JP3938369B2 - Variable speed water supply system - Google Patents

Variable speed water supply system Download PDF

Info

Publication number
JP3938369B2
JP3938369B2 JP2003336009A JP2003336009A JP3938369B2 JP 3938369 B2 JP3938369 B2 JP 3938369B2 JP 2003336009 A JP2003336009 A JP 2003336009A JP 2003336009 A JP2003336009 A JP 2003336009A JP 3938369 B2 JP3938369 B2 JP 3938369B2
Authority
JP
Japan
Prior art keywords
pump
variable speed
water supply
rotational speed
pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003336009A
Other languages
Japanese (ja)
Other versions
JP2004011653A (en
Inventor
忠一 曽根
勉 高田
友治 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003336009A priority Critical patent/JP3938369B2/en
Publication of JP2004011653A publication Critical patent/JP2004011653A/en
Application granted granted Critical
Publication of JP3938369B2 publication Critical patent/JP3938369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/029Stopping of pumps, or operating valves, on occurrence of unwanted conditions for pumps operating in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、2台以上のポンプを並列運転可能な可変速給水装置に係り、特に並列運転するポンプの追加・解列時の吐出圧力の変動を低減することができる制御系の構成に関する。   The present invention relates to a variable speed water supply apparatus capable of operating two or more pumps in parallel, and more particularly to a control system configuration capable of reducing fluctuations in discharge pressure when adding / disconnecting pumps operating in parallel.

図1は、2台のポンプを備えた可変速給水装置のシステム概要を示す。例えば、水道の本管である配水管11には流入管12が接続され、2台のポンプ13a,13bがこの流入管12に接続されている。流入管12には、量水器(図示せず)が接続されて、使用水量が計測される。各ポンプ13a,13bの吐出側には、末端給水機器14へと連結された吐出管15が接続されている。   FIG. 1 shows a system outline of a variable speed water supply apparatus having two pumps. For example, an inflow pipe 12 is connected to a water distribution pipe 11 that is a main pipe of water supply, and two pumps 13 a and 13 b are connected to the inflow pipe 12. A water meter (not shown) is connected to the inflow pipe 12 to measure the amount of water used. A discharge pipe 15 connected to the terminal water supply device 14 is connected to the discharge side of each pump 13a, 13b.

前記吐出管15には、圧力タンク16が接続されている。また、ポンプ13a,13bの吐出側には、吐出管15におけるポンプの吐出圧力を検出してこの圧力信号を制御手段17に送る吐出圧力検出器18が備えられている。
このポンプ13a,13bは、それぞれ例えば三相200Vの商用電源に接続された周波数・電圧変換装置(インバータ)を備えた電動機からなる可変速手段19a,19bを備え、可変速で駆動される。
A pressure tank 16 is connected to the discharge pipe 15. Further, on the discharge side of the pumps 13a and 13b, a discharge pressure detector 18 for detecting the discharge pressure of the pump in the discharge pipe 15 and sending this pressure signal to the control means 17 is provided.
Each of the pumps 13a and 13b includes variable speed means 19a and 19b made of an electric motor including a frequency / voltage converter (inverter) connected to, for example, a three-phase 200V commercial power supply, and is driven at a variable speed.

前記制御手段17は、吐出圧力検出器18の信号に基づき、各可変速手段19a,19bに信号を送り、各ポンプ13a,13bの回転速度を所定の制御目標圧力となるようにフィードバック制御する。この速度制御は、通常制御の安定性等からPI(比例積分)制御が用いられている。   Based on the signal from the discharge pressure detector 18, the control means 17 sends a signal to each variable speed means 19a, 19b, and performs feedback control so that the rotational speed of each pump 13a, 13b becomes a predetermined control target pressure. For this speed control, PI (proportional integral) control is used in view of stability of normal control.

更に、前記吐出管15には、各ポンプ13a,13bの吐出側に位置して、例えばフロースイッチからなる少水量検出手段20a,20bと、逆流防止用の逆止弁21a,21bとがそれぞれ介装され、前記各少水量検出手段20a,20bからの信号が、前記制御手段17に送られるようになっている。少水量検出手段により、需要家側14で水の使用量がほとんど無い状態が検出されると、ポンプの締切運転を防止し省エネルギ化を図るため、ポンプ停止等の制御が制御手段17により行なわれる。   Further, the discharge pipe 15 is provided with small water amount detection means 20a, 20b made of, for example, a flow switch and check valves 21a, 21b for preventing backflow, which are located on the discharge side of the pumps 13a, 13b. The signals from the small water quantity detection means 20a and 20b are sent to the control means 17. When the consumer 14 detects that there is almost no water usage on the customer side 14, the control means 17 performs control such as stopping the pump in order to prevent pump shut-off and save energy. It is.

ところで2台のポンプ13a,13bは、送水水量に応じて1台又は2台で制御目標圧力を保つように回転速度が制御されて運転される。使用水量が少ない時は1台のみが運転され、使用水量が増加し、ポンプ1台の運転では足りず制御目標圧力を維持できなくなった時、即ち運転中の1台のポンプ13aの回転速度が最高回転速度に達した時に、2台目のポンプ13bの運転を開始(追加投入)する。そして、その後、需要家側での使用水量が少なくなり、ポンプ13bの回転速度が低下して、1台のポンプで制御目標圧力を維持できるようになった時に、2台の内の1台のポンプ13a又は13bを解列停止するようになっている。   By the way, the two pumps 13a and 13b are operated with the rotation speed controlled so that the control target pressure is maintained by one or two pumps according to the amount of water to be fed. When the amount of water used is small, only one unit is operated, the amount of water used increases, and when the control target pressure cannot be maintained by the operation of one pump, that is, the rotational speed of one pump 13a during operation is When the maximum rotational speed is reached, the operation of the second pump 13b is started (added). After that, when the amount of water used on the consumer side decreases, the rotational speed of the pump 13b decreases, and the control target pressure can be maintained with one pump, one of the two The pump 13a or 13b is stopped from being disconnected.

図7はポンプの追加投入時の制御フローを示す。運転中の1台目のポンプ13aに対して、2台目のポンプ13bの追加投入が決定されると、目標圧力値(SV)と実際圧力値(PV)との偏差(EN)が算出され、この偏差によりPI演算が行われた後、この演算結果(DMV)が前回の回転速度指令(MV)に加えられて新たな回転速度指令MVが出力される。この時の前回の回転速度指令(MV)は、運転中のポンプは、最高回転速度で運転しているので、追加投入されるポンプに対する速度指令も最高回転速度が出力される。   FIG. 7 shows a control flow when the pump is additionally turned on. When it is determined that the second pump 13b is additionally charged with respect to the first pump 13a in operation, the deviation (EN) between the target pressure value (SV) and the actual pressure value (PV) is calculated. After the PI calculation is performed based on this deviation, the calculation result (DMV) is added to the previous rotation speed command (MV) and a new rotation speed command MV is output. As for the previous rotational speed command (MV) at this time, since the pump being operated is operating at the maximum rotational speed, the maximum rotational speed is also output as the speed command for the pump that is additionally supplied.

図8は、追加投入時のポンプ吐出圧力の変動の状況を示す。図示するように追加投入時に高い回転速度が出力され、吐出圧力が一瞬上昇した後に下ってくる現象が発生する。   FIG. 8 shows the state of fluctuations in the pump discharge pressure at the time of additional charging. As shown in the figure, a high rotational speed is output at the time of additional charging, and a phenomenon occurs that the discharge pressure rises for a moment and then falls.

この場合、並列運転時は、1台のポンプを最高回転速度付近で定速運転し、他の1台のポンプを送水水量に応じて可変速運転する場合と、2台のポンプを揃速で可変速運転する場合とが考えられる。その後、使用水量が減少すると2台の内1台のポンプを解列停止する。その解列動作の条件は、使用水量が少なくなり可変速ポンプの回転速度が低下して、所定の回転速度に達するとポンプ1台が解列停止する。   In this case, during parallel operation, one pump is operated at a constant speed near the maximum rotation speed, and the other pump is operated at a variable speed according to the amount of water supplied, and the two pumps are operated at a uniform speed. The case of variable speed operation is considered. Thereafter, when the amount of water used decreases, one of the two pumps is disconnected. The condition of the disconnection operation is that the amount of water used is reduced, the rotational speed of the variable speed pump is reduced, and one pump is stopped when the predetermined rotational speed is reached.

図9はポンプの解列停止時の制御フローを示す。運転中の2台のポンプ13a,13bに対して、1台のポンプ13bの解列が決定されると、目標圧力値(SV)と実際圧力値(PV)との偏差(EN)が算出され、この偏差によりPI演算が行われた後、この演算結果(DMV)が前回の回転速度指令(MV)に加えられて新たな回転速度指令MVが出力される。この時の前回の回転速度指令(MV)は、運転中のポンプは、最低回転速度で運転しているので、運転が継続されるポンプ13aに対する速度指令も最低回転速度が出力される。   FIG. 9 shows a control flow when the pump is stopped. When the disconnection of one pump 13b is determined for the two pumps 13a and 13b in operation, a deviation (EN) between the target pressure value (SV) and the actual pressure value (PV) is calculated. After the PI calculation is performed based on this deviation, the calculation result (DMV) is added to the previous rotation speed command (MV) and a new rotation speed command MV is output. As for the previous rotational speed command (MV) at this time, since the pump being operated is operating at the minimum rotational speed, the minimum rotational speed is also output as the speed command for the pump 13a to be continuously operated.

図10は、解列停止時のポンプ吐出圧力の変動の状況を示す。解列時に最低回転速度が出力されその後上昇するので、図示するように吐出圧力が一瞬下降した後に上昇してくる現象が発生する。   FIG. 10 shows the state of fluctuations in the pump discharge pressure when the disconnection is stopped. Since the minimum rotation speed is output at the time of disconnection and then increases, a phenomenon occurs in which the discharge pressure increases after a momentary decrease as shown in the figure.

従来では、ポンプの追加又は解列動作を行った時の圧力変動の発生をフォーシング制御で避けることが行われていた。このフォーシング制御は、ポンプの追加動作時には、運転を継続するポンプの回転速度を下げつつ他のポンプの追加投入を行うものであり、ポンプの解列動作時には、運転を継続するポンプの回転速度を上げつつ、停止するポンプの解列を行うものである。   Conventionally, forcing control avoids the occurrence of pressure fluctuations when a pump is added or disconnected. In this forcing control, during the additional operation of the pump, other pumps are added while lowering the rotational speed of the pump that continues operation, and during the parallel operation of the pump, the rotational speed of the pump that continues operation The pump to be stopped is disengaged while raising the pressure.

フォーシング制御による圧力変動の抑制は、そのタイミングと負荷状況により左右され、設定調整が非常に難しい。つまり、フォーシング動作を先にスタートさせるが、早すぎると圧力が低下してから上昇する、又は上昇してから低下するといった圧力変動幅が逆に大きくなるといった問題がある。   Suppression of pressure fluctuation by forcing control depends on the timing and load status, and setting adjustment is very difficult. In other words, the forcing operation is started first, but if it is too early, there is a problem that the pressure fluctuation range increases such that the pressure decreases after rising or decreases after rising.

本発明は、上述した事情に鑑みて為されたもので、ポンプ追加投入時や解列停止時に過渡的に吐出圧力が変動してしまうことを、フォーシング制御といった複雑で困難な制御を行うことなく、簡単な制御で抑制できるようにした可変速給水装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and performs complicated and difficult control such as forcing control that the discharge pressure fluctuates transiently when the pump is additionally turned on or stopped. An object of the present invention is to provide a variable speed water supply apparatus that can be suppressed by simple control.

本発明の可変速給水装置は、電動機により回転駆動される複数のポンプと、該ポンプの吐出側に設けた逆止弁と、該逆止弁の下流側に設けた圧力検出器と、前記ポンプを可変速駆動する可変速手段と、前記ポンプを可変速に運転制御すると共に追加解列する制御手段とを備えた可変速給水装置において、前記制御手段は少なくとも1台のポンプ運転時に他の停止中のポンプを追加投入するときに、追加したポンプの回転速度として該ポンプ締切時の制御目標圧力に対応した回転速度を出力することを特徴とする。   The variable speed water supply apparatus of the present invention includes a plurality of pumps that are rotationally driven by an electric motor, a check valve provided on the discharge side of the pump, a pressure detector provided on the downstream side of the check valve, and the pump In a variable speed water supply apparatus comprising: variable speed means for driving the engine at a variable speed; and control means for controlling the operation of the pump to a variable speed and additionally disconnecting the pump, the control means is stopped when at least one pump is operated. When an additional pump is added, a rotation speed corresponding to the control target pressure at the time of pump closing is output as the rotation speed of the added pump.

本発明の他の可変速給水装置は、電動機により回転駆動される複数のポンプと、該ポンプの吐出側に設けた逆止弁と、該逆止弁の下流側に設けた圧力検出器と、前記ポンプを可変速駆動する可変速手段と、前記ポンプを可変速に運転制御すると共に追加解列する制御手段とを備えた可変速給水装置において、前記制御手段は少なくとも1台のポンプ運転時に他の停止中のポンプを追加投入するときに、追加したポンプの回転速度として該ポンプが締切で運転するような状態になる低い回転速度を出力することを特徴とする。   Another variable speed water supply apparatus of the present invention includes a plurality of pumps that are rotationally driven by an electric motor, a check valve provided on the discharge side of the pump, a pressure detector provided on the downstream side of the check valve, In a variable speed water supply apparatus comprising: variable speed means for driving the pump at a variable speed; and control means for controlling the operation of the pump at a variable speed and additionally disconnecting the pump. When an additional pump is stopped, the rotation speed of the added pump is output as a low rotation speed at which the pump operates in a deadline.

このように構成した本発明によれば、追加投入されるポンプは、その投入時に吐出圧力の変動に影響のない所定の低い回転速度出力からPI制御が開始される。これによって、追加投入時の回転速度出力の偏差が小さくなり、吐出圧力が一瞬上昇してしまうことを防止することができる。
また、本発明によれば、1台のポンプを解列した後に運転を継続するポンプは、その解列時に最高回転速度付近の回転速度出力からPI制御が開始される。これによって、運転を継続するポンプのPI制御が応答遅れによって吐出圧力が一時的に低下してしまうことを防止することができる。
According to the present invention configured as above, PI control is started from a predetermined low rotational speed output that does not affect the fluctuation of the discharge pressure when the pump is additionally charged. Thereby, the deviation of the rotational speed output at the time of additional charging becomes small, and it is possible to prevent the discharge pressure from rising for a moment.
Further, according to the present invention, a PI pump that continues operation after disconnecting one pump starts PI control from a rotational speed output near the maximum rotational speed when the pump is disconnected. As a result, it is possible to prevent the discharge pressure from temporarily decreasing due to a response delay in the PI control of the pump that continues to operate.

また、前記複数のポンプは配水管に接続された流入管に接続されていることを特徴とする。
また、推定末端圧力一定制御を行うことを特徴とする。
また、前記可変速手段は前記複数のポンプそれぞれを可変速駆動することを特徴とする。
また、前記ポンプは3台以上あることを特徴とする。
The plurality of pumps may be connected to an inflow pipe connected to a water pipe.
In addition, the estimated terminal pressure is controlled constant.
The variable speed means drives each of the plurality of pumps at a variable speed.
Further, there are three or more pumps.

本発明によれば、フォーシング制御といった複雑で困難な制御を行うことなく、ポンプ追加運転時や解列停止時に過渡的に吐出圧力が変動してしまうことを簡単な制御で抑制することができる。従って、本発明の可変速給水装置によれば安定に圧力変動の無い水を供給できる。   According to the present invention, without performing complicated and difficult control such as forcing control, it is possible to suppress, with simple control, that the discharge pressure fluctuates transiently at the time of additional pump operation or when the disconnection is stopped. . Therefore, according to the variable speed water supply apparatus of the present invention, it is possible to stably supply water having no pressure fluctuation.

以下、本発明の実施例について図面を参照しながら説明する。
なお、以下の各実施例におけるポンプ運転制御の前提となるシステムの概要は、図1に示す通りである。配水管11に接続された流入管12と、この流入管12に接続された複数のポンプ13a,13bと、この各ポンプ13a,13bの吐出側に接続され末端給水機器14へと連結された吐出管15と、この吐出管15に設けられ前記ポンプ13a,13bの吐出圧力を検出する吐出圧力検出器18と、前記各ポンプ13a,13bをそれぞれ可変速駆動する可変速手段19a,19bと、前記各ポンプ13a,13bをPI制御で可変速に運転制御すると共に追加解列する制御手段17とが備えられている。
Embodiments of the present invention will be described below with reference to the drawings.
In addition, the outline | summary of the system used as the premise of the pump operation control in each following Example is as showing in FIG. An inflow pipe 12 connected to the water distribution pipe 11, a plurality of pumps 13a, 13b connected to the inflow pipe 12, and a discharge connected to the end water supply device 14 connected to the discharge side of each of the pumps 13a, 13b A pipe 15; a discharge pressure detector 18 for detecting the discharge pressure of the pumps 13a and 13b provided in the discharge pipe 15; variable speed means 19a and 19b for driving the pumps 13a and 13b at variable speeds; Control means 17 is provided for controlling the operation of each pump 13a, 13b at a variable speed by PI control and additionally disconnecting.

更に、前記吐出管15には、各ポンプ13a,13bの吐出側に位置して少水量検出手段20a,20bと逆止弁21a,21bとが介装され、この各少水量検出手段20a,20bからの信号が、前記制御手段17に送られるようになっている。   Further, the discharge pipe 15 is provided with small water amount detection means 20a, 20b and check valves 21a, 21b located on the discharge side of the respective pumps 13a, 13b, and the small water amount detection means 20a, 20b. Is sent to the control means 17.

図2乃至図4は、本発明の第1実施例を示すもので、図2は、制御フロー図、図3は、ポンプ締切時圧力と回転速度との関係を示す図、図4は、圧力変動測定結果を示すグラフである。   2 to 4 show a first embodiment of the present invention. FIG. 2 is a control flow diagram, FIG. 3 is a diagram showing a relationship between a pump shut-off pressure and a rotational speed, and FIG. It is a graph which shows a fluctuation | variation measurement result.

この実施例は、前記図1に示す制御手段17に、1台のポンプ13aの運転時に他の停止中のポンプ13bを追加運転させる時に、1台のポンプ13aの回転速度を固定し、他のポンプ13bのPI制御を所定の回転速度出力から開始する手段を備えたものである。
この実施例では、追加運転するポンプ13bの所定の回転速度出力をポンプ締切時の圧力と回転速度との関係から、締切時の制御目標圧力に対応した回転速度に設定するようにしている。
In this embodiment, the control means 17 shown in FIG. 1 fixes the rotational speed of one pump 13a when the other pump 13b is additionally operated when one pump 13a is operated. A means for starting PI control of the pump 13b from a predetermined rotational speed output is provided.
In this embodiment, the predetermined rotational speed output of the pump 13b to be additionally operated is set to a rotational speed corresponding to the control target pressure at the shut-off time from the relationship between the pressure and the rotational speed at the pump shut-off time.

即ち、1台のポンプ13aが可変速で運転中に使用水量が増加し、この回転速度が最高回転速度に達して所定時間が経過すると、送水水量を補うため、図2に示すように、他のポンプ13bの追加始動を決定し、1台目のポンプ13aの回転速度を固定する。   That is, when one pump 13a is operating at a variable speed, the amount of water used increases, and when this rotational speed reaches the maximum rotational speed and a predetermined time elapses, another amount of water is supplied as shown in FIG. The additional start of the pump 13b is determined, and the rotational speed of the first pump 13a is fixed.

そして、追加運転するポンプ13bを可変速にPI制御するのであるが、この時、図2に示すように、追加後1回目の計算の時には、回転速度指令MVに所定回転速度HzBを代入し、この回転速度を出力して、追加ポンプ13bのPI制御を行う。その後、追加後2回目以降は、従来例と同様に、目標値(SV)と実際値(PV)との偏差(EN)を算出し、この偏差によりPI演算を行った後、この演算結果(DMV)を前回の回転速度指令(MV)に加えて新たな回転速度指令MVを出力する。   Then, the additional operation pump 13b is PI-controlled at a variable speed. At this time, as shown in FIG. 2, at the time of the first calculation after the addition, a predetermined rotational speed HzB is substituted into the rotational speed command MV, This rotational speed is output and PI control of the additional pump 13b is performed. Thereafter, after the second addition, the deviation (EN) between the target value (SV) and the actual value (PV) is calculated in the same manner as in the conventional example, and the PI calculation is performed based on this deviation. DMV) is added to the previous rotational speed command (MV), and a new rotational speed command MV is output.

ここに、前記ポンプ13bの最初の出力である所定回転速度HzVは、ポンプ始動直後の圧力上昇に影響がないように決定されるのであり、図3に示すように、ポンプ締切時(流量0)の制御目標カーブ上の目標圧力(PB)を発生させる最低回転速度(NB)としている。   Here, the predetermined rotational speed HzV, which is the first output of the pump 13b, is determined so as not to affect the pressure increase immediately after the pump is started, and as shown in FIG. 3, when the pump is closed (flow rate 0). The minimum rotational speed (NB) that generates the target pressure (PB) on the control target curve is set.

このように構成することにより、追加するポンプ13bのPI制御を、例えば、ポンプが締切(フロースイッチが閉じる状態)で運転する状態になるような吐出圧に影響がない低い回転速度の出力から開始して、過渡的な吐出圧力の上昇を抑制することができる。   By configuring in this way, the PI control of the pump 13b to be added is started, for example, from an output with a low rotational speed that does not affect the discharge pressure so that the pump is operated in a deadline (the flow switch is closed). Thus, a transient increase in the discharge pressure can be suppressed.

この実施例の圧力変動測定結果を図4に示す。
この測定結果から明らかなように、本実施例によれば、ポンプの追加運転時に吐出圧力が上昇してしまったり、応答遅れが生じてしまうことを防止して、常時安定した吐出圧力を保つことができる。
The pressure fluctuation measurement result of this example is shown in FIG.
As is apparent from this measurement result, according to the present embodiment, it is possible to prevent the discharge pressure from increasing during the additional operation of the pump or to delay the response, and to maintain a stable discharge pressure at all times. Can do.

なお、ポンプ締切時の吐出圧力と回転速度との関係は、予めデータテーブルとして記憶しておいてもよく、ポンプ試運転時などに自動的に測定して記憶するようにしてもよい。
また、圧力制御方法としては、吐出圧力一定制御または需要先の圧力を一定とする推定末端圧力一定制御のどちらを採用しても良い。
The relationship between the discharge pressure and the rotation speed when the pump is shut off may be stored in advance as a data table, or may be automatically measured and stored during a pump trial operation or the like.
Further, as the pressure control method, either the discharge pressure constant control or the estimated terminal pressure constant control in which the demand destination pressure is constant may be adopted.

図5及び図6は、第2実施例であるポンプの解列の場合を示すもので、図5は、制御フロー図、図6は、その圧力変動の測定結果を示すグラフである。
この実施例は、前記図1に示す制御手段17に、運転中の複数のポンプの内の1台を解列停止した時に、運転中の他のポンプのPI制御を該ポンプの最高回転速度付近の回転速度出力から開始する手段を備えたものである。
5 and 6 show the case of disengagement of the pump according to the second embodiment, FIG. 5 is a control flow diagram, and FIG. 6 is a graph showing the measurement result of the pressure fluctuation.
In this embodiment, when one of a plurality of operating pumps is disconnected from the control means 17 shown in FIG. 1, PI control of other operating pumps is performed near the maximum rotational speed of the pumps. Means for starting from the output of the rotational speed.

即ち、2台のポンプ13a,13bの並列運転に際して、1台目のポンプ13aを固定回転速度で運転し、2台目のポンプ13bを可変速で運転させておく。そして、この状態から使用水量が少なくなり、2台目のポンプ13bの回転速度が減少し、所定の回転速度に達した時、図5に示すように、ポンプ13aの解列停止の決定を行う。この時、運転を継続する解列直前の1台目のポンプ13aは、最高回転速度またはそれに近い速度に固定して運転を行っている。   That is, when the two pumps 13a and 13b are operated in parallel, the first pump 13a is operated at a fixed rotational speed, and the second pump 13b is operated at a variable speed. Then, when the amount of water used decreases from this state and the rotational speed of the second pump 13b decreases and reaches a predetermined rotational speed, as shown in FIG. 5, it is decided to stop the disconnection of the pump 13a. . At this time, the first pump 13a immediately before the disconnection to continue the operation is operated at a maximum rotational speed or a speed close thereto.

そして、ポンプ13bを解列停止するとともに、ポンプ13aを可変速にPI制御しつつその運転を継続する。この時、図5に示すように、解列後1回目の計算の時には、回転速度指令MVに最高回転速度を代入し、この回転速度を出力して、ポンプ13aのPI制御を行う。その後、解列後2回目以降は、従来例と同様に、目標値(SV)と実際値(PV)との偏差(EN)を算出し、この偏差によりPI演算を行った後、この演算結果(DMV)を前回の回転速度指令(MV)に加えて新たな回転速度指令MVを出力しつつ回転速度制御を行うようになっている。   Then, the pump 13b is disconnected and stopped, and the operation is continued while PI-controlling the pump 13a to a variable speed. At this time, as shown in FIG. 5, at the time of the first calculation after separation, the maximum rotational speed is substituted into the rotational speed command MV, and this rotational speed is output to perform PI control of the pump 13a. After that, after the second time, the deviation (EN) between the target value (SV) and the actual value (PV) is calculated and the PI calculation is performed based on this deviation, as in the conventional example. (DMV) is added to the previous rotational speed command (MV) and the rotational speed control is performed while outputting a new rotational speed command MV.

このように構成することにより、運転を継続するポンプ13aの回転速度を、実際に必要な回転速度と近い出力とするため、速やかにPI制御で追従して必要回転速度になり、応答遅れによる圧力の一時的低下を防止することができる。
この実施例の圧力変動測定結果を図6に示す。この測定結果から明らかなように、本実施例によれば、並列運転中の1台のポンプの解列停止時に、吐出圧力が一時的に低下してしまうことを防止して、常時安定した吐出圧力を保つことができる。
By configuring in this way, the rotational speed of the pump 13a that continues to operate is set to an output that is close to the actually required rotational speed. Can be prevented temporarily.
FIG. 6 shows the pressure fluctuation measurement result of this example. As is apparent from this measurement result, according to the present embodiment, when one of the pumps in parallel operation is stopped from being disconnected, the discharge pressure is prevented from temporarily decreasing, and the discharge is always stable. The pressure can be kept.

なお、この実施例では、解列後の1回目の計算の時に、回転速度指令MVに最高回転速度を代入しているが、この最高回転速度に近い値を代入してもよく、システムの個別の状況に応じて適宣決定すればよい。   In this embodiment, the maximum rotation speed is substituted for the rotation speed command MV at the first calculation after the separation, but a value close to this maximum rotation speed may be substituted. The decision should be made according to the situation.

尚、上記実施例では1台のポンプの解列停止前に、運転を継続するポンプを最大回転速度近くで運転していたが、揃速で運転していてもよい。この場合は、解列直前に運転を継続するポンプの回転速度が低下しているので、より効果的に吐出圧力の変動を抑制することができる。   In the above-described embodiment, the pump to be operated is operated near the maximum rotation speed before the disconnection of one pump is stopped, but it may be operated at a uniform speed. In this case, since the rotational speed of the pump that continues to operate immediately before the disconnection is reduced, the fluctuation of the discharge pressure can be more effectively suppressed.

また、上記各実施例においては、2台のポンプを備えた可変速給水装置に適用した例を示しているが、3台以上のポンプを備えた可変速給水装置にも同様に適用できることは勿論である。また、上記各実施例は水道の本管等に直結した可変速給水装置の例について説明したが、貯水槽等に一旦水を貯留して需要先に供給する可変速給水装置についても同様に適用できることも、勿論のことである。   Moreover, in each said Example, although the example applied to the variable speed water supply apparatus provided with two pumps is shown, of course, it can apply similarly to the variable speed water supply apparatus provided with three or more pumps. It is. Moreover, although each said Example demonstrated the example of the variable speed water supply apparatus directly connected to the mains etc. of water supply, it applies similarly to the variable speed water supply apparatus which stores water once in a water tank etc. and supplies it to a demand destination. Of course, it can be done.

可変速給水装置のシステム構成の概要図。The schematic diagram of the system configuration | structure of a variable speed water supply apparatus. 本発明の第1実施例の制御フロー図。The control flow figure of the 1st example of the present invention. ポンプ締切時圧力と回転速度との関係を示す図。The figure which shows the relationship between the pressure at the time of a pump cutoff, and rotational speed. 第1実施例の圧力変動の測定結果を示すグラフ。The graph which shows the measurement result of the pressure fluctuation of 1st Example. 本発明の第2実施例の制御フロー図。The control flowchart of 2nd Example of this invention. 同じく、圧力変動の測定結果を示すグラフ。Similarly, the graph which shows the measurement result of pressure fluctuation. 従来例のポンプ追加運転時の制御フロー図。The control flow figure at the time of the pump additional operation of a prior art example. 図7における圧力変動の測定結果を示すグラフ。The graph which shows the measurement result of the pressure fluctuation | variation in FIG. 従来例のポンプ解列停止時の制御フロー図。The control flow figure at the time of the pump disconnection stop of a prior art example. 図9における圧力変動の測定結果を示すグラフ。The graph which shows the measurement result of the pressure fluctuation | variation in FIG.

符号の説明Explanation of symbols

12 流入管
13a,13b ポンプ
14 末端給水機器
15 吐出管
16 圧力タンク
17 制御手段
18 吐出圧力検出器
19a,19b 可変速手段
20a,20b 少水量検出手段(フロースイッチ)
21a,21b 逆止弁
12 Inflow pipes 13a and 13b Pump 14 Terminal water supply equipment 15 Discharge pipe 16 Pressure tank 17 Control means 18 Discharge pressure detectors 19a and 19b Variable speed means 20a and 20b Low water quantity detection means (flow switch)
21a, 21b Check valve

Claims (6)

電動機により回転駆動される複数のポンプと、該ポンプの吐出側に設けた逆止弁と、該逆止弁の下流側に設けた圧力検出器と、前記ポンプを可変速駆動する可変速手段と、前記ポンプを可変速に運転制御すると共に追加解列する制御手段とを備えた可変速給水装置において、
前記制御手段は少なくとも1台のポンプ運転時に他の停止中のポンプを追加投入するときに、追加したポンプの回転速度として該ポンプ締切時の制御目標圧力に対応した回転速度を出力することを特徴とする可変速給水装置。
A plurality of pumps driven to rotate by an electric motor; a check valve provided on the discharge side of the pump; a pressure detector provided on the downstream side of the check valve; and variable speed means for driving the pump at a variable speed. In the variable speed water supply apparatus comprising a control means for controlling the operation of the pump at a variable speed and additionally disconnecting the pump,
The control means outputs a rotational speed corresponding to a control target pressure at the time of shutting off the pump as the rotational speed of the added pump when the other stopped pump is additionally turned on during operation of at least one pump. Variable speed water supply device.
電動機により回転駆動される複数のポンプと、該ポンプの吐出側に設けた逆止弁と、該逆止弁の下流側に設けた圧力検出器と、前記ポンプを可変速駆動する可変速手段と、前記ポンプを可変速に運転制御すると共に追加解列する制御手段とを備えた可変速給水装置において、
前記制御手段は少なくとも1台のポンプ運転時に他の停止中のポンプを追加投入するときに、追加したポンプの回転速度として該ポンプが締切で運転するような状態になる低い回転速度を出力することを特徴とする可変速給水装置。
A plurality of pumps driven to rotate by an electric motor; a check valve provided on the discharge side of the pump; a pressure detector provided on the downstream side of the check valve; and variable speed means for driving the pump at a variable speed. In the variable speed water supply apparatus comprising a control means for controlling the operation of the pump at a variable speed and additionally disconnecting the pump,
The control means outputs a low rotational speed at which the pump operates at the deadline as the rotational speed of the added pump when the other stopped pump is additionally turned on during the operation of at least one pump. A variable speed water supply device characterized by
前記複数のポンプは配水管に接続された流入管に接続されていることを特徴とする請求項1または2に記載の可変速給水装置。 The variable speed water supply apparatus according to claim 1 or 2 , wherein the plurality of pumps are connected to an inflow pipe connected to a water distribution pipe. 推定末端圧力一定制御を行うことを特徴とする請求項1乃至のいずれか1項に記載の可変速給水装置。 The variable speed water supply apparatus according to any one of claims 1 to 3 , wherein the estimated terminal pressure constant control is performed. 前記可変速手段は前記複数のポンプそれぞれを可変速駆動することを特徴とする請求項1乃至のいずれか1項に記載の可変速給水装置。 The variable speed water supply apparatus according to any one of claims 1 to 4 , wherein the variable speed means drives each of the plurality of pumps at a variable speed. 前記ポンプは3台以上あることを特徴とする請求項1乃至のいずれか1項に記載の可変速給水装置。 The variable speed water supply apparatus according to any one of claims 1 to 5 , wherein there are three or more pumps.
JP2003336009A 2003-09-26 2003-09-26 Variable speed water supply system Expired - Lifetime JP3938369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336009A JP3938369B2 (en) 2003-09-26 2003-09-26 Variable speed water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336009A JP3938369B2 (en) 2003-09-26 2003-09-26 Variable speed water supply system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04950596A Division JP3533424B2 (en) 1996-02-13 1996-02-13 Variable speed water supply

Publications (2)

Publication Number Publication Date
JP2004011653A JP2004011653A (en) 2004-01-15
JP3938369B2 true JP3938369B2 (en) 2007-06-27

Family

ID=30439138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336009A Expired - Lifetime JP3938369B2 (en) 2003-09-26 2003-09-26 Variable speed water supply system

Country Status (1)

Country Link
JP (1) JP3938369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105626495B (en) * 2014-11-28 2017-10-27 中联重科股份有限公司 Pumping equipment control method and control device and concrete pumping equipment

Also Published As

Publication number Publication date
JP2004011653A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3938369B2 (en) Variable speed water supply system
JP6421850B2 (en) Hydropower system
JP3533424B2 (en) Variable speed water supply
JP2872475B2 (en) Water supply system
JP2011163128A (en) Water volume regulating valve control device
JP5562806B2 (en) Reactor water level control system
JP4130749B2 (en) Variable speed water supply device
JP5232412B2 (en) Directly connected water supply system
JPH10299664A (en) Operation controlling device for pump
JP2004124814A (en) Flow rate estimation method for pump and its apparatus
JP6186366B2 (en) Water supply equipment
JP2009228595A (en) Variable speed feed-water pump device
JP4219613B2 (en) Variable speed water supply device
JPH09268978A (en) Variable speed water supply device
JP2018050357A (en) Hydraulic power generating system
KR101605111B1 (en) Apparatus and method of driving booster pump for saving power
JP5492459B2 (en) Pressure control device and pressure control method in water distribution network
JP2010276006A (en) Pump number control by pump shaft power
JP5154866B2 (en) Variable speed water supply device
JP7110046B2 (en) Water supply system and control method for water supply system
JP2006316687A (en) Pressure feed method of fluid, pressure feed device, fuel gas supply device and relay station of gas transportation line
JP6840005B2 (en) Water supply system and control method of water supply system
JP6450990B2 (en) Compressor equipment, gas turbine plant equipped with the same, and compressor equipment control method
JP3558443B2 (en) Variable speed water supply
JP3748727B2 (en) Operation control method for water supply device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term