JP3938821B2 - Electrodialyzer and desalting method and apparatus using the same - Google Patents

Electrodialyzer and desalting method and apparatus using the same Download PDF

Info

Publication number
JP3938821B2
JP3938821B2 JP18608799A JP18608799A JP3938821B2 JP 3938821 B2 JP3938821 B2 JP 3938821B2 JP 18608799 A JP18608799 A JP 18608799A JP 18608799 A JP18608799 A JP 18608799A JP 3938821 B2 JP3938821 B2 JP 3938821B2
Authority
JP
Japan
Prior art keywords
salt
containing water
reverse osmosis
electrodialysis
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18608799A
Other languages
Japanese (ja)
Other versions
JP2001009459A (en
Inventor
二朗 佐藤
康平 三木
勇 井上
政信 大方
英一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP18608799A priority Critical patent/JP3938821B2/en
Publication of JP2001009459A publication Critical patent/JP2001009459A/en
Application granted granted Critical
Publication of JP3938821B2 publication Critical patent/JP3938821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

【0001】
【発明の属する技術分野】
本発明は、電気透析装置並びにこれを用いた脱塩処理方法及び装置に関するものである。
【0002】
【従来の技術】
埋立地浸出水には、カルシウムイオン等の塩類が多く含有されており、カルシウムイオン濃度やpHの値によっては、浸出水の処理工程中で配管の閉塞などのスケールトラブルが起こることが知られている。そこで、浸出水中のカルシウムイオン濃度を低減すべく浸出水に対して脱塩処理が行われ、その脱塩処理の一手段として、電気透析装置等が知られている。
【0003】
図10は、従来からある電気透析装置の内部構造の一例を示す概略図である。図10に示す電気透析装置100は、電気透析槽101を有しており、その内部に陰極102と陽極103とを備えている。槽101内には、陰極102と陽極103との間に陰極102から陽極103に向けてイオン交換膜がC,A,C,A,C,Cの順に並設されている。ここで、「C」は陽イオン交換膜を、「A」は陰イオン交換膜を表す記号である。これらのイオン交換膜によって、陰極102を含む陰極室104、及び陽極103を含む陽極室105が形成され、陰極室104と陽極室105との間には、脱塩室106と濃縮室107とが交互に形成される。陰極室104と陽極室105には、硫酸ナトリウム水溶液や硝酸ナトリウム水溶液といった水溶液が注入される。そこで、脱塩室106及び濃縮室107にそれぞれ塩含有水を導入し、陽極103と陰極102との間に電圧を印加すると、ある脱塩室106を通過する塩含有水中のカルシウムイオン等の陽イオンが陽イオン交換膜Cを通して濃縮室107中に導入され、脱塩処理水中での塩濃度の低減が図られ且つ濃縮液中での濃縮が進む。
【0004】
【発明が解決しようとする課題】
しかしながら、前述した従来の電気透析装置100では、電気透析の性能が時間とともに低下し、安定した脱塩処理が行われない場合があった。
【0005】
そこで、本発明は、塩含有水の安定した脱塩処理を可能とする電気透析装置並びにこれを用いた脱塩処理方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上述した従来の電気透析装置の問題点について検討した結果、従来の電気透析装置では、電気透析によって、陰極室104へのカルシウムイオンの流入が防止されず、陰極の近くに配置されたイオン交換膜にカルシウムスケールが析出してそれが膜に付着したり膜を閉塞させたりし、そのため、陽極及び陰極間の抵抗が増加して、塩含有水の脱塩処理が不安定となることを見出した。
【0007】
そこで、請求項1に係る発明は、カルシウムイオンを含有する塩含有水を電気透析槽内で脱塩処理する電気透析装置において、電気透析槽内に配置される陰極及び陽極と、陰極及び陽極間に並設され、複数の室を形成する複数のイオン交換膜とを備え、複数の室のうち陰極を含む室内には陰極酸性溶液が導入され、陽極を含む室内には陽極酸性溶液が導入されるようになっており、陰極に最も近いイオン交換膜が陰イオン交換膜であることを特徴とする。
【0008】
この構成によれば、陰極を含む室と、陽極を含む室との間の室内にカルシウムを含む塩含有水を導入し、陽極と陰極との間に電圧を印加すると、塩含有水が濃縮され且つ脱塩処理される。このとき、塩含有水から陰極を含む室内の陰極酸性溶液へのカルシウムイオン等の陽イオンの移動が防止され、スケールによる陰イオン交換膜の閉塞等が防止される。
【0009】
また、請求項5に係る発明は、カルシウムイオンを含む塩含有水の脱塩処理方法において、塩含有水を酸性にpH調整するpH調整工程と、pH調整された塩含有水を逆浸透によって濃縮し且つ透過させる逆浸透工程と、逆浸透工程の逆浸透によって得られる濃縮水を、上記の電気透析装置で脱塩処理する電気透析工程とを含むことを特徴とする。
【0010】
この場合、pH調整によって塩含有水中に存在する炭酸イオンの生成が抑えられ、これにより炭酸イオンとカルシウムイオンとの結合によるカルシウムスケールの析出が抑制される。そして、この塩含有水が逆浸透膜装置で濃縮され且つ脱塩処理され、これによって得られる濃縮水が電気透析装置で濃縮され且つ脱塩処理される。このとき、電気透析装置でもカルシウムスケールの析出が十分に防止され、また、これまで達成困難であった高濃度までの濃縮が可能となる。
【0011】
また請求項6に係る発明は、カルシウムイオンを含む塩含有水の脱塩処理装置において、塩含有水を酸性にpH調整するpH調整槽と、pH調整された塩含有水を逆浸透によって濃縮し且つ透過させる逆浸透膜装置と、逆浸透膜装置における逆浸透によって得られる濃縮水を濃縮し且つ脱塩処理する上記の電気透析装置とを備えることを特徴とする。この装置によれば、請求項5に係る発明の方法を有効に実施することができる。
【0012】
また、請求項7に係る発明は、カルシウムイオンを含む塩含有水の脱塩処理方法において、塩含有水を酸性にpH調整するpH調整工程と、pH調整された塩含有水を上記の電気透析装置で濃縮し且つ脱塩処理する電気透析工程と、電気透析工程で得られる脱塩液を逆浸透によって濃縮し且つ透過させる逆浸透工程とを含むことを特徴とする。
【0013】
更に、請求項8に係る発明は、カルシウムイオンを含む塩含有水の脱塩処理装置において、塩含有水を酸性にpH調整するpH調整槽と、pH調整された塩含有水を濃縮し且つ脱塩処理する上記の電気透析装置と、電気透析装置で得られる脱塩液を逆浸透によって濃縮し且つ透過させる逆浸透膜装置とを備えることを特徴とする。この場合、請求項7に係る発明の方法を有効に実施することができる。
【0014】
また、請求項9に係る発明は、カルシウムイオンを含む塩含有水の脱塩処理方法において、塩含有水中の塩濃度が所定値以下の場合に、塩含有水をpH調整した後、逆浸透によって濃縮し且つ透過させ、そのうちの濃縮された濃縮水を上記の電気透析装置で濃縮し且つ脱塩処理する第1工程と、塩含有水中の塩濃度が所定値を超える場合に、電気透析装置で得られる脱塩液を濃縮し且つ脱塩処理する第2工程と、電気透析装置で脱塩された塩含有水をpH調整工程のpH調整に使用する第3工程とを含むことを特徴とする。
【0015】
この場合、塩含有水中の塩濃度が所定値以下の場合に、第1工程の後に第3工程を行うと、逆浸透及び電気透析で処理すべき水量が少なくて済む。一方、塩含有水中の塩濃度が所定値を超える場合には、第2工程の後に第3工程を行うと、逆浸透及び電気透析で処理すべき水量が少なくて済む。従って、塩含有水中の塩濃度の変動に応じて上記のように処理の手順を変更すると、逆浸透及び電気透析処理に要する負担を常に小さくすることができる。
【0016】
更に、請求項10に係る発明は、カルシウムイオンを含む塩含有水の脱塩処理装置において、塩含有水を酸性にpH調整するpH調整槽と、pH調整槽でpH調整された塩含有水を逆浸透によって濃縮し且つ透過させる逆浸透膜装置と、逆浸透膜装置における逆浸透によって得られる濃縮水を濃縮し且つ脱塩処理する上記の電気透析装置と、逆浸透膜装置に塩含有水を導入する第1流入ラインと、第1流入ラインに設けられる第1の弁と、第1流入ラインから分岐して電気透析装置に塩含有水を流入させる第2流入ラインと、第2流入ラインに設けられる第2の弁と、電気透析装置で得られる脱塩液をpH調整槽又はその上流側に流入させる返送手段とを備えることを特徴とする。この装置によれば、請求項9に係る発明の方法を有効に実施できる。
【0017】
【発明の実施の形態】
以下、図面と共に本発明の脱塩処理装置の実施形態について詳細に説明する。
【0018】
図1は、本発明の脱塩処理装置の第1実施形態を示すフローシートである。図1に示すように、脱塩処理装置10は、カルシウムイオンを含む塩含有水を酸性にpH調整するpH調整槽1を備える。ここで、カルシウムイオンを含む塩含有水としては、例えば埋立地における浸出水などが挙げられる。以下、浸出水を例にして脱塩処理装置10について説明する。
【0019】
流入ライン(第1流入ライン)L0を通してpH調整槽1に流入される浸出水中の塩濃度は、一定値でかつその値が約30,000mg/l以下であることが好ましい。塩濃度が30,000mg/lを超える浸出水を脱塩処理装置10によって処理する場合、脱塩処理装置10で処理すべき塩含有水の量が多くなり、脱塩処理装置10にかかる負担が大きくなり、ひいてはランニングコストが増加する傾向があるからである。pH調整槽1は、浸出水を酸性に保持することで下流の逆浸透膜装置2で浸出水中の炭酸イオンの生成を防止するものである。pH調整槽1は、ラインL1を介して逆浸透膜装置2に接続され、逆浸透膜装置2は、浸出水を逆浸透膜2aによって濃縮水と透過水とに膜分離する。ここで、透過水は系外へ排出され、濃縮水はラインL2を通して電気透析装置3へ導入される。なお、ラインL1には、逆浸透膜装置2でのカルシウムスケールの析出を一層防止する点から、pH調整槽1と逆浸透膜装置2との間に、浸出水に散気空気を供給する曝気槽(脱炭酸槽)4が設置されることが好ましい。
【0020】
電気透析装置3は、逆浸透膜装置2で得られた濃縮水を濃縮液と脱塩液とに分離するものであり、電気透析装置3からは、濃縮液を系外へ排出するラインL3が延びている。なお、脱塩液中の塩濃度低下による電気透析装置3内の電気抵抗の上昇を防止する点からは、脱塩液をpH調整槽1に返送する返送ラインL4が電気透析装置3から延びていることが好ましい。返送ライン4には、ポンプ5が取り付けられている。
【0021】
ここで、電気透析装置3の構成について図2、図3を用いて説明する。
【0022】
図2に示すように、電気透析装置3は、逆浸透膜装置2から導入される濃縮水を濃縮液として貯留する濃縮液槽6と、濃縮水を脱塩液として貯留する脱塩液槽7とを備えている。また、図3に示すように、電気透析装置3は電気透析槽8を備えており、電気透析槽8内には、平板状の陰極14と、平板状の陽極18が配置され、陰極14と陽極18との間には、複数枚のイオン交換膜が並設されている。ここで、陰極14に最も近いイオン交換膜は、陰イオン交換膜Aになっており、他のイオン交換膜はそれぞれ、陰極14から陽極18に向けて順次陰イオン交換膜A、陽イオン交換膜C、陰イオン交換膜A、陽イオン交換膜C、陽イオン交換膜Cとなっている。これらイオン交換膜によって、陰極14を含む陰極室9、陽極18を含む陽極室11が形成され、陽極室11と陰極室9との間には、脱塩室21と濃縮室22とが交互に形成され、最も陰極室9に近い側には脱塩室21が形成されている。ここで、陰極室9内には、万一カルシウムイオンの漏洩によりスケールの形成があったとしても陰極14までスケールが達しないように、陰イオン交換膜Aが少なくとも一つ配置されることが好ましい。
【0023】
なお、脱塩室21には、脱塩液槽7からラインL17を通して脱塩液が導入され、濃縮室22には、濃縮液槽6からラインL18を通して濃縮液が導入され、脱塩液はラインL19を通して脱塩液槽7に戻され、濃縮液はラインL20を通して濃縮液槽6に戻されるようになっている(図2参照)。また、脱塩液槽7にはラインL4が接続され、脱塩液がラインL4を通してpH調整槽1に返送され使用されるようになっており、濃縮液槽6にはラインL3が接続され、濃縮液がラインL3を通して系外へ排出されるようになっている。
【0024】
図3に示すように、陰極室9には、陰極14が浸漬されるように陰極酸性溶液13が注入され、陰極酸性溶液13は、酸と陰極溶液とからなり、酸としては、例えば塩酸、硫酸、硝酸等が用いられ、陰極溶液としては、例えば塩化ナトリウム水溶液、硫酸ナトリウム水溶液、硝酸ナトリウム水溶液等が用いられる。このうち、扱いが容易で且つ安価であることから、塩化ナトリウム溶液を用いることが好ましく、更には、塩素という成分が共通であることから、塩酸を含む塩化ナトリウム溶液がより好ましい。
【0025】
陰極酸性溶液13のpHは通常は1.5〜2.5に保持されている。陰極室9には、図2に示すように、ポンプ16を備えたラインL5を介して電極液槽15が接続されている。陰極酸性溶液13を上記範囲のpHに調整するために、ポンプ16によりpHの低い同種の酸性溶液が陰極酸性溶液13に補充されるようになっている。なお、電極液槽15には、陰極酸性溶液13中の酸と同種の酸を供給する酸供給源がラインL13を介して接続されている。電極液槽15は、余剰酸性溶液の有効利用の点から、ラインL6を通してpH調整槽1又はその上流側のラインL0に接続されることが好ましい。また、陰極室9は、pHの高くなった陰極酸性溶液13を電極液槽15に戻すようラインL7を介して電極液槽15に接続されている。
【0026】
陽極室11には、図3に示すように、陽極18が浸漬されるように陽極酸性溶液17が注入されている。陽極酸性溶液17は、塩素ガスの発生防止及び塩化カルシウムスケールの析出防止の点から、塩素イオン非含有溶液からなることが好ましい。塩素イオン非含有溶液は、塩素イオンを含まない酸のみでもよく塩素イオンを含まない酸と陽極溶液とからなっていてもよい。塩素イオンを含まない酸としては、例えば硫酸、硝酸などが挙げられ、陽極溶液としては、硫酸ナトリウム水溶液、硝酸ナトリウム水溶液などが挙げられる。このうち、硫酸のみを用いても十分に陽極溶液としての用をなす。陽極酸性溶液17のpHは、通常は0.5〜2.5に保持されている。陽極室11は、ポンプ20を備えたラインL8を介して電極液槽19に接続されている。陽極酸性溶液17のpHを上記範囲内に調整するよう陽極酸性溶液17中の酸と同種のpHの低い酸を供給する酸供給源がラインL14を介して接続されている。電極液槽19は、余剰の酸性溶液の有効利用の観点から、ラインL9を介してラインL6に接続されることが好ましい。陽極室11には、pHの高くなった陽極酸性溶液17を電極液槽19に戻すようラインL10を介して電極液槽19に接続されている。
【0027】
次に、前述した構成の脱塩処理装置10を用いた脱塩処理方法について説明する。
【0028】
図1に示すように、浸出水をラインL0を通してpH調整槽1に導入し、pH調整槽1で酸性にpH調整し、好ましくは5以下のpHに調整する(pH調整工程)。pH調整することで炭酸イオンが生成しにくくなるので、後段の逆浸透膜装置2におけるカルシウムスケールの析出が防止される。pH調整された浸出水をラインL1を通して曝気槽4に導入する。曝気槽4では、炭酸イオンが二酸化炭素として放出されるので、逆浸透膜装置2におけるカルシウムスケールが一層防止されることとなる。その後、浸出水を逆浸透膜装置2に導入する。逆浸透膜装置2では、逆浸透膜2aによって浸出水を濃縮し且つ透過させ、透過水は系外へ排出し、濃縮水はラインL2を通して電気透析装置3に導入する(逆浸透工程)。
【0029】
図2に示すように、電気透析装置3では、濃縮液槽6に濃縮水を濃縮液として導入し、脱塩液槽7には濃縮水を脱塩液として導入し、濃縮液槽6中の濃縮液を電気透析槽8の濃縮室22に導入し、脱塩液槽7中の脱塩液を電気透析槽8の脱塩室21に導入する。このとき、図3に示すように、陰極14と陽極18との間に電圧を印加すると、脱塩液中の陽イオンは陰極14へ、陰イオンは陽極18へ向かい、濃縮及び脱塩処理が行われる。すなわち、脱塩室21中の脱塩液は脱塩処理され、濃縮室22中の濃縮液は濃縮される(電気透析工程)。
【0030】
このとき、陰極室9と脱塩室21との間に配置される陰イオン交換膜Aにより、脱塩液から陰極室9中の陰極酸性溶液13へのカルシウム等の陽イオンの移動が防止される。このため、カルシウム等の陽イオンと陰極室9内の塩素イオン等の陰イオンとの結合によるカルシウムスケールの析出が防止され、カルシウムスケールの陰イオン交換膜Aの膜面への付着や膜閉塞が防止される。以上のことから、陽極18及び陰極14間の電気抵抗の増加が防止される。従って、脱塩液の安定した脱塩処理が可能となる。
【0031】
なお、電気透析工程においては、陰極室9及び陽極室11内のカルシウムスケールの析出を一層抑制する観点から、電極液槽15,19における酸性溶液のpHは4以下に保持されることが好ましい。また、電極液槽15,19の酸性溶液を有効利用する観点からは、電極液槽15,19の酸性溶液をラインL6を通してpH調整槽1又はその上流側のラインL0に返送することが好ましい(図1、図2参照)。
【0032】
そして、図2に示すように、濃縮液は濃縮液槽6に戻され、その後、ラインL3を通して系外へ排出される。一方、脱塩液は、脱塩液槽7に戻された後、ラインL4を通してポンプ5によりpH調整槽1に返送される(図1参照)。このとき、返送される脱塩液は酸性となっているので、pH調整槽1で供給する酸の量を低減することができ、酸の有効利用を図ることができる。なお、脱塩液槽7の脱塩液はpH調整槽1に限らず、その上流側に返送されてもよい。
【0033】
次に、本発明の脱塩処理装置の第2実施形態について説明する。
【0034】
図4は、第2実施形態の脱塩処理装置30を示す概略図であり、第1実施形態と同一又は同等の構成要素については同一の符号が付されている。図4に示すように、脱塩処理装置30は、電気透析装置3を上流側に、逆浸透膜装置2を下流側に配置し、電気透析装置3で得られる脱塩液をラインL15を通して逆浸透膜装置2に導入し、逆浸透膜装置2で得られる濃縮水を返送ラインL16を通してポンプによりpH調整槽1に返送する点で第1実施形態の脱塩処理装置10と異なる。
【0035】
この場合、脱塩処理装置30を用いた脱塩処理は、pH調整された浸出水を電気透析装置3で濃縮及び脱塩処理し(電気透析工程)、電気透析装置3で得られる脱塩液を逆浸透膜装置2で逆浸透によって濃縮及び透過させ(逆浸透工程)、逆浸透工程で得られた濃縮水をpH調整槽1に返送する(返送工程)点以外は、第1実施形態の脱塩処理方法と同様にして行われる。この場合、pH調整槽1に流入される浸出水中の塩濃度が30,000mg/lを超える場合に、逆浸透膜装置2及び電気透析装置3で処理すべき浸出水の量が少なくて済み、逆浸透膜装置2及び電気透析装置3で要する負担が小さくなる傾向がある。従って、装置全体としてのランニングコストを低減することができる。
【0036】
次に、本発明の脱塩処理装置の第3実施形態について説明する。
【0037】
図5は、第3実施形態の脱塩処理装置40を示す概略図であり、第1実施形態と同一又は同等の構成要素については同一の符号が付されている。図5に示すように、脱塩処理装置40は、流入ラインL0の途中から分岐する流入ライン(第2流入ライン)L12がラインL2に接続され、流入ラインL0には弁V1が取り付けられ、流入ラインL12には上流側から弁V2(第2の弁)、曝気槽(第2の脱炭酸槽)41が順次取り付けられている点で第1実施形態の脱塩処理装置10と異なる。
【0038】
この場合、脱塩処理は以下のようにして行う。即ち、浸出水中の塩濃度が30,000mg/l以下の場合には、弁V2を閉じ、弁V1を開き、浸出水をpH調整槽1に導入する。そして、pH調整された浸出水を曝気槽4に通し、逆浸透膜装置2に導入する。逆浸透膜装置2は、浸出水を濃縮及び透過させ、逆浸透で得られる濃縮水は、ラインL2を通して電気透析装置3に送られ、電気透析装置3で濃縮され且つ脱塩処理される(第1工程)。電気透析装置3で得られる脱塩液は、返送ラインL4を通してポンプ5によりpH調整槽1に返送される(第3工程)。
【0039】
一方、浸出水中の塩濃度が30,000mg/lを超える場合には、弁V1を閉じ、弁V2を開いて浸出水を流入ラインL12に導入し、浸出水を曝気槽41で曝気した後、ラインL2を通して電気透析装置3に導入する。そして、電気透析装置3で浸出水を濃縮し且つ脱塩処理する(第2工程)。電気透析装置3で得られる脱塩液は、返送ラインL4を通してポンプ5によりpH調整槽1に返送する(第3工程)。その後、脱塩液を曝気槽4に通し、逆浸透膜装置2に導入する。逆浸透膜装置2では、脱塩液は濃縮及び透過され、そのうちの濃縮水が電気透析装置3に導入される。
【0040】
このような脱塩処理方法によれば、浸出水中の塩濃度が30,000mg/l以下の場合に、逆浸透膜装置2で処理した後、電気透析装置3で処理し、一方、浸出水中の塩濃度が30,000mg/lを超える場合に、浸出水を電気透析装置3で処理した後、逆浸透膜装置2で処理すると、逆浸透膜装置2及び電気透析装置3で処理すべき浸出水の量が常に少なくてなる。従って、浸出水中の塩濃度の変動に応じて上記のように処理の手順を変更すると、逆浸透膜装置2及び電気透析装置3でかかる負担を常に小さくすることができ、ひいてはランニングコストを低減することができる。
【0041】
以下、実施例により本発明の内容を具体的に説明する。
【0042】
【実施例】
(実施例1)
電気透析装置として、陽極に最も近いイオン交換膜を陽イオン交換膜(旭硝子社製セレミオンCMV)、陰極に最も近いイオン交換膜を陰イオン交換膜(旭硝子社製セレミオンASV)とし、これらイオン交換膜間に陽極室側から陰極室側に向けて陽イオン交換膜、陰イオン交換膜を交互に配置し、脱塩室を11室、濃縮室を10室形成したものを用いた。陰極室には、陰極酸性溶液として、塩酸酸性の3%食塩水溶液を注入し、陰極酸性溶液は、塩酸添加した同種の酸性溶液を注入することでpH2以下に調整した。一方、陽極室には、陽極酸性溶液として、3%硫酸水溶液を注入し、陽極酸性溶液は、硫酸添加した同種の酸性溶液を陽極室に注入することでpH1.0前後に調整した。
【0043】
そして、脱塩室及び濃縮室のそれぞれに約3.4%の塩含有水を導入しながら、陰極と陽極との間に電圧を印加して電気透析を行い、濃縮液塩濃度及び脱塩液塩濃度のそれぞれの経時変化、及び陰極と陽極との間に流れる電流値の経時変化を調べた。その結果を図6、図7に示す。図6及び図7に示すように、濃縮液塩濃度は17%であり、このように塩濃度が高いにもかかわらず、電流値は7日間にわたって安定していた。
【0044】
(比較例1)
陽極酸性溶液、陰極酸性溶液として、硝酸酸性の3%硝酸ナトリウム水溶液を用い、陰極に最も近い陰イオン交換膜に代えて陽イオン交換膜を用い、更に両極酸性溶液のpHを2.5以下に保持するようにした以外は実施例1と同様の電気透析槽を用いた。なお、両極酸性溶液のpH調整は、単一の電極液槽内の硝酸を添加した同種の酸性溶液を陽極室及び陰極室にそれぞれ注入することで行った。
【0045】
この電気透析装置を用いて実施例1と同様にして濃縮液塩濃度及び脱塩液塩濃度のそれぞれの経時変化、及び陰極と陽極との間に流れる電流値の経時変化を調べた。その結果を図8、図9に示す。図8及び図9に示すように、濃縮液塩濃度は10%であり、電流値は時間の経過とともに徐々に低下した。このとき、陰極酸性溶液の白濁が観察され、陰極室において流動抵抗が発生した。この電気透析装置を分解したところ、陰極室の陰イオン交換膜の膜面全体及び濃縮室内に白色スケールが生じていた。陽極室の一部でも同様のことが起こっていた。この白色スケールを分析した結果、その主成分は水酸化カルシウムであることが分かった。この結果、この方法で長期安定運転を望むことには無理があることが分かった。
【0046】
【発明の効果】
以上述べたように本発明の電気透析装置によれば、カルシウムを含む塩含有水が脱塩処理されるとき、塩含有水から陰極を含む室内の陰極酸性溶液へのカルシウムイオン等の陽イオンの移動が防止され、スケールによる陰イオン交換膜の閉塞等が防止され、また、濃縮される塩含有水中の塩の高濃度化が実現される。従って、陽極及び陰極間の電気抵抗の増加が防止され、塩含有水の安定した処理が可能となる。更に、この電気透析装置を適用した脱塩処理方法及び装置によると、電気透析や逆浸透で処理すべき塩含有水の量が少なくて済むので、ランニングコストを低減することができる。
【図面の簡単な説明】
【図1】本発明の脱塩処理装置の一実施形態を示すフローシートである。
【図2】本発明の電気透析装置の一実施形態を示すフローシートである。
【図3】図2の電気透析装置の電気透析槽の内部構成を示す断面図である。
【図4】本発明の脱塩処理装置の別の実施形態を示すフローシートである。
【図5】本発明の脱塩処理装置の更に別の実施形態を示すフローシートである。
【図6】実施例1における電気透析による濃縮液塩濃度及び脱塩液塩濃度の経時変化を示すグラフである。
【図7】実施例1における電気透析による電流値の経時変化を示すグラフである。
【図8】比較例1における電気透析による濃縮液塩濃度及び脱塩液塩濃度の経時変化を示すグラフである。
【図9】比較例1における電気透析による電流値の経時変化を示すグラフである。
【図10】従来の電気透析槽の内部構成を示す断面図である。
【符号の説明】
1…pH調整槽、2…逆浸透膜装置、3…電気透析装置、4…曝気槽(脱炭酸槽、第1の脱炭酸槽)5…ポンプ(返送手段)、9…陰極室(陰極を含む室)、11…陽極室(陽極を含む室)、12…処理水室、13…陰極酸性溶液、14…陰極、17…陽極酸性溶液、18…陽極、A…陰イオン交換膜、41…曝気槽(第2の脱炭酸槽)、L0…流入ライン(第1流入ライン)、L4,L16…返送ライン(返送手段)、L12…流入ライン(第2流入ライン)、V1…弁(第1の弁)、V2…弁(第2の弁)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrodialysis apparatus and a desalination treatment method and apparatus using the same.
[0002]
[Prior art]
Landfill leachate contains a lot of salts such as calcium ions, and depending on the calcium ion concentration and pH value, it is known that scale troubles such as piping clogging may occur during the leachate treatment process. Yes. Therefore, desalting treatment is performed on the leachate to reduce the calcium ion concentration in the leachate, and an electrodialysis apparatus or the like is known as one means of the desalting treatment.
[0003]
FIG. 10 is a schematic view showing an example of the internal structure of a conventional electrodialysis apparatus. An electrodialysis apparatus 100 shown in FIG. 10 includes an electrodialysis tank 101 and includes a cathode 102 and an anode 103 therein. In the tank 101, ion exchange membranes are arranged in the order of C, A, C, A, C, C from the cathode 102 to the anode 103 between the cathode 102 and the anode 103. Here, “C” is a symbol representing a cation exchange membrane, and “A” is a symbol representing an anion exchange membrane. By these ion exchange membranes, a cathode chamber 104 including the cathode 102 and an anode chamber 105 including the anode 103 are formed. Between the cathode chamber 104 and the anode chamber 105, a desalting chamber 106 and a concentration chamber 107 are formed. It is formed alternately. An aqueous solution such as an aqueous sodium sulfate solution or an aqueous sodium nitrate solution is injected into the cathode chamber 104 and the anode chamber 105. Therefore, when salt-containing water is introduced into each of the desalting chamber 106 and the concentration chamber 107 and a voltage is applied between the anode 103 and the cathode 102, positive ions such as calcium ions in the salt-containing water passing through the certain desalting chamber 106 are obtained. Ions are introduced into the concentration chamber 107 through the cation exchange membrane C, the salt concentration in the desalted water is reduced, and the concentration in the concentrate proceeds.
[0004]
[Problems to be solved by the invention]
However, in the conventional electrodialysis apparatus 100 described above, the performance of electrodialysis decreases with time, and stable desalting treatment may not be performed.
[0005]
Then, an object of this invention is to provide the electrodialysis apparatus which enables the stable desalination process of salt-containing water, and the desalination process method and apparatus using the same.
[0006]
[Means for Solving the Problems]
As a result of examining the problems of the above-described conventional electrodialysis apparatus, the present inventors have found that in the conventional electrodialysis apparatus, the inflow of calcium ions into the cathode chamber 104 is not prevented by electrodialysis, and is close to the cathode. Calcium scale is deposited on the ion exchange membrane, which adheres to the membrane or clogs the membrane, which increases the resistance between the anode and the cathode, which makes the desalting treatment of salt-containing water unstable. I found out that
[0007]
Accordingly, the invention according to claim 1 is an electrodialysis apparatus for desalinating salt-containing water containing calcium ions in an electrodialysis tank, and a cathode and an anode disposed in the electrodialysis tank, and between the cathode and the anode. And a plurality of ion exchange membranes forming a plurality of chambers, wherein a cathode acidic solution is introduced into a chamber including a cathode among the plurality of chambers, and an anodic acidic solution is introduced into a chamber including the anode. The ion exchange membrane closest to the cathode is an anion exchange membrane.
[0008]
According to this configuration, when salt-containing water containing calcium is introduced into a chamber between the chamber containing the cathode and the chamber containing the anode, and a voltage is applied between the anode and the cathode, the salt-containing water is concentrated. And it is desalted. At this time, the movement of cations such as calcium ions from the salt-containing water to the indoor cathodic acidic solution including the cathode is prevented, and the anion exchange membrane is blocked by the scale.
[0009]
Further, the invention according to claim 5 is a method for desalinating salt-containing water containing calcium ions, a pH adjusting step for adjusting the pH of the salt-containing water to an acid, and concentrating the pH-adjusted salt-containing water by reverse osmosis. And a reverse osmosis step for allowing permeation, and an electrodialysis step for desalting the concentrated water obtained by reverse osmosis in the reverse osmosis step using the electrodialysis apparatus.
[0010]
In this case, the production of carbonate ions present in the salt-containing water is suppressed by adjusting the pH, thereby suppressing the precipitation of calcium scale due to the binding of carbonate ions and calcium ions. Then, the salt-containing water is concentrated and desalted by the reverse osmosis membrane device, and the concentrated water thus obtained is concentrated and desalted by the electrodialyzer. At this time, precipitation of calcium scale is sufficiently prevented even with an electrodialysis apparatus, and concentration to a high concentration, which has been difficult to achieve so far, is possible.
[0011]
The invention according to claim 6 is the desalination apparatus for salt-containing water containing calcium ions, wherein the pH-adjusting tank for adjusting the pH of the salt-containing water to an acidic pH and the salt-containing water whose pH has been adjusted are concentrated by reverse osmosis. And a reverse osmosis membrane device for permeation, and the electrodialysis device for concentrating and desalting the concentrated water obtained by reverse osmosis in the reverse osmosis membrane device. According to this apparatus, the method of the invention according to claim 5 can be effectively implemented.
[0012]
The invention according to claim 7 is a method of desalinating salt-containing water containing calcium ions, wherein a pH adjustment step for adjusting the pH of the salt-containing water to an acidic pH, and the pH-adjusted salt-containing water is electrodialyzed as described above. It comprises an electrodialysis step of concentrating and desalting with an apparatus, and a reverse osmosis step of concentrating and permeating the desalted solution obtained in the electrodialysis step by reverse osmosis.
[0013]
Furthermore, the invention according to claim 8 is a demineralization apparatus for salt-containing water containing calcium ions, wherein the pH-adjusting tank for adjusting the pH of the salt-containing water to an acidic pH, the salt-containing water whose pH has been adjusted is concentrated and removed. The electrodialysis apparatus for salt treatment and a reverse osmosis membrane apparatus for concentrating and permeating the desalted solution obtained by the electrodialysis apparatus by reverse osmosis are characterized by the following. In this case, the method according to the seventh aspect can be effectively carried out.
[0014]
Further, the invention according to claim 9 is a method for desalinating salt-containing water containing calcium ions, when the salt concentration in the salt-containing water is not more than a predetermined value, after adjusting the pH of the salt-containing water, by reverse osmosis. A first step of concentrating and permeating, concentrating the concentrated water in the electrodialyzer and desalinating, and when the salt concentration in the salt-containing water exceeds a predetermined value, A second step of concentrating and desalting the obtained desalted solution, and a third step of using the salt-containing water desalted by the electrodialyzer for pH adjustment in the pH adjustment step. .
[0015]
In this case, when the salt concentration in the salt-containing water is equal to or lower than the predetermined value, if the third step is performed after the first step, the amount of water to be processed by reverse osmosis and electrodialysis can be reduced. On the other hand, when the salt concentration in the salt-containing water exceeds a predetermined value, if the third step is performed after the second step, the amount of water to be processed by reverse osmosis and electrodialysis can be reduced. Therefore, if the procedure of the treatment is changed as described above according to the change in the salt concentration in the salt-containing water, the burden required for reverse osmosis and electrodialysis treatment can always be reduced.
[0016]
Furthermore, the invention according to claim 10 is the desalination apparatus for salt-containing water containing calcium ions, wherein the pH-adjusting tank for adjusting the pH of the salt-containing water to be acidic, and the salt-containing water whose pH is adjusted in the pH-adjusting tank A reverse osmosis membrane device that concentrates and permeates by reverse osmosis, the electrodialysis device that concentrates and desalinates the concentrated water obtained by reverse osmosis in the reverse osmosis membrane device, and salt-containing water in the reverse osmosis membrane device. A first inflow line to be introduced, a first valve provided in the first inflow line, a second inflow line branching from the first inflow line and allowing salt-containing water to flow into the electrodialyzer, and a second inflow line It is characterized by comprising a second valve provided and a return means for allowing the desalted liquid obtained by the electrodialyzer to flow into the pH adjusting tank or its upstream side. According to this apparatus, the method according to the ninth aspect of the invention can be effectively implemented.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the desalination apparatus of the present invention will be described in detail with reference to the drawings.
[0018]
FIG. 1 is a flow sheet showing a first embodiment of a desalting apparatus of the present invention. As shown in FIG. 1, the desalting apparatus 10 includes a pH adjusting tank 1 that adjusts the pH of salt-containing water containing calcium ions to an acidic pH. Here, examples of the salt-containing water containing calcium ions include leachate in a landfill. Hereinafter, the desalting apparatus 10 will be described using leachate as an example.
[0019]
It is preferable that the salt concentration in the leachate flowing into the pH adjusting tank 1 through the inflow line (first inflow line) L0 is a constant value and the value is about 30,000 mg / l or less. When leachate having a salt concentration exceeding 30,000 mg / l is processed by the desalting apparatus 10, the amount of salt-containing water to be processed by the desalting apparatus 10 is increased, and the load on the desalting apparatus 10 is increased. This is because the running cost tends to increase as a result. The pH adjusting tank 1 prevents the production of carbonate ions in the leachate in the downstream reverse osmosis membrane device 2 by keeping the leachate acidic. The pH adjustment tank 1 is connected to the reverse osmosis membrane device 2 via the line L1, and the reverse osmosis membrane device 2 separates the leachate into concentrated water and permeated water by the reverse osmosis membrane 2a. Here, the permeated water is discharged out of the system, and the concentrated water is introduced into the electrodialysis apparatus 3 through the line L2. In addition, in the line L1, the aeration which supplies diffused air to leachate between the pH adjustment tank 1 and the reverse osmosis membrane apparatus 2 from the point which prevents the calcium scale precipitation in the reverse osmosis membrane apparatus 2 further. A tank (decarbonation tank) 4 is preferably installed.
[0020]
The electrodialyzer 3 separates the concentrated water obtained by the reverse osmosis membrane device 2 into a concentrated solution and a desalted solution. From the electrodialyzer 3, a line L3 for discharging the concentrated solution out of the system is provided. It extends. In order to prevent an increase in electrical resistance in the electrodialysis apparatus 3 due to a decrease in salt concentration in the desalted solution, a return line L4 for returning the desalted solution to the pH adjusting tank 1 extends from the electrodialyzer 3. Preferably it is. A pump 5 is attached to the return line 4.
[0021]
Here, the configuration of the electrodialysis apparatus 3 will be described with reference to FIGS.
[0022]
As shown in FIG. 2, the electrodialysis apparatus 3 includes a concentrated liquid tank 6 that stores concentrated water introduced from the reverse osmosis membrane apparatus 2 as a concentrated liquid, and a desalted liquid tank 7 that stores concentrated water as a desalted liquid. And. As shown in FIG. 3, the electrodialysis apparatus 3 includes an electrodialysis tank 8, and a flat cathode 14 and a flat anode 18 are disposed in the electrodialysis tank 8. A plurality of ion exchange membranes are arranged in parallel with the anode 18. Here, the ion exchange membrane closest to the cathode 14 is an anion exchange membrane A, and the other ion exchange membranes are sequentially anion exchange membrane A and cation exchange membrane from the cathode 14 toward the anode 18, respectively. C, anion exchange membrane A, cation exchange membrane C, and cation exchange membrane C. By these ion exchange membranes, a cathode chamber 9 including a cathode 14 and an anode chamber 11 including an anode 18 are formed. Between the anode chamber 11 and the cathode chamber 9, a desalting chamber 21 and a concentration chamber 22 are alternately arranged. A desalting chamber 21 is formed on the side closest to the cathode chamber 9. Here, it is preferable that at least one anion exchange membrane A is disposed in the cathode chamber 9 so that the scale does not reach the cathode 14 even if a scale is formed due to leakage of calcium ions. .
[0023]
A desalinating solution is introduced into the desalting chamber 21 through the line L17 from the desalting solution tank 7, and a concentrated solution is introduced into the concentrating chamber 22 through the line L18 from the concentrated solution tank 6. The concentrated solution is returned to the desalted solution tank 7 through L19, and the concentrated solution is returned to the concentrated solution tank 6 through the line L20 (see FIG. 2). Further, a line L4 is connected to the desalting solution tank 7, and the desalting solution is returned to the pH adjusting tank 1 through the line L4 for use, and a line L3 is connected to the concentrated solution tank 6, The concentrated liquid is discharged out of the system through the line L3.
[0024]
As shown in FIG. 3, a cathodic acidic solution 13 is injected into the cathode chamber 9 so that the cathode 14 is immersed. The cathodic acidic solution 13 is composed of an acid and a cathodic solution. Examples of the acid include hydrochloric acid, Sulfuric acid, nitric acid or the like is used, and as the cathode solution, for example, a sodium chloride aqueous solution, a sodium sulfate aqueous solution, a sodium nitrate aqueous solution, or the like is used. Among these, a sodium chloride solution is preferably used because it is easy to handle and inexpensive, and a sodium chloride solution containing hydrochloric acid is more preferable because a component called chlorine is common.
[0025]
The pH of the cathodic acidic solution 13 is normally maintained at 1.5 to 2.5. As shown in FIG. 2, an electrode solution tank 15 is connected to the cathode chamber 9 via a line L5 provided with a pump 16. In order to adjust the cathodic acid solution 13 to a pH in the above range, the pump 16 replenishes the cathodic acid solution 13 with the same acidic solution having a low pH. Note that an acid supply source that supplies the same kind of acid as the acid in the cathodic acid solution 13 is connected to the electrode bath 15 via a line L13. The electrode solution tank 15 is preferably connected to the pH adjusting tank 1 or the upstream line L0 through the line L6 from the viewpoint of effective use of the surplus acidic solution. The cathode chamber 9 is connected to the electrode solution tank 15 via a line L7 so as to return the cathodic acid solution 13 having a high pH to the electrode solution tank 15.
[0026]
As shown in FIG. 3, an anodic acidic solution 17 is injected into the anode chamber 11 so that the anode 18 is immersed therein. The anodic acidic solution 17 is preferably composed of a chlorine ion-free solution from the viewpoint of preventing generation of chlorine gas and preventing precipitation of calcium chloride scale. The chlorine ion-free solution may be composed of only an acid not containing chlorine ions or an acid containing no chlorine ions and an anodic solution. Examples of the acid not containing chlorine ions include sulfuric acid and nitric acid, and examples of the anodic solution include an aqueous sodium sulfate solution and an aqueous sodium nitrate solution. Of these, even if only sulfuric acid is used, it can be used as an anodic solution. The pH of the anodic acidic solution 17 is normally maintained at 0.5 to 2.5. The anode chamber 11 is connected to the electrode liquid tank 19 through a line L8 provided with a pump 20. An acid supply source that supplies an acid having a low pH of the same type as the acid in the anodic acid solution 17 is connected via a line L14 so as to adjust the pH of the anodic acid solution 17 within the above range. The electrode bath 19 is preferably connected to the line L6 via the line L9 from the viewpoint of effective use of the surplus acidic solution. The anode chamber 11 is connected to the electrode solution tank 19 through a line L10 so that the anodic acid solution 17 having a high pH is returned to the electrode solution tank 19.
[0027]
Next, a desalting treatment method using the desalting treatment apparatus 10 having the above-described configuration will be described.
[0028]
As shown in FIG. 1, leachate is introduced into the pH adjusting tank 1 through the line L0, and the pH is adjusted to acidic in the pH adjusting tank 1, and preferably adjusted to a pH of 5 or less (pH adjusting step). Since it becomes difficult to produce carbonate ions by adjusting the pH, precipitation of calcium scale in the reverse osmosis membrane device 2 in the subsequent stage is prevented. The pH adjusted leachate is introduced into the aeration tank 4 through the line L1. In the aeration tank 4, since carbonate ions are released as carbon dioxide, the calcium scale in the reverse osmosis membrane device 2 is further prevented. Thereafter, leachate is introduced into the reverse osmosis membrane device 2. In the reverse osmosis membrane device 2, the leachate is concentrated and permeated by the reverse osmosis membrane 2a, the permeate is discharged out of the system, and the concentrated water is introduced into the electrodialysis device 3 through the line L2 (reverse osmosis step).
[0029]
As shown in FIG. 2, in the electrodialysis apparatus 3, the concentrated water is introduced into the concentrated liquid tank 6 as a concentrated liquid, and the concentrated water is introduced into the desalted liquid tank 7 as a desalted liquid. The concentrated solution is introduced into the concentration chamber 22 of the electrodialysis tank 8, and the desalted solution in the desalted solution tank 7 is introduced into the desalting chamber 21 of the electrodialysis tank 8. At this time, as shown in FIG. 3, when a voltage is applied between the cathode 14 and the anode 18, the cation in the desalting solution goes to the cathode 14, and the anion goes to the anode 18. Done. That is, the desalting solution in the desalting chamber 21 is desalted, and the concentrated solution in the concentration chamber 22 is concentrated (electrodialysis step).
[0030]
At this time, the anion exchange membrane A disposed between the cathode chamber 9 and the desalting chamber 21 prevents the movement of cations such as calcium from the desalting solution to the cathodic acidic solution 13 in the cathode chamber 9. The For this reason, precipitation of calcium scale due to the combination of cations such as calcium and anions such as chlorine ions in the cathode chamber 9 is prevented, and adhesion and membrane clogging of the calcium scale anion exchange membrane A are prevented. Is prevented. From the above, an increase in electrical resistance between the anode 18 and the cathode 14 is prevented. Therefore, a stable desalting treatment of the desalting solution becomes possible.
[0031]
In the electrodialysis step, the pH of the acidic solution in the electrode baths 15 and 19 is preferably maintained at 4 or less from the viewpoint of further suppressing calcium scale deposition in the cathode chamber 9 and the anode chamber 11. Further, from the viewpoint of effectively using the acidic solution in the electrode liquid tanks 15 and 19, it is preferable to return the acidic solution in the electrode liquid tanks 15 and 19 to the pH adjusting tank 1 or the upstream line L0 through the line L6 ( (See FIGS. 1 and 2).
[0032]
And as shown in FIG. 2, a concentrate is returned to the concentrate tank 6, and is discharged | emitted out of the system through the line L3 after that. On the other hand, the desalted liquid is returned to the desalted liquid tank 7 and then returned to the pH adjusting tank 1 by the pump 5 through the line L4 (see FIG. 1). At this time, since the desalted liquid to be returned is acidic, the amount of acid supplied in the pH adjusting tank 1 can be reduced, and the acid can be effectively used. The desalting solution in the desalting solution tank 7 is not limited to the pH adjusting tank 1 and may be returned to the upstream side thereof.
[0033]
Next, a second embodiment of the desalting apparatus of the present invention will be described.
[0034]
FIG. 4 is a schematic view showing a desalting apparatus 30 according to the second embodiment, and the same or equivalent components as those in the first embodiment are denoted by the same reference numerals. As shown in FIG. 4, the desalting apparatus 30 has the electrodialysis apparatus 3 on the upstream side and the reverse osmosis membrane apparatus 2 on the downstream side, and reverses the desalted solution obtained by the electrodialysis apparatus 3 through a line L15. It differs from the desalination processing apparatus 10 of 1st Embodiment by the point which introduce | transduces into the osmosis membrane apparatus 2, and returns the concentrated water obtained with the reverse osmosis membrane apparatus 2 to the pH adjustment tank 1 with a pump through the return line L16.
[0035]
In this case, the desalination treatment using the desalination treatment device 30 is performed by concentrating and desalting the pH-adjusted leachate with the electrodialysis device 3 (electrodialysis step), and obtaining a desalting solution obtained by the electrodialysis device 3 Except that the concentrated water obtained in the reverse osmosis step is returned to the pH adjustment tank 1 (return step) (return osmosis step). This is performed in the same manner as the desalting treatment method. In this case, when the salt concentration in the leachate flowing into the pH adjustment tank 1 exceeds 30,000 mg / l, the amount of leachate to be treated by the reverse osmosis membrane device 2 and the electrodialysis device 3 can be reduced. The burden required for the reverse osmosis membrane device 2 and the electrodialysis device 3 tends to be reduced. Therefore, the running cost as the whole apparatus can be reduced.
[0036]
Next, a third embodiment of the desalting apparatus of the present invention will be described.
[0037]
FIG. 5 is a schematic view showing a desalting apparatus 40 according to the third embodiment, and the same or equivalent components as those of the first embodiment are denoted by the same reference numerals. As shown in FIG. 5, in the desalination treatment apparatus 40, an inflow line (second inflow line) L12 branched from the middle of the inflow line L0 is connected to the line L2, and a valve V1 is attached to the inflow line L0. The line L12 is different from the demineralization apparatus 10 of the first embodiment in that a valve V2 (second valve) and an aeration tank (second decarboxylation tank) 41 are sequentially attached from the upstream side.
[0038]
In this case, the desalting treatment is performed as follows. That is, when the salt concentration in the leachate is 30,000 mg / l or less, the valve V2 is closed, the valve V1 is opened, and the leachate is introduced into the pH adjustment tank 1. Then, the pH adjusted leachate is passed through the aeration tank 4 and introduced into the reverse osmosis membrane device 2. The reverse osmosis membrane device 2 concentrates and permeates the leachate, and the concentrated water obtained by reverse osmosis is sent to the electrodialysis device 3 through the line L2, and is concentrated and desalted by the electrodialysis device 3 (first desalting process). 1 step). The desalted solution obtained by the electrodialyzer 3 is returned to the pH adjustment tank 1 by the pump 5 through the return line L4 (third step).
[0039]
On the other hand, when the salt concentration in the leachate exceeds 30,000 mg / l, the valve V1 is closed, the valve V2 is opened, the leachate is introduced into the inflow line L12, and the leachate is aerated in the aeration tank 41. It introduces into the electrodialyzer 3 through the line L2. Then, the leachate is concentrated and desalted by the electrodialyzer 3 (second step). The desalted solution obtained by the electrodialyzer 3 is returned to the pH adjustment tank 1 by the pump 5 through the return line L4 (third step). Thereafter, the desalted solution is passed through the aeration tank 4 and introduced into the reverse osmosis membrane device 2. In the reverse osmosis membrane device 2, the desalted solution is concentrated and permeated, and the concentrated water is introduced into the electrodialysis device 3.
[0040]
According to such a desalting treatment method, when the salt concentration in the leachate is 30,000 mg / l or less, it is treated by the reverse osmosis membrane device 2 and then by the electrodialysis device 3, while the salt concentration in the leachate is When the salt concentration exceeds 30,000 mg / l, leachate is treated with the electrodialysis device 3 and then treated with the reverse osmosis membrane device 2, and the leachate to be treated with the reverse osmosis membrane device 2 and the electrodialysis device 3. The amount of always decreases. Therefore, if the processing procedure is changed as described above according to the change in the salt concentration in the leachate, the burden on the reverse osmosis membrane device 2 and the electrodialysis device 3 can always be reduced, thereby reducing the running cost. be able to.
[0041]
Hereinafter, the contents of the present invention will be specifically described with reference to examples.
[0042]
【Example】
Example 1
As an electrodialysis apparatus, the ion exchange membrane closest to the anode is a cation exchange membrane (Celemion CMV manufactured by Asahi Glass Co., Ltd.), and the ion exchange membrane closest to the cathode is an anion exchange membrane (Celemion ASV manufactured by Asahi Glass Co., Ltd.). In the meantime, a cation exchange membrane and an anion exchange membrane were alternately arranged from the anode chamber side to the cathode chamber side, and 11 demineralization chambers and 10 concentration chambers were formed. Into the cathode chamber, a 3% aqueous solution of hydrochloric acid as a cathodic acid solution was poured, and the cathodic acid solution was adjusted to pH 2 or less by pouring the same kind of acidic solution added with hydrochloric acid. On the other hand, a 3% sulfuric acid aqueous solution was injected into the anode chamber as an anodic acid solution, and the anodic acid solution was adjusted to about pH 1.0 by injecting the same kind of acid solution with sulfuric acid added into the anode chamber.
[0043]
Then, while introducing about 3.4% of salt-containing water into each of the desalting chamber and the concentrating chamber, a voltage is applied between the cathode and the anode to perform electrodialysis, and the concentrated salt concentration and desalting solution The change with time of each salt concentration and the change with time of the current value flowing between the cathode and the anode were examined. The results are shown in FIGS. As shown in FIGS. 6 and 7, the concentrated solution salt concentration was 17%, and the current value was stable over 7 days despite the high salt concentration.
[0044]
(Comparative Example 1)
As the anodic acid solution and the cathodic acid solution, a 3% sodium nitrate aqueous solution that is nitric acid is used, a cation exchange membrane is used in place of the anion exchange membrane closest to the cathode, and the pH of the bipolar acidic solution is further reduced to 2.5 or less. The same electrodialysis tank as in Example 1 was used, except that it was held. In addition, pH adjustment of the bipolar acidic solution was performed by inject | pouring the acidic solution of the same kind which added the nitric acid in a single electrode liquid tank into the anode chamber and the cathode chamber, respectively.
[0045]
Using this electrodialyzer, the time-dependent changes in the concentrated solution salt concentration and the desalted solution salt concentration and the time-dependent change in the current value flowing between the cathode and the anode were examined in the same manner as in Example 1. The results are shown in FIGS. As shown in FIGS. 8 and 9, the concentration of the concentrated liquid salt was 10%, and the current value gradually decreased over time. At this time, white turbidity of the cathodic acid solution was observed, and flow resistance was generated in the cathode chamber. When this electrodialyzer was disassembled, white scale was generated in the entire anion exchange membrane surface of the cathode chamber and in the concentration chamber. The same thing happened in part of the anode chamber. As a result of analyzing the white scale, it was found that the main component was calcium hydroxide. As a result, it has been found that it is impossible to desire long-term stable operation by this method.
[0046]
【The invention's effect】
As described above, according to the electrodialysis apparatus of the present invention, when the salt-containing water containing calcium is desalted, cations such as calcium ions from the salt-containing water to the cathodic acidic solution in the room including the cathode are removed. The migration is prevented, the anion exchange membrane is not blocked by the scale, and the concentration of the salt in the salt-containing water to be concentrated is increased. Therefore, an increase in electrical resistance between the anode and the cathode is prevented, and stable treatment of salt-containing water is possible. Furthermore, according to the desalination treatment method and apparatus to which this electrodialysis apparatus is applied, the amount of salt-containing water to be treated by electrodialysis or reverse osmosis is small, so that the running cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an embodiment of a desalting apparatus of the present invention.
FIG. 2 is a flow sheet showing an embodiment of the electrodialysis apparatus of the present invention.
3 is a cross-sectional view showing an internal configuration of an electrodialysis tank of the electrodialysis apparatus of FIG.
FIG. 4 is a flow sheet showing another embodiment of the desalting apparatus of the present invention.
FIG. 5 is a flow sheet showing still another embodiment of the desalting apparatus of the present invention.
6 is a graph showing changes over time in concentrated salt concentration and desalted salt concentration by electrodialysis in Example 1. FIG.
7 is a graph showing the change over time of the current value by electrodialysis in Example 1. FIG.
8 is a graph showing changes over time in concentrated salt concentration and desalted salt concentration by electrodialysis in Comparative Example 1. FIG.
9 is a graph showing a change with time of a current value by electrodialysis in Comparative Example 1. FIG.
FIG. 10 is a cross-sectional view showing the internal configuration of a conventional electrodialysis tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... pH adjustment tank, 2 ... Reverse osmosis membrane apparatus, 3 ... Electrodialysis apparatus, 4 ... Aeration tank (decarbonation tank, 1st decarboxylation tank) 5 ... Pump (returning means), 9 ... Cathode chamber (cathode) 11) anode chamber (chamber containing anode), 12 ... treated water chamber, 13 ... cathodic acid solution, 14 ... cathode, 17 ... anodic acid solution, 18 ... anode, A ... anion exchange membrane, 41 ... Aeration tank (second decarboxylation tank), L0 ... inflow line (first inflow line), L4, L16 ... return line (return means), L12 ... inflow line (second inflow line), V1 ... valve (first Valve), V2... Valve (second valve).

Claims (10)

カルシウムイオンを含有する塩含有水を電気透析槽内で脱塩処理する電気透析装置において、
前記電気透析槽内に配置される陰極及び陽極と、
前記陰極及び前記陽極間に並設され、複数の室を形成する複数のイオン交換膜とを備え、
前記複数の室のうち前記陰極を含む前記室内には陰極酸性溶液が導入され、前記陽極を含む前記室内には陽極酸性溶液が導入されるようになっており、
前記陰極に最も近い前記イオン交換膜が陰イオン交換膜であることを特徴とする電気透析装置。
In an electrodialysis apparatus for desalinating salt-containing water containing calcium ions in an electrodialysis tank,
A cathode and an anode disposed in the electrodialysis tank;
A plurality of ion exchange membranes arranged in parallel between the cathode and the anode and forming a plurality of chambers;
A cathode acidic solution is introduced into the chamber including the cathode among the plurality of chambers, and an anodic acidic solution is introduced into the chamber including the anode.
The electrodialysis apparatus, wherein the ion exchange membrane closest to the cathode is an anion exchange membrane.
前記陽極酸性溶液は、塩素イオン非含有溶液であることを特徴とする請求項1に記載の電気透析装置。The electrodialysis apparatus according to claim 1, wherein the anodic acid solution is a chloride ion-free solution. 前記陰極酸性溶液は、カルシウム非含有の電解質を含む酸性溶液であることを特徴とする請求項1又は2に記載の電気透析装置。The electrodialyzer according to claim 1 or 2, wherein the cathodic acidic solution is an acidic solution containing a calcium-free electrolyte. 前記複数のイオン交換膜のうち前記陰イオン交換膜に最も近いものが陰イオン交換膜であり、互いに隣接する前記陰イオン交換膜によって形成される室内に陰極酸性溶液が導入されるようになっていることを特徴とする請求項1〜3のいずれか一項に記載の電気透析装置。Of the plurality of ion exchange membranes, the one closest to the anion exchange membrane is an anion exchange membrane, and the cathodic acid solution is introduced into a chamber formed by the anion exchange membranes adjacent to each other. The electrodialysis apparatus according to any one of claims 1 to 3, wherein the electrodialysis apparatus is characterized. カルシウムイオンを含む塩含有水の脱塩処理方法において、
前記塩含有水を酸性にpH調整するpH調整工程と、
pH調整された前記塩含有水を逆浸透によって濃縮し且つ透過させる逆浸透工程と、
前記逆浸透工程の逆浸透によって得られる濃縮水を、請求項1〜4のいずれか一項に記載の電気透析装置で脱塩処理する電気透析工程と、
を含むことを特徴とする脱塩処理方法。
In the method for desalinating salt-containing water containing calcium ions,
A pH adjusting step for adjusting the pH of the salt-containing water to an acid;
a reverse osmosis step of concentrating and permeating the pH-adjusted salt-containing water by reverse osmosis;
An electrodialysis step of desalinating the concentrated water obtained by reverse osmosis in the reverse osmosis step with the electrodialysis apparatus according to any one of claims 1 to 4,
A desalinization treatment method comprising:
カルシウムイオンを含む塩含有水の脱塩処理装置において、
前記塩含有水を酸性にpH調整するpH調整槽と、
pH調整された前記塩含有水を逆浸透によって濃縮し且つ透過させる逆浸透膜装置と、
前記逆浸透膜装置における逆浸透によって得られる濃縮水を脱塩処理する請求項1〜4のいずれか一項に記載の電気透析装置と、
を備えることを特徴とする脱塩処理装置。
In a desalination apparatus for salt-containing water containing calcium ions,
A pH adjusting tank for adjusting the pH of the salt-containing water to an acid;
a reverse osmosis membrane device for concentrating and permeating the salt-containing water adjusted in pH by reverse osmosis;
The electrodialysis apparatus according to any one of claims 1 to 4, wherein the concentrated water obtained by reverse osmosis in the reverse osmosis membrane apparatus is desalted.
A desalinization treatment apparatus comprising:
カルシウムイオンを含む塩含有水の脱塩処理方法において、
前記塩含有水を酸性にpH調整するpH調整工程と、
pH調整された前記塩含有水を請求項1〜4のいずれか一項に記載の電気透析装置で脱塩処理する電気透析工程と、
前記電気透析工程で得られる脱塩液を、逆浸透によって濃縮し且つ透過させる逆浸透工程と、
を含むことを特徴とする脱塩処理方法。
In the method for desalinating salt-containing water containing calcium ions,
A pH adjusting step for adjusting the pH of the salt-containing water to an acid;
an electrodialysis step of desalting the salt-adjusted water adjusted in pH with the electrodialysis apparatus according to any one of claims 1 to 4;
A reverse osmosis step of concentrating and permeating the desalted solution obtained in the electrodialysis step by reverse osmosis;
A desalinization treatment method comprising:
カルシウムイオンを含む塩含有水の脱塩処理装置において、
前記塩含有水を酸性にpH調整するpH調整槽と、
pH調整された前記塩含有水を濃縮し且つ脱塩処理する請求項1〜4のいずれか一項に記載の電気透析装置と、
前記電気透析装置で得られる脱塩液を逆浸透によって濃縮し且つ透過させる逆浸透膜装置と、
を備えることを特徴とする脱塩処理装置。
In a desalination apparatus for salt-containing water containing calcium ions,
A pH adjusting tank for adjusting the pH of the salt-containing water to an acid;
The electrodialysis apparatus according to any one of claims 1 to 4, wherein the salt-containing water whose pH has been adjusted is concentrated and desalted.
A reverse osmosis membrane device for concentrating and permeating the desalted solution obtained by the electrodialyzer by reverse osmosis;
A desalinization treatment apparatus comprising:
カルシウムイオンを含む塩含有水の脱塩処理方法において、前記塩含有水中の塩濃度が所定値以下の場合に、前記塩含有水をpH調整した後、逆浸透によって濃縮し且つ透過させ、そのうちの濃縮水を請求項1〜4のいずれか一項に記載の電気透析装置で濃縮し且つ脱塩処理する第1工程と、
前記塩含有水中の塩濃度が所定値を超える場合に、前記塩含有水を前記電気透析装置で濃縮・脱塩処理する第2工程と、
前記電気透析装置で得られる脱塩液を前記pH調整工程のpH調整に使用する第3工程と、
を含むことを特徴とする脱塩処理方法。
In the salt-containing water desalination treatment method including calcium ions, when the salt concentration in the salt-containing water is a predetermined value or less, after adjusting the pH of the salt-containing water, it is concentrated and permeated by reverse osmosis, of which A first step of concentrating the concentrated water with the electrodialysis apparatus according to any one of claims 1 to 4 and desalting;
A second step of concentrating and desalting the salt-containing water with the electrodialyzer when the salt concentration in the salt-containing water exceeds a predetermined value;
A third step of using a desalted solution obtained by the electrodialyzer for pH adjustment in the pH adjustment step;
A desalinization treatment method comprising:
カルシウムイオンを含む塩含有水の脱塩処理装置において、
前記塩含有水を酸性にpH調整するpH調整槽と、
前記pH調整槽でpH調整された前記塩含有水を逆浸透によって濃縮し且つ透過させる逆浸透膜装置と、
前記逆浸透膜装置で得られる濃縮水を濃縮し且つ脱塩処理する請求項1〜4のいずれか一項に記載の電気透析装置と、
前記逆浸透膜装置に前記塩含有水を導入する第1流入ラインと、
前記第1流入ラインに設けられる第1の弁と、
前記第1流入ラインから分岐して前記電気透析装置に前記塩含有水を流入させる第2流入ラインと、
前記第2流入ラインに設けられる第2の弁と、
前記電気透析装置で得られる脱塩液を前記pH調整槽又はその上流側に流入させる返送手段と、
を備えることを特徴とする脱塩処理装置。
In a desalination apparatus for salt-containing water containing calcium ions,
A pH adjusting tank for adjusting the pH of the salt-containing water to an acid;
A reverse osmosis membrane device for concentrating and permeating the salt-containing water whose pH is adjusted in the pH adjustment tank by reverse osmosis;
The electrodialyzer according to any one of claims 1 to 4, wherein the concentrated water obtained by the reverse osmosis membrane device is concentrated and desalted.
A first inflow line for introducing the salt-containing water into the reverse osmosis membrane device;
A first valve provided in the first inflow line;
A second inflow line that branches from the first inflow line and allows the salt-containing water to flow into the electrodialyzer;
A second valve provided in the second inflow line;
A return means for allowing the desalted solution obtained by the electrodialyzer to flow into the pH adjusting tank or its upstream side;
A desalinization treatment apparatus comprising:
JP18608799A 1999-06-30 1999-06-30 Electrodialyzer and desalting method and apparatus using the same Expired - Fee Related JP3938821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18608799A JP3938821B2 (en) 1999-06-30 1999-06-30 Electrodialyzer and desalting method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18608799A JP3938821B2 (en) 1999-06-30 1999-06-30 Electrodialyzer and desalting method and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2001009459A JP2001009459A (en) 2001-01-16
JP3938821B2 true JP3938821B2 (en) 2007-06-27

Family

ID=16182152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18608799A Expired - Fee Related JP3938821B2 (en) 1999-06-30 1999-06-30 Electrodialyzer and desalting method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP3938821B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4290348B2 (en) * 2001-03-21 2009-07-01 東曹産業株式会社 Method for producing alkali silicate aqueous solution
AT504206B8 (en) * 2006-12-19 2008-09-15 Gruene Bioraffinerie At Gmbh METHOD FOR TREATING A STAFF CURRENT

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544647B2 (en) * 1974-12-09 1980-11-13
JPS5811242B2 (en) * 1975-10-16 1983-03-02 日立電線株式会社 Denkitosekisouchi
JPS5298686A (en) * 1976-02-16 1977-08-18 Hitachi Cable Ltd Electro dialysis apparatus
JPS548180A (en) * 1977-06-21 1979-01-22 Toshiba Corp Desalting method
JPS57171485A (en) * 1981-04-14 1982-10-22 Kobe Steel Ltd Desalination of brine
JPS63100996A (en) * 1986-10-18 1988-05-06 Shinko Fuaudoraa Kk Method for desalting brine

Also Published As

Publication number Publication date
JP2001009459A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
She et al. Organic fouling in pressure retarded osmosis: Experiments, mechanisms and implications
CN107055713B (en) High-hardness salt-containing water concentration method based on monovalent cation selective electrodialysis
US20120145630A1 (en) Fresh water production method
US20140183045A1 (en) Electrodesalination System and Method
CN106315935B (en) Water quality desalting plant and the method for desalinating water quality using the device
WO2013005369A1 (en) Water purification system and water purification method
CN104096483B (en) A kind of membrane component, the device using this membrane component and method for treating water
CN104370405A (en) Treatment method for zero discharge of high-hardness high-salinity wastewater
SG174485A1 (en) Method for removing ionic species from desalination unit
SG181937A1 (en) Water production system and operation method therefor
JPH10206004A (en) Refrigerator with water purifier
WO2010143950A1 (en) Method for preventing fouling in a reverse electrodialyses stack
JP3938821B2 (en) Electrodialyzer and desalting method and apparatus using the same
JP2002143854A (en) Electrochemical water treating device
US20180264410A1 (en) Method for improving inhibition performance of semipermeable membrane, semipermeable membrane, and semipermeable membrane water production device
US2671055A (en) Process for electrodialyzing aqueous liquids
JPS63100996A (en) Method for desalting brine
JP2000300966A (en) Membrane sterilization method and membrane separation device
JP4480903B2 (en) Method for producing dealkalized water glass solution
JPH06254356A (en) Ph adjusting method of salt water incorporating hardly soluble salt group
EP1382573A1 (en) Apparatus for automatically cleaning a reactor cell of a water treatment installation
JPH09141065A (en) Dipping type membrane separation device
Myint et al. Design of ILEDR for brackish groundwater: A literature review approach
JPS63158104A (en) Desalting equipment by electrodialysis method
JP3228588B2 (en) Water purification treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees