JPS63158104A - Desalting equipment by electrodialysis method - Google Patents

Desalting equipment by electrodialysis method

Info

Publication number
JPS63158104A
JPS63158104A JP30579986A JP30579986A JPS63158104A JP S63158104 A JPS63158104 A JP S63158104A JP 30579986 A JP30579986 A JP 30579986A JP 30579986 A JP30579986 A JP 30579986A JP S63158104 A JPS63158104 A JP S63158104A
Authority
JP
Japan
Prior art keywords
tank
electrodialysis
water
fresh water
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30579986A
Other languages
Japanese (ja)
Inventor
Tetsuyoshi Ishida
哲義 石田
Kenji Shibata
芝田 健二
Kunio Okiura
沖浦 邦夫
Eiji Inada
稲田 栄治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP30579986A priority Critical patent/JPS63158104A/en
Publication of JPS63158104A publication Critical patent/JPS63158104A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need for an injector of sodium hypochlorite which is separately provide heretofore and to obtain an economical desalting equipment by an electrodialysis method by using gaseous chlorine generated in an anodic chamber and subjecting fresh water produced in an electrodialysis tank to sterilizing treatment thereby. CONSTITUTION:Raw water 19 is divided into water for desalting and water for concentration and these are fed to a circulation tank 12 and a circulation tank 13 for concentrate respectively and raw water 19 housed in the tank 12 is circulated to an electrodialysis tank 11 to desalt it and fed to a fresh water tank 18 as fresh water 22. On the other hand, raw water housed in the tank 13 is divided into anolyte 25, concentrate 21 and catholyte 26 and these are fed to an anodic chamber 23, a concentration chamber and a cathodic chamber 24 of the electrodialysis tank 11 respectively and anolyte 25 is separated from generated gaseous chlorine in a gas-liquid separator 17 and thereafter discharged to the outside. Separated gaseous chlorine 27 is fed to produced fresh water 22 by an injector 30 for gaseous chlorine. The amount of gaseous chlorine 27 to be fed is regulated with a flow rate control valve 29 by detecting the concn. of gaseous chlorine with a chlorine densitometer 28.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気透析法淡水化装置に係り、特に該装置に
より発生する塩素で、該装置により生成された淡水を殺
菌処理する淡水造水装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrodialysis desalination device, and particularly to a freshwater desalination device that sterilizes fresh water produced by the device using chlorine generated by the device. Regarding equipment.

〔従来の技術〕[Conventional technology]

電気透析法淡水化装置は、原水に微生物を有する溶液を
用いる場合、透析処理過程においてこの微生物が死滅し
ないため生成淡水にはこの微生物が含まれる。このため
この生成淡水を飲料水として用いる場合は殺菌処理が必
要であり、従来の電気透析法淡水化装置は、第3図に示
すように次亜塩素酸ソーダを注入し、生成淡水を殺菌す
る方法を採用しているが、この方法では次亜塩素酸ソー
ダ供給装置を淡水化装置に追加して設ける必要がありコ
スト高になるという欠点を有していた。以下第、3図を
用いて従来装置を説明する。なお、第3図は回分処理方
式の電気透析法淡水化装置を示すが、本発明は処理方式
に関係なくいずれの処理方式についても適用できる。
When an electrodialysis desalination device uses a solution containing microorganisms in raw water, the microorganisms are not killed during the dialysis treatment process, so the produced fresh water contains the microorganisms. Therefore, if this produced fresh water is to be used as drinking water, sterilization treatment is required, and conventional electrodialysis desalination equipment injects sodium hypochlorite to sterilize the produced fresh water, as shown in Figure 3. However, this method had the disadvantage of requiring a sodium hypochlorite supply device to be added to the desalination device, resulting in high costs. The conventional device will be explained below with reference to FIG. Although FIG. 3 shows a batch treatment type electrodialysis desalination apparatus, the present invention can be applied to any treatment method regardless of the treatment method.

第3図は従来の電気透析法淡水化装置のフローを示し、
その構成機器は、陽極室23を有する電気透析槽11.
循環タンク12、濃縮水タンク13、取水ポンプ141
.循環ポンプ15、濃縮水循環ポンプ16.淡水タンク
18、次亜塩素酸ソ−ダタンク41および次亜塩素酸ソ
ーダポンプ43等からなる次亜塩素酸ソーダ注入装置4
0から構成される装 置 水19は脱塩水用と濃縮水用に分けられ、それぞれ循環
タンク12、濃縮水循環タンク13へ供給される。循環
タンク12に供給された原水は電気透析槽11、循環タ
ンク12、循環ポンプ15で形成される循環ラインを循
環し脱塩されて淡水22となる。濃縮水タンク13に供
給された原水は電気透析槽11、濃縮水タンク13、濃
縮水循環ポンプ16により形成される濃縮水循環ライン
を循環して濃縮される。
Figure 3 shows the flow of a conventional electrodialysis desalination device.
Its components include an electrodialysis tank 11 having an anode chamber 23.
Circulation tank 12, concentrated water tank 13, water intake pump 141
.. Circulation pump 15, concentrated water circulation pump 16. Sodium hypochlorite injection device 4 consisting of a freshwater tank 18, a sodium hypochlorite tank 41, a sodium hypochlorite pump 43, etc.
The device water 19 made up of water is divided into desalinated water and concentrated water, and is supplied to the circulation tank 12 and concentrated water circulation tank 13, respectively. The raw water supplied to the circulation tank 12 is circulated through a circulation line formed by the electrodialysis tank 11, the circulation tank 12, and the circulation pump 15, and is desalinated to become fresh water 22. The raw water supplied to the concentrated water tank 13 is concentrated by circulating through a concentrated water circulation line formed by the electrodialysis tank 11, the concentrated water tank 13, and the concentrated water circulation pump 16.

生成された淡水22には,微生物を殺菌するため次亜塩
素酸ソーダ注入装置40により次亜塩素酸ソーダが注入
される。
Sodium hypochlorite is injected into the generated fresh water 22 by a sodium hypochlorite injection device 40 in order to sterilize microorganisms.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、電気透析法淡水化装置によって生成し
た淡水を殺菌処理するために次亜塩素酸ソーダ注入装置
を備えており、このた・め電気透析法淡水化装置が複雑
となり、コス1も上昇し、しかも電気透析槽11の陽極
室23において生成する塩素ガスは有効に利用されず捨
てられていた。
The above-mentioned conventional technology is equipped with a sodium hypochlorite injection device to sterilize the fresh water produced by the electrodialysis desalination device, which makes the electrodialysis desalination device complicated and reduces the cost. The chlorine gas that rises and is generated in the anode chamber 23 of the electrodialyzer 11 is not effectively used and is thrown away.

本発明の目的は、電気透析槽11の陽極室23において
発生する塩素ガスで,前記電気透析槽11によって生成
した淡水22を殺菌処理することにより、従来電気透析
法談水化装置に別個に設けられている次亜塩酸ソーダ注
入装置40を不用とし、経済的な電気透析法淡水化装置
を提供することにある。
An object of the present invention is to sterilize the fresh water 22 produced by the electrodialysis tank 11 using chlorine gas generated in the anode chamber 23 of the electrodialysis tank 11, thereby eliminating the need for a separate installation in the conventional electrodialysis water conversion equipment. The objective of the present invention is to provide an economical electrodialysis desalination device that eliminates the need for the conventional sodium hypochlorite injection device 40.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、陽極室を有する電気透析槽により電気透
析を行う電気透析法淡水化装置において、前記陽極室で
生成する陽極液を気液分離する気液分′離器と、該気液
分離器により分離された塩素ガスを前記電気透析槽によ
り生成された淡水に注入する塩素注入装置を備えること
により解決される。
In an electrodialysis desalination apparatus that performs electrodialysis using an electrodialysis tank having an anode chamber, the above problem is caused by a gas-liquid separator that separates the anolyte produced in the anode chamber into gas and liquid, and a gas-liquid separator that separates the anolyte produced in the anode chamber. This problem is solved by providing a chlorine injection device for injecting chlorine gas separated by the electrodialysis tank into the fresh water produced by the electrodialysis tank.

〔作用〕[Effect]

塩素イオンを含む原水は電気透析槽の陽極室において、
塩素イオン2CQ−が電子2e−を放出して塩素ガスC
Ω2を生成し、この塩素ガスCQ,は一部が陽極液に溶
けるが、残りは気泡状態にある。
Raw water containing chlorine ions is stored in the anode chamber of the electrodialysis tank.
Chlorine ion 2CQ- releases electron 2e- to form chlorine gas C
A part of this chlorine gas CQ, dissolves in the anolyte, but the rest remains in the form of bubbles.

この陽極液を気液分離器を通すと塩素ガスを分離できる
ので、この塩素ガスを注入装置により電気透析槽によっ
て生成された淡水に注入して殺菌処理する。
When this anolyte is passed through a gas-liquid separator, chlorine gas can be separated, so this chlorine gas is injected into the fresh water produced by the electrodialysis tank using an injection device for sterilization treatment.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明による電気透析法淡水化装置のフローを
示し、本装置は、原水19をくみ上げる取水ポンプ,原
水19を循環して脱塩する電気透析槽11、循環する溶
液を受ける循環タンク12およびこの溶液を循環する循
環ポンプ15、電気透析槽11の陽極室23で生成する
陽極液より塩素ガスを分離する気液分離器17、気液分
離器17で分離された塩素ガス27を調整して生成した
淡水に注入する流量調整弁29および淡水の塩素濃度を
計測する塩素濃度計28よりなる塩素ガス注入装置30
、淡水タンク18,濃縮水循環タンク13、濃縮水循環
ポンプ16等から植成される。
FIG. 1 shows the flow of an electrodialysis desalination apparatus according to the present invention, which includes a water intake pump that pumps raw water 19, an electrodialysis tank 11 that circulates and desalinates the raw water 19, and a circulation tank that receives the circulating solution. 12, a circulation pump 15 that circulates this solution, a gas-liquid separator 17 that separates chlorine gas from the anolyte produced in the anode chamber 23 of the electrodialysis tank 11, and a gas-liquid separator 17 that adjusts the chlorine gas 27 separated by the gas-liquid separator 17. A chlorine gas injection device 30 consisting of a flow rate adjustment valve 29 for injecting fresh water into the fresh water produced by the process and a chlorine concentration meter 28 for measuring the chlorine concentration of the fresh water.
, a freshwater tank 18, a concentrated water circulation tank 13, a concentrated water circulation pump 16, etc.

本装置の動作について説明すると、くみ上げられた原水
19は、従来装置と同様に、脱塩水用と濃縮水用に分け
られ,それぞれ循環タンク12、濃縮水循環タンク13
へ供給される。循環タンク12に供給された原水19は
、循環ポンプ15により電気透析槽11を循環して脱塩
され、淡水22となり淡水タンク18へ送られる。一方
濃縮水タンク13に供給された原水は、濃縮水循環ポン
プ16により吸引され、更に、陽極液25、濃縮水21
、陰極液26に分けられ、それぞれ電気、透析槽11の
陽極室23、濃縮室、陰極室24へ供給される。濃縮水
21は電気透析槽11を循環して濃縮され、陽極液25
は陽極室23へ入り、気液分離器17で塩素ガス27を
分離した後外部へ排出され、陰極液26は陰極室24と
濃縮水循環タンク13の間を循環する。
To explain the operation of this device, the pumped raw water 19 is divided into desalinated water and concentrated water, as in the conventional device, and a circulation tank 12 and a concentrated water circulation tank 13, respectively.
supplied to The raw water 19 supplied to the circulation tank 12 is circulated through the electrodialysis tank 11 by the circulation pump 15 to be desalinated, becomes fresh water 22, and is sent to the fresh water tank 18. On the other hand, the raw water supplied to the concentrated water tank 13 is sucked by the concentrated water circulation pump 16, and is further supplied to the anolyte 25 and the concentrated water 21.
, catholyte 26, and electricity is supplied to the anode chamber 23, concentration chamber, and cathode chamber 24 of the dialysis tank 11, respectively. The concentrated water 21 is circulated through the electrodialysis tank 11 and concentrated, and the anolyte 25
enters the anode chamber 23, separates chlorine gas 27 in the gas-liquid separator 17, and then discharges it to the outside, and the catholyte 26 circulates between the cathode chamber 24 and the concentrated water circulation tank 13.

気液分雅器17で陽極液25中に含まれた塩素ガス27
は分離され塩素ガス注入装置30により、生成淡水22
へ供給される。塩素ガス27の供給量は淡水22中の塩
素ガス濃度を塩素濃度計28によって検出し、適量の塩
素ガス27を流量調整弁29によって調整する。なお気
液分離器17は上部にガス室を有するシェル構造である
Chlorine gas 27 contained in the anolyte 25 in the gas-liquid separator 17
is separated and produced fresh water 22 by the chlorine gas injection device 30.
supplied to The supply amount of chlorine gas 27 is determined by detecting the chlorine gas concentration in fresh water 22 with a chlorine concentration meter 28, and adjusting the appropriate amount of chlorine gas 27 with a flow rate regulating valve 29. Note that the gas-liquid separator 17 has a shell structure with a gas chamber in the upper part.

本実施例によれば、電気透析槽11の陽極室23で生成
する塩素ガス27を生成淡水22の殺菌に利用できるた
め経済的な電気透析法談水化装置とすることができ、さ
らに従来装置には、殺菌のために次亜塩素酸ソーダおよ
び薬注設備として次亜塩酸ソーダタンク、薬注ポンプ等
からなる次亜塩素酸注入装置が必要であったが、これら
が不用となるという効果がある。
According to this embodiment, since the chlorine gas 27 generated in the anode chamber 23 of the electrodialysis tank 11 can be used to sterilize the fresh water 22 produced, it is possible to provide an economical electrodialysis water conversion apparatus, and furthermore, compared to the conventional method. , which required sodium hypochlorite for sterilization and a hypochlorous acid injection device consisting of a sodium hypochlorite tank, chemical injection pump, etc. as chemical injection equipment, but this has the effect of eliminating the need for these. be.

本発明の他の実施例を第2図により説明する。Another embodiment of the present invention will be described with reference to FIG.

第2図は本実施例のフローを示す、第1図に示す実施例
に対して水酸化ナトリウム水溶液タンク31、水酸化ナ
トリウムポンプ32、pH計34から成る水酸化ナトリ
ウム注入装置35が淡水22ラインに追加され、PH計
34が淡水22のpH値を検出し、所定のpH値となる
よう水酸化ナトリウムを注入する1本実施例は、生成淡
水のpH値が7以上12以下の範囲と6るよう生成淡水
に水酸化ナトリウム等のアルカリ性物質を注入する。こ
れにより生成淡水への塩素ガスの吸収速度を増大させ殺
菌を素早く行なわせる効果がある。
FIG. 2 shows the flow of this embodiment. In contrast to the embodiment shown in FIG. In this embodiment, the pH meter 34 detects the pH value of the fresh water 22 and injects sodium hydroxide to reach a predetermined pH value. An alkaline substance such as sodium hydroxide is injected into the fresh water produced. This has the effect of increasing the rate of absorption of chlorine gas into the produced fresh water and speeding up sterilization.

この場合の反応は次に示すように次亜塩素酸ソーダの生
成反応である。従って従来装置で薬注に使用していた次
亜塩素酸ソーダが本電気透析法淡水化装置で生成できる
効果がある。
The reaction in this case is a reaction for producing sodium hypochlorite as shown below. Therefore, the present electrodialysis desalination device has the advantage that sodium hypochlorite, which was used for chemical injection in conventional devices, can be produced.

2NaOH+Cfl、=NaOCQ+NaCQ+HzO
〔発明の効果〕 本発明によれば、電気透析槽の陽極室から発生する塩素
ガスを用いて生成淡水を殺菌できるため1、従来装置に
使用されていた次亜塩素酸ソーダおよび同注入装置が不
用となり、これにより経済的な電″気透析法淡水化装置
を提供できる効果がある。
2NaOH+Cfl,=NaOCQ+NaCQ+HzO
[Effects of the Invention] According to the present invention, the produced fresh water can be sterilized using the chlorine gas generated from the anode chamber of the electrodialysis tank. This has the effect of providing an economical electrodialysis desalination apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電気透析法談水化装置の一実施例
を示すフロー図、第2図は本発明による電気透析法談水
化装置の他の実施例を示すフロー図、第3図は従来の電
気透析法談水化装置の一例を示すフロー図である。 11・・・電気透析槽、  17・・・気液分離器、2
2・・・淡水、     23・・・陽極室、27・・
・塩素ガス、  30・・・塩素ガス注入装置、35・
・・水酸化ナトリウム注入装置。
FIG. 1 is a flow diagram showing one embodiment of the electrodialysis hydration device according to the present invention, FIG. 2 is a flow diagram showing another embodiment of the electrodialysis hydration device according to the present invention, and FIG. 1 is a flow diagram showing an example of a conventional electrodialysis hydration device. 11... Electrodialysis tank, 17... Gas-liquid separator, 2
2...Fresh water, 23...Anode chamber, 27...
・Chlorine gas, 30...Chlorine gas injection device, 35・
...Sodium hydroxide injection device.

Claims (2)

【特許請求の範囲】[Claims] (1)陽極室を有する電気透析槽により電気透析を行う
電気透析法淡水化装置において、前記陽極室で生成する
陽極液を気液分離する気液分離器と、該気液分離器によ
り分離された塩素ガスを前記電気透析槽により生成され
た淡水に注入する塩素ガス注入装置を備えたことを特徴
とする電気透析法淡水化装置。
(1) In an electrodialysis desalination device that performs electrodialysis using an electrodialysis tank having an anode chamber, a gas-liquid separator separates the anolyte produced in the anode chamber into gas and liquid; An electrodialysis desalination apparatus characterized by comprising a chlorine gas injection device for injecting chlorine gas into the fresh water produced by the electrodialysis tank.
(2)前記電気透析槽により生成された淡水に、アルカ
リ性物質を注入するアルカリ性物質注入装置を備えたこ
とを特徴とする特許請求の範囲第1項記載の淡水化装置
(2) The desalination apparatus according to claim 1, further comprising an alkaline substance injection device for injecting an alkaline substance into the fresh water produced by the electrodialysis tank.
JP30579986A 1986-12-22 1986-12-22 Desalting equipment by electrodialysis method Pending JPS63158104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30579986A JPS63158104A (en) 1986-12-22 1986-12-22 Desalting equipment by electrodialysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30579986A JPS63158104A (en) 1986-12-22 1986-12-22 Desalting equipment by electrodialysis method

Publications (1)

Publication Number Publication Date
JPS63158104A true JPS63158104A (en) 1988-07-01

Family

ID=17949498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30579986A Pending JPS63158104A (en) 1986-12-22 1986-12-22 Desalting equipment by electrodialysis method

Country Status (1)

Country Link
JP (1) JPS63158104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126744A (en) * 2000-10-19 2002-05-08 Ngk Insulators Ltd Method for sterilizing electric reproduction type deionizing pure water device
JP4833077B2 (en) * 2003-11-13 2011-12-07 シ−メンス ウォーター テクノロジーズ ホールディング コープ Water treatment method
CN106749743A (en) * 2017-01-23 2017-05-31 同舟纵横(厦门)流体技术有限公司 A kind of celestial grass Polyose extraction system and extraction process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126744A (en) * 2000-10-19 2002-05-08 Ngk Insulators Ltd Method for sterilizing electric reproduction type deionizing pure water device
JP4480251B2 (en) * 2000-10-19 2010-06-16 日本碍子株式会社 Disinfection of electric regenerative deionized water purifier
JP4833077B2 (en) * 2003-11-13 2011-12-07 シ−メンス ウォーター テクノロジーズ ホールディング コープ Water treatment method
CN106749743A (en) * 2017-01-23 2017-05-31 同舟纵横(厦门)流体技术有限公司 A kind of celestial grass Polyose extraction system and extraction process

Similar Documents

Publication Publication Date Title
EP0826636B1 (en) Water containing dissolved electrolytic hydrogen, and method and apparatus of production thereof
JPH09192661A (en) Ultrapure water producing device
RU2142917C1 (en) Method and device for electrochemical treatment of water
US20080003507A1 (en) Formulation Of Electrolyte Solutions For Electrochemical Chlorine Dioxide Generators
CN106315935B (en) Water quality desalting plant and the method for desalinating water quality using the device
RU2358911C2 (en) Electrodialytic compositions and method of water solutions treatment with electrodialysis
CN111410344A (en) High-salinity wastewater bipolar membrane electrodialysis device, treatment system and treatment method
JP3137831B2 (en) Membrane processing equipment
CN109248565B (en) Saline water recovery system based on bipolar membrane
KR20200044904A (en) Apparatus for obtaining electrolysis products from alkali metal chloride solutions
JPS63158104A (en) Desalting equipment by electrodialysis method
CN109475674B (en) Method for cleaning dialysate production device
JP3484329B2 (en) Deionized water production equipment
TW200426112A (en) Method and apparatus for generating electrolytic gas
JP2003039071A (en) Water treatment apparatus and water treatment method
JPH07313098A (en) Production of low salt soysauce and apparatus therefor
KR100625083B1 (en) An ion exchange membrane electrolyzer for the ph-control with only one discharge of ph-controlled electrolyte solution
TWI620718B (en) Wastewater decoloring device of electrocatalyst and electrodialysis
JPH06206074A (en) Method and apparatus for producing sterilizing water
JPH0938655A (en) Electrolytic hypochlorous bactericide water containing ozone, its production and device therefor
JPH1057960A (en) Generating method of electrolytic water and device therefor
JP3352731B2 (en) Pure water production method
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
KR102476542B1 (en) A system for generating sodium hypochlorite
RU2252919C1 (en) Drinking water electric-activation process