almost impossible.
[0021]
From the above experiments, it has been found that the largest cause that cannot be filled due to sputtering conditions depends on whether or not the holes and grooves after sputtering are completely covered with the wiring film material. That is, when sputtering is performed at room temperature, the melting point of pure copper is quite high at 1083 ° C., so as shown in FIG. 2, even if the distance between the target and the substrate is reduced, the copper can fly and adhere to the outer edge of the hole. Because the temperature of the particles quickly decreases and hardens, the copper particles fly and do not deform even if they collide, and only deposit almost perpendicularly along the outer edge of the hole, resulting in holes and grooves remaining intact. It is estimated that By raising the substrate temperature to 200 ° C. or more, when the next particle collides with the attached copper particles, the phenomenon that it is deformed so as to be crushed in the surface direction and this occurs continuously is facilitated, and easy It is considered that the film is formed so as to cover the holes and grooves.
[0022]
From the above results, it was proved that the wiring film can be manufactured using pure copper. However, from the viewpoint of practical use, the pressure and temperature of the pressure embedding treatment as shown in Examples 1 to 3 are both high. If it is too much, it must be said. As a measure to lower the temperature at the time of pressure embedding or lower the pressure, an alloying element is added to copper so that plastic deformation flow or diffusion creep phenomenon due to pressure occurs at a lower temperature. Conceivable.
From this point of view, Examples 4 to 10 reduce the melting point of copper with a small addition amount, do not greatly affect the electrical resistance, and cause problems such as reaction with constituent materials that are present in the vicinity such as Si. This is the addition of elements that are not present. The additive element and amount (atomic%) are shown in the column of the film material in Table 2. As is clear from Examples 4 to 10 and Comparative Examples 4 to 7, it is apparent that the temperature and pressure during pressure embedding can be reduced by employing such a copper alloy. On the other hand, it has been proved that even if alloying is performed in this manner, embedding is impossible if the sputtering temperature remains at room temperature. The larger the amount of alloy element added, the lower the melting point, but at the same time, the increase in the electrical resistance of the formed film becomes significant. If the standard is approximately equal to or less than the Al alloy film (3 to 3.5 μΩcm) or less, the maximum addition amount is about 10 atomic%. Examples of alloy elements to be added include Si, Ti, and Sn shown in Table 1, Sb, Pd, and the like, and addition of one or more of these elements is also included in the scope of the present invention. .
[0023]
When sputtering is performed twice, pure copper is used for the first time as shown in Examples 9 and 10, and the alloy elements described above are added for the second and subsequent times, and the target distance is changed as shown in Table 1. In addition, the first time (first stage) is the substrate temperature at a low temperature (100 ° C. is meant to include near room temperature), and the second time (second stage) is at a high temperature (showing 300 ° C.). It is also recommended that this be done, and the electrical resistance value can be lowered by adopting such a configuration.
In addition, when performing the pressure embedding process, an argon gas is usually used as a pressure medium, but it is also recommended to use a cheaper nitrogen gas in order to reduce the processing cost. In this case, since high-pressure nitrogen may be nitrided depending on the material, it is recommended to consider not only the processed product but also the selection of the high-temperature part constituent member of the apparatus used for the pressure embedding process.
[0024]
Furthermore, when pressurizing, it is also recommended that the temperature be higher than the recrystallization temperature of the wiring film material and lower than the melting point.
Further, as shown in Example 11, the upper limit of the substrate temperature may be 400 ° C., but it is preferably about 200 to 300 ° C., and a Si semiconductor wafer is recommended as the substrate. Ga may be used, and when film formation by physical vapor deposition is performed in a plurality of stages, the number of times may be three or more as long as the temperature of the subsequent stage is set higher than that of the previous stage. good.
[0025]
【The invention's effect】
As described above, the present invention has attracted attention from the viewpoint of reducing the electrical resistance of wiring films and improving the resistance to EM, which is becoming a major issue in the manufacture of ULSI semiconductors that are becoming increasingly finer and multilayered in the future. Production of copper alloy wiring films can be realized by combining the conventionally used sputtering technique and pressure embedding technique using gas pressure, so that the yield improvement effect inherent to the pressure embedding process can be enjoyed. It became so. Furthermore, the existing sputtering equipment installed for the Al wiring film can be used as it is, and the ULSI of the copper wiring film can be manufactured, so that a large capital investment is not required and the use for industrial production is possible from the viewpoint of processing cost. It will be very easy. Thus, the present invention greatly contributes to the future development of the ULSI industry.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a wiring formation method of a dual damascene structure.
FIG. 2 is a cross-sectional view showing an embedding condition malfunction.

Claims (6)

孔又は溝が形成された基板の絶縁膜の表面を物理蒸着法により配線膜材料で被覆した後、該配線膜材料の融点以下の温度でガス圧力を作用させ該配線膜材料を塑性流動又は拡散クリープさせることにより、被膜に残存する気孔を埋込んで消滅させる方法において、
前記配線膜材料として、Cuを主成分にSi,Ti,Sb,Sn,Pdの1種又は2種以上の合金元素を含み前記合金元素の総添加量が5〜10原子パーセントである銅合金を使用し、
前記基板の温度が200〜400℃で前記物理蒸着法による被覆を行った後、ガス圧力を作用させて埋込み処理を行う
ことを特徴とする銅系配線膜の加圧埋込方法。
After covering the surface of the insulating film of the substrate in which holes or grooves are formed with a wiring film material by physical vapor deposition, a gas pressure is applied at a temperature below the melting point of the wiring film material to plastically flow or diffuse the wiring film material. In the method of embedding and eliminating the pores remaining in the coating by creeping,
As the wiring film material, a copper alloy containing Cu as a main component and containing one or more alloy elements of Si, Ti, Sb, Sn, Pd and having a total addition amount of the alloy elements of 5 to 10 atomic percent. use,
A method of embedding a copper-based wiring film according to claim 1, wherein the substrate is coated by the physical vapor deposition method at a temperature of 200 to 400 ° C., and then embedded by applying gas pressure.
孔又は溝が形成された基板の絶縁膜の表面を物理蒸着法により配線膜材料で被覆した後、該配線膜材料の融点以下の温度でガス圧力を作用させ該配線膜材料を塑性流動又は拡散クリープさせることにより、被膜に残存する気孔を埋込んで消滅させる方法において、
前記配線膜材料として、Cuを主成分にSi,Ti,Sb,Sn,Pdの1種又は2種以上の合金元素を含み前記合金元素の総添加量が5〜10原子パーセントである銅合金を使用し、
前記物理蒸着法による被覆を、前記基板が室温で行う第1段成膜と前記基板の温度が200〜400℃で行う第2段成膜との少なくとも2段階で行った後、ガス圧力を作用させて埋込み処理を行う
ことを特徴とする銅系配線膜の加圧埋込方法。
After covering the surface of the insulating film of the substrate in which holes or grooves are formed with a wiring film material by physical vapor deposition, a gas pressure is applied at a temperature below the melting point of the wiring film material to plastically flow or diffuse the wiring film material. In the method of embedding and eliminating the pores remaining in the coating by creeping,
As the wiring film material, a copper alloy containing Cu as a main component and containing one or more alloy elements of Si, Ti, Sb, Sn, Pd and having a total addition amount of the alloy elements of 5 to 10 atomic percent. use,
The coating by the physical vapor deposition method is performed in at least two stages of a first stage film formation in which the substrate is performed at room temperature and a second stage film formation in which the temperature of the substrate is 200 to 400 ° C., and then the gas pressure is applied. A method for pressure embedding of a copper-based wiring film, characterized by performing an embedding process.
前記基板がSi半導体ウェーハである
請求項1または請求項2に記載の銅系配線膜の加圧埋込方法。
The substrate is a Si semiconductor wafer
3. The method of pressurizing and embedding a copper wiring film according to claim 1 or 2 .
前記物理蒸着法が、スパッタリング法である
請求項1〜3のいずれかひとつに記載の銅系配線膜の加圧埋込方法。
The pressure embedding method for a copper-based wiring film according to claim 1 , wherein the physical vapor deposition method is a sputtering method.
前記埋込み処理後の圧力温度操作において、圧力を10MPa以下に下げた後温度を下げる
請求項1〜4のいずれかひとつに記載の銅系配線膜の加圧埋込方法。
The pressure embedding method for a copper-based wiring film according to any one of claims 1 to 4, wherein, in the pressure temperature operation after the embedding treatment, the temperature is lowered after the pressure is lowered to 10 MPa or less .
前記埋込み処理時の圧力媒体ガスに窒素を使用する
請求項1〜5のいずれかひとつに記載の銅系配線膜の加圧埋込方法。
6. The pressure embedding method for a copper wiring film according to claim 1 , wherein nitrogen is used as a pressure medium gas during the embedding process .
JP06343998A 1998-03-13 1998-03-13 Pressure embedding method for copper wiring film Expired - Lifetime JP3939426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06343998A JP3939426B2 (en) 1998-03-13 1998-03-13 Pressure embedding method for copper wiring film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06343998A JP3939426B2 (en) 1998-03-13 1998-03-13 Pressure embedding method for copper wiring film

Publications (2)

Publication Number Publication Date
JPH11260820A JPH11260820A (en) 1999-09-24
JP3939426B2 true JP3939426B2 (en) 2007-07-04

Family

ID=13229309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06343998A Expired - Lifetime JP3939426B2 (en) 1998-03-13 1998-03-13 Pressure embedding method for copper wiring film

Country Status (1)

Country Link
JP (1) JP3939426B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4377788B2 (en) 2004-09-27 2009-12-02 株式会社神戸製鋼所 Cu alloy for semiconductor wiring, manufacturing method of Cu alloy wiring, semiconductor device having Cu alloy wiring obtained by the manufacturing method, and sputtering target for forming Cu alloy wiring of semiconductor
US9177917B2 (en) 2010-08-20 2015-11-03 Micron Technology, Inc. Semiconductor constructions

Also Published As

Publication number Publication date
JPH11260820A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
JP3631392B2 (en) Method for forming wiring film
JP4947834B2 (en) Damage-free coating engraving deposition method
US7645696B1 (en) Deposition of thin continuous PVD seed layers having improved adhesion to the barrier layer
US6570255B2 (en) Method for forming interconnects on semiconductor substrates and structures formed
US6153522A (en) Semiconductor device manufacturing method
WO2005067025A1 (en) Method of forming wiring structure and semiconductor device
US6458255B2 (en) Ultra-low resistivity tantalum films and methods for their deposition
EP0818817A2 (en) Aluminium hole filling using ionized metal adhesion layer
US20020047208A1 (en) Method and structure for improving electromigration of chip interconnects
JP2023182638A (en) Seed layers for copper interconnection
JP3459372B2 (en) Method of forming wiring film
JP3939426B2 (en) Pressure embedding method for copper wiring film
KR20020001142A (en) Method of forming a metal line in a semiconductor device
US20030228746A1 (en) CVD-PVD deposition process
JP4931174B2 (en) Method for forming tantalum nitride film
JP3435061B2 (en) Method of forming metal wiring film
JP4931173B2 (en) Method for forming tantalum nitride film
JP2000269217A (en) Forming method of copper wiring film
US6958290B2 (en) Method and apparatus for improving adhesion between layers in integrated devices
JPH11288937A (en) Method for forming copper wiring film
JP7449790B2 (en) Metal wiring formation method and metal wiring structure
JPH11283983A (en) Formation of metal wiring film
JP2001308029A (en) Method for forming metal wiring film
JP2004071960A (en) Method for forming wiring film
KR20030095452A (en) Method for forming copper line in semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term