JP3934791B2 - Lifting amount adjustment control device for lifting magnet - Google Patents

Lifting amount adjustment control device for lifting magnet Download PDF

Info

Publication number
JP3934791B2
JP3934791B2 JP16031998A JP16031998A JP3934791B2 JP 3934791 B2 JP3934791 B2 JP 3934791B2 JP 16031998 A JP16031998 A JP 16031998A JP 16031998 A JP16031998 A JP 16031998A JP 3934791 B2 JP3934791 B2 JP 3934791B2
Authority
JP
Japan
Prior art keywords
suction
signal
output
circuit
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16031998A
Other languages
Japanese (ja)
Other versions
JPH11349273A (en
Inventor
富男 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP16031998A priority Critical patent/JP3934791B2/en
Publication of JPH11349273A publication Critical patent/JPH11349273A/en
Application granted granted Critical
Publication of JP3934791B2 publication Critical patent/JP3934791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Load-Engaging Elements For Cranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として鋼材運搬作業でリフティングマグネットにより吸引吸着した鋼材の調整釈放を高精度に行うリフティングマグネット用吊量調整制御装置に関する。
【0002】
【従来の技術】
従来、この種のリフティングマグネット用吊量調整制御装置としては、例えば図4に示すような回路構成のものが挙げられる。
【0003】
この吊量調整制御装置は、電源供給を3相交流で行う商用3相交流電源1と、複数のサイリスタ(SCR)を整流素子として多相ブリッジ構成を成す全波整流型の吸引用サイリスタ整流器2と、同様な多相ブリッジ構成の全波整流型の釈放用サイリスタ整流器3と、磁性体に巻回された励磁コイルを有し、且つ商用3相交流電源1からの印加電圧が印加された吸引用サイリスタ整流器2からの出力直流電圧V0 の励磁電流I0 により励磁コイルが励磁されて鋼材を吸引吸着すると共に、商用3相交流電源1からの印加電圧が印加された釈放用サイリスタ整流器3からの出力直流電圧V0 の励磁電流I0 により励磁コイルの励磁が減衰されて吸引吸着した鋼材を釈放するリフティングマグネット(LM)10とを備えている。
【0004】
又、この吊量調整制御装置は、運転者の操作に応じて吸引,OFF,釈放の運転操作信号を出力する運転操作器9と、一般的なリレー等の制御機器で構成されて運転操作信号を制御に必要な操作指令信号に変換する操作指令回路8´と、操作指令信号に従ってリフティングマグネット10の吸引用点弧指令に必要な制御出力電圧(上述した出力直流電圧V0 と同じもの)を出力すべき吸引用制御信号を演算出力する吸引用点弧指令演算回路6´と、操作指令信号に従ってリフティングマグネット10の釈放用点弧指令に必要な制御出力電圧(上述した出力直流電圧V0 と同じもの)を出力すべき釈放用制御信号を演算出力する釈放用点弧指令演算回路7と、吸引用点弧指令演算回路6´からの吸引用制御信号に従って吸引用サイリスタ整流器2から所定の出力直流電圧V0 を出力させるために吸引用点弧信号を演算分配指令して出力する吸引用点弧信号回路4´と、釈放用点弧指令演算回路7からの釈放用制御信号に従って釈放用サイリスタ整流器3から所定の出力直流電圧V0 を出力させるために釈放用点弧信号を演算分配指令して出力する釈放用点弧信号回路5とを備えている。
【0005】
このうち、運転操作器9はリフティングマグネット10を懸架して運搬作業を行うクレーン等の機械の運転室に設置されるが、別例として図示したように吸引,釈放のみの運転操作信号を出力するように構成された運転操作器9´を用いることも可能である。
【0006】
図5は、この吊量調整制御装置の要部における吸引〜釈放までの一連の動作時の制御直流電圧(出力直流電圧V0 )及び電流(励磁電流I0 )の出力波形を示したタイミングチャートである。但し、図中ではオーバーシュート出力期間T11,オーバーエキサイト期間T12,定格出力期間T13から成る吸引出力期間をT1 、励磁電流I0 を減衰させる吸引回生出力期間をT2 、釈放出力期間をT3 、釈放回生出力期間をT4 としている。尚、吸引回生出力期間T2 は通常励磁電流I0 を約1秒以内で零電流まで減衰させるように設定されるもので、素早く釈放を行うようになっている。又、釈放出力期間T3 はリフティングマグネット10の励磁コイルに吸引時と逆方向の励磁電流I0 を流して吸引された鋼材を残り無く釈放するためのものである。
【0007】
ここでは、出力直流電圧V0 の波形において、吸引用点弧指令演算回路6´が期間T1 ,T2 の波形で吸引用点弧指令として演算した結果の吸引用制御信号を吸引用点弧信号回路4´へ伝送し、吸引用点弧信号回路4´が吸引用制御信号を受けて吸引用サイリスタ整流器2の各サイリスタ素子に期間T1 ,T2 の波形として出力するために商用3相交流電源1からの交流電圧に同期して所定の位相関係を有する吸引用点弧信号を演算分配指令すること、並びに釈放用点弧指令演算回路7が期間T3 ,T4 の波形で釈放用点弧指令として演算した結果の釈放用制御信号を釈放用点弧信号回路5へ伝送し、釈放用点弧信号回路5が釈放用制御信号を受けて釈放用サイリスタ整流器3の各サイリスタ素子に期間T3 ,T4 の波形として出力するために商用3相交流電源1からの交流電圧に同期して所定の位相関係を有する釈放用点弧信号を演算分配指令することを示している。
【0008】
図6は、吸引用点弧指令演算回路6´の細部構成を周辺部分を含めて示したものである。但し、ここでI部は操作指令回路8´における説明に必要な吸引用の指令部を示し、II部は吸引用点弧指令演算回路6´の説明に必要な吸引用の回路を示し、III部は吸引用点弧信号回路4´側を示し、IV部は図5中の期間T13の 制御出力電圧V0 を制御する操作指令回路8´の局部及び吸引用点弧指令演算回路6´の局部を示し、V部は図5中の期間T2 の制御出力電圧V0 を制御する操作指令回路8´の局部及び吸引用点弧指令演算回路6´の局部を示している。
【0009】
ここでは、IV部の定格出力操作回路A0 において、運転操作器9で吸引操作後、図示されない制御回路での制御ステップにより定格出力指令接点M0 が閉成して定格出力指令信号が定格出力指令受信回路B0 へ伝送される。定格出力指令受信回路B0 では定格出力指令信号が伝送されると、フォトモスリレーS0 がオン状態となり、これにより次段の定格出力点弧指令設定回路C0 が作動する。定格出力点弧指令設定回路C0 では予め上限,下限が定められた所定の閾値範囲内で定格出力点弧信号設定抵抗器R0 で任意に点弧信号レベルを設定して得られる吸引用制御信号CS を吸引用点弧信号回路4´側へ出力する。このとき、吸引回生出力用回路A1 ,B1 ,C1 は、吸引用点弧指令として吸引用制御信号CS の出力電圧を制御出力電圧V0 における期間T2 の波形となるように制御する。
【0010】
このような吊量調整制御装置では、図7に示されるように鋼材運搬作業でリフティングマグネット10により鋼材12を吸引吸着し、この後に所定の位置に運搬してから鋼材12を釈放してホッパ13内に落下投入する。この鋼材運搬作業に際しては通常鋼材12を素早く吸引吸着して所定の位置に運搬した後、素早く釈放することが要求される。
【0011】
ところで、鋼材12がスクラップ(鉄を作るための原材料)であれば、吸引吸着や釈放を素早く行うこと以外にホッパ13の投入口に吸引吸着した鋼材12を少しずつ釈放投入する必要があったり、或いは鋼材12をホッパ13でなくバケットに投入するときには吸引吸着した鋼材12をバケットに規定重量の分だけ投入する必要があるが、こうした場合には鋼材12を微量調整して釈放を行う調整釈放を要する。
【0012】
図8は、吊量調整制御装置の要部における調整釈放動作時の制御直流電圧(出力直流電圧V0 )及び電流(励磁電流I0 )の出力波形を示したタイミングチャートである。尚、この出力波形は図5中の吸引回生出力期間T2 に相当するものである。
【0013】
ここでは、運転操作器9で吸引,OFFの操作を繰り返し、励磁電流I0 を低下させて鋼材12を少しずつ釈放したときの出力波形となっており、図5中の期間T13,T2 を繰り返し出力することを示している。但し、ここでは上述したように期間T2 で素早く励磁電流I0 が減衰してしまうため、運転者が意図する調整釈放を行うためには熟練を要するものとなっている。
【0014】
【発明が解決しようとする課題】
上述したリフティングマグネット用吊量調整制御装置の場合、鋼材運搬作業に際して吸引吸着した鋼材への調整釈放を必要とするときには運転者が運転操作器で吸引,OFFの操作を繰り返す運転操作を行っているが、実際には意図する調整釈放を行うのが困難であり、その運転には相当な熟練を要するものとなっている上、こうした調整釈放の自動運転化が現状の装置の構成では不可能に近いため、鋼材の調整釈放を精度良く行うことができないという問題がある。
【0015】
従って、既存の吊量調整制御装置によって鋼材の調整釈放を行うと、ホッパに鋼材を少しずつ釈放投入するときに操作を間違えてホッパを損傷させたり、或いはその排出口を詰まらせる危険があり、こうした運転操作上のトラブルを回避できないものになっている。
【0016】
本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、鋼材運搬作業に際して鋼材の調整釈放を精度良く行い得るリフティングマグネット用吊量調整制御装置を提供することにある。
【0017】
【課題を解決するための手段】
本発明によれば、電源供給を行う商用電源と、複数のサイリスタを整流素子として多相ブリッジ構成を成す全波整流型の吸引用サイリスタ整流器と、磁性体に巻回された励磁コイルを有し、且つ商用電源からの印加電圧が印加された吸引用サイリスタ整流器からの励磁電流により該励磁コイルが励磁されて鋼材を吸引吸着するリフティングマグネットと、運転者の操作に応じて吸引の運転操作信号を出力する運転操作器と、運転操作信号を制御に必要な操作指令信号に変換する操作指令回路と、操作指令信号に従ってリフティングマグネットの吸引用点弧指令に必要な制御出力電圧を示す吸引用制御信号を演算出力する吸引用点弧指令演算回路と、吸引用制御信号に従って吸引用サイリスタ整流器から所定の出力直流電圧を出力させるために吸引用点弧信号を演算分配指令して出力する吸引用点弧信号回路とを備え、更に、吸引用点弧指令演算回路は、吸引用点弧指令として吸引用制御信号の出力電圧を所定の制御出力電圧における吸引回生出力期間の波形となるように制御する吸引回生出力用回路を含むリフティングマグネット用吊量調整制御装置において、運転者の操作選択に応じて吸引の度合いを段階別に設定した調整釈放操作信号を出力する調整釈放操作器を備え、操作指令回路は、調整釈放操作信号を制御に必要な調整操作指令信号に変換し、吸引用点弧指令演算回路は、調整釈放操作信号に従って吸引用制御信号の出力レベルをそれぞれ段階別に設定制御する複数の調整用吸引回生出力用回路を備え、吸引用点弧信号回路は、段階別に設定された吸引用制御信号に応じて演算分配指令を行って吸引用点弧信号の出力レベルを可変設定するリフティングマグネット用吊量調整制御装置が得られる。
【0018】
又、本発明によれば、上記リフティングマグネット用吊量調整制御装置において、吸引回生出力用回路は、調整釈放操作器の非操作時で、且つ運転操作器によるOFF操作時に作動するリフティングマグネット用吊量調整制御装置が得られる。
【0019】
【発明の実施の形態】
以下に実施例を挙げ、本発明のリフティングマグネット用吊量調整制御装置について、図面を参照して詳細に説明する。
【0020】
図1は、本発明の一実施例に係るリフティングマグネット用吊量調整制御装置の基本構成を示した回路ブロック図である。
【0021】
この吊量調整制御装置も、図4に示した従来装置と同様な構成及び機能の商用3相交流電源1と、吸引用サイリスタ整流器2と、釈放用サイリスタ整流器3と、リフティングマグネット10と、運転操作器9と、操作指令回路8と、吸引用点弧指令演算回路6´と、釈放用点弧指令演算回路7と、吸引用点弧信号回路4と、釈放用点弧信号回路5とを備えるが、ここでは新たに運転者の操作選択に応じて吸引の度合いを段階別に設定した調整釈放操作信号を出力する調整釈放操作器11が備えられている。
【0022】
又、ここでの操作指令回路8は調整釈放操作信号を制御に必要な調整操作指令信号に変換し、吸引用点弧指令演算回路6は調整釈放操作信号に従って吸引用制御信号の出力レベルをそれぞれ段階別に設定制御する複数の調整用吸引回生出力用回路を備え、吸引用点弧信号回路4は段階別に設定された吸引用制御信号に応じて演算分配指令を行って吸引用点弧信号の出力レベルを可変設定するようになっている。
【0023】
即ち、この吊量調整制御装置の場合、吸引用点弧信号の出力レベルが可変設定されることにより、鋼材運搬作業に際してリフティングマグネット10の励磁電流I0 を可変した上で鋼材の調整釈放を高精度に行うことができる。
【0024】
図2は、この吊量調整制御装置の吸引用点弧指令演算回路6の細部構成を周辺部分を含めて示したものである。但し、ここでもI部は操作指令回路8における説明に必要な吸引用の指令部を示し、II部は吸引用点弧指令演算回路6の説明に必要な吸引用の回路を示し、III部は吸引用点弧信号回路4側を示し、IV部は図 5中の期間T13の制御出力電圧V0 を制御する操作指令回路8の局部及び吸引用点弧指令演算回路6の局部を示し、V部は図5中の期間T2 の制御出力電圧V0 を制御する操作指令回路8の局部及び吸引用点弧指令演算回路6の局部を示し、VI部は図5中の期間T2 の制御出力電圧V0 を調整釈放操作器11からの調整釈放操作信号に従って段階別に制御する操作指令回路8の局部及び吸引用点弧指令演算回路6の局部を示している。
【0025】
ここでの構成も図6に示したものと比べ、V部の吸引用点弧指令として吸引用制御信号CS の出力電圧を制御出力電圧V0 における期間T2 の波形となるように制御する吸引回生出力用回路A1 ,B1 ,C1 と同等な回路により、新たにVI部として吸引用制御信号CS の出力レベルをそれぞれ段階別に設定制御する複数(ここでは2個)の調整用吸引回生出力用回路A2 ,B2 ,C2 ,A3 ,B3 ,C3 を追加した構成となっている。
【0026】
即ち、ここでは回路A1 ,A2 ,A3 に対する操作指令又は調整操作指令により回路C1 ,C2 ,C3 から設定出力される点弧信号レベルを予め吸引の度合いに応じて異なる段階別に設定しておくことで吸引用制御信号CS の出力レベルを段階別に選択出力させるようにしたもので、図示されない設定スイッチで回路A1 ,A2 ,A3 の何れかが選択される。これにより、選択された回路C1 ,C2 ,C3 の何れかの出力レベルにより吸引用制御信号CS が出力され、吸引用点弧信号回路4側では段階別に設定された吸引用制御信号CS に応じて演算分配指令を行って吸引用点弧信号の出力レベルを可変設定するため、吸引用サイリスタ整流器2における制御出力電圧V0 及びリフティングマグネット10の励磁電流I0 も可変される。この結果、鋼材運搬作業に際してリフティングマグネット10の励磁電流I0 を可変した上で鋼材の調整釈放を高精度に行うことができる。
【0027】
尚、V部の吸引回生出力用回路A1 ,B1 ,C1 は、調整釈放操作器11の非操作時で運転操作器9によるOFF操作時に作動する。又、VI部の調整用吸引回生出力用回路A2 ,B2 ,C2 ,A3 ,B3 ,C3 は調整釈放操作器11の操作により回路A2 ,B2 ,C2 及び回路A3 ,B3 ,C3 の何れかが選択されて作動する。
【0028】
図3は、この吊量調整制御装置の要部における調整釈放動作時の制御直流電圧(出力直流電圧V0 )及び電流(励磁電流I0 )の出力波形を示したタイミングチャートである。
【0029】
ここでは、吸引回生出力用回路A1 ,B1 ,C1 が作動した場合、出力直流電圧V0 は波形V1 となり、そのときのリフティングマグネット10の励磁電流I0 は波形I1 となり、鋼材を素早く釈放するモードになることを示している。又、調整用吸引回生出力用回路A2 ,B2 ,C2 が作動した場合、出力直流電圧V0 は波形V2 となり、そのときのリフティングマグネット10の励磁電流I0 は波形I2 となり、吸引回生出力用回路A1 ,B1 ,C1 が作動した場合よりもやや緩やかに鋼材を釈放するモードになることを示している。更に、調整用吸引回生出力用回路A3 ,B3 ,C3 が作動した場合、出力直流電圧V0 は波形V3 となり、そのときのリフティングマグネット10の励磁電流I0 は波形I3 となり、調整用吸引回生出力用回路A2 ,B2 ,C2 が作動した場合よりも一層緩やかに鋼材を釈放するモードになることを示している。
【0030】
このようにして、吸引吸着された鋼材の調整釈放を微量にして調整釈放操作することができるが、こうした過程で調整釈放操作を中断して再度吸引操作状態へ移行することも可能であるので、調整釈放に際して吸引も併用すれば、調整釈放を状況に応じて一層精度良く行うことが可能になる。
【0031】
【発明の効果】
以上に述べた通り、本発明のリフティングマグネット用吊量調整制御装置によれば、鋼材運搬作業に際して鋼材の調整釈放を素早く行ったり、或いは緩やかに行う他、必要に応じて吸引を併用させる等、調整釈放を状況に応じて精度良く行い得るため、ホッパやバケット等の容器に鋼材を少しずつ釈放投入するときに操作を間違えて容器を損傷させたり、或いはその排出口を詰まらせる危険による運転操作上のトラブルを回避できるようになる。
【図面の簡単な説明】
【図1】本発明の一実施例に係るリフティングマグネット用吊量調整制御装置の基本構成を示した回路ブロック図である。
【図2】図1に示すリフティングマグネット用吊量調整制御装置に備えられる吸引用点弧指令演算回路の細部構成を周辺部分を含めて示したものである。
【図3】図1に示すリフティングマグネット用吊量調整制御装置の要部における調整釈放動作時の制御直流電圧(出力直流電圧V0 )及び電流(励磁電流I0 )の出力波形を示したタイミングチャートである。
【図4】従来のリフティングマグネット用吊量調整制御装置の基本構成を示した回路ブロック図である。
【図5】図4に示すリフティングマグネット用吊量調整制御装置の要部における吸引〜釈放までの一連の動作時の制御直流電圧(出力直流電圧V0 )及び電流(励磁電流I0 )の出力波形を示したタイミングチャートである。
【図6】図4に示すリフティングマグネット用吊量調整制御装置に備えられる吸引用点弧指令演算回路の細部構成を周辺部分を含めて示したものである。
【図7】図4に示すリフティングマグネット用吊量調整制御装置のリフティングマグネットによる鋼材運搬作業の様子を例示したものである。
【図8】図4に示すリフティングマグネット用吊量調整制御装置の要部における調整釈放動作時の制御直流電圧(出力直流電圧V0 )及び電流(励磁電流I0 )の出力波形を示したタイミングチャートである。
【符号の説明】
1 商用3相交流電源
2 吸引用サイリスタ整流器
3 釈放用サイリスタ整流器
4,4´ 吸引用点弧信号回路
5 釈放用点弧信号回路
6,6´ 吸引用点弧指令演算回路
7 釈放用点弧指令演算回路
8,8´ 操作指令回路
9,9´ 運転操作器
10 リフティングマグネット(LM)
11 調整釈放操作器
12 鋼材
13 ホッパ
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a lifting amount adjusting control device for a lifting magnet that accurately adjusts and releases a steel material attracted and adsorbed by a lifting magnet in a steel material transport operation.
[0002]
[Prior art]
Conventionally, as this kind of lifting magnet suspension amount adjustment control device, for example, a circuit configuration as shown in FIG.
[0003]
This suspension adjustment control device includes a commercial three-phase AC power source 1 that supplies power by three-phase AC, and a full-wave rectification type suction thyristor rectifier 2 that forms a multi-phase bridge configuration using a plurality of thyristors (SCRs) as rectifier elements. And a full-wave rectification type release thyristor rectifier 3 having a similar multiphase bridge configuration, an exciting coil wound around a magnetic material, and an applied voltage from the commercial three-phase AC power source 1 is applied. From the release thyristor rectifier 3 to which the exciting coil is excited by the exciting current I 0 of the output DC voltage V 0 from the thyristor rectifier 2 for attracting and adsorbing the steel material and the applied voltage from the commercial three-phase AC power source 1 is applied. And a lifting magnet (LM) 10 for releasing the steel material attracted and attracted by the excitation of the exciting coil being attenuated by the exciting current I 0 of the output DC voltage V 0 .
[0004]
The suspension amount adjustment control device is composed of a driving operation unit 9 that outputs a driving operation signal of suction, OFF, and release according to a driver's operation, and a control device such as a general relay. Operation command circuit 8 'for converting the control command signal to the operation command signal necessary for control, and the control output voltage (same as the above-described output DC voltage V 0 ) required for the suction firing command of the lifting magnet 10 according to the operation command signal A suction firing command computation circuit 6 'that computes and outputs a suction control signal to be output, and a control output voltage (the output DC voltage V 0 described above) required for the release firing command of the lifting magnet 10 according to the operation command signal. The release thyristor rectifier 2 in accordance with the suction control signal from the release firing command computation circuit 6 'and the release firing command computation circuit 7' which computes and outputs the release control signal to be output. In order to output a predetermined output DC voltage V 0 , a suction firing signal circuit 4 ′ for outputting and outputting a suction firing signal is issued, and a release control signal from the release firing command computing circuit 7. In order to output a predetermined output DC voltage V 0 from the release thyristor rectifier 3 according to the above, a release ignition signal circuit 5 for outputting and issuing a release ignition signal is provided.
[0005]
Of these, the operating device 9 is installed in the operating room of a machine such as a crane that suspends the lifting magnet 10 to carry it, but outputs a driving operation signal only for suction and release as shown as another example. It is also possible to use the operation controller 9 ′ configured as described above.
[0006]
FIG. 5 is a timing chart showing output waveforms of the control DC voltage (output DC voltage V 0 ) and current (excitation current I 0 ) during a series of operations from suction to release in the main part of the hanging amount adjustment control device. It is. However, in the figure, an attraction output period consisting of an overshoot output period T 11 , an overexcitation period T 12 and a rated output period T 13 is T 1 , an attraction regeneration output period for attenuating the excitation current I 0 is T 2 , and a release output period Is T 3 and the release regeneration output period is T 4 . The suction regeneration output period T 2 is set so that the normal excitation current I 0 is attenuated to zero current within about 1 second, and is quickly released. The release output period T 3 is used to release the steel material attracted by flowing an exciting current I 0 in the opposite direction to that of the attracting coil of the lifting magnet 10.
[0007]
Here, in the waveform of the output DC voltage V 0 , the suction ignition control operation circuit 6 ′ calculates the suction control signal as a result of calculation as the suction firing command in the waveforms of the periods T 1 and T 2. The three-phase commercial signal is transmitted to the signal circuit 4 'so that the suction ignition signal circuit 4' receives the suction control signal and outputs it to the thyristor elements of the suction thyristor rectifier 2 as waveforms of periods T 1 and T 2. An operation and distribution command is issued for a suction ignition signal having a predetermined phase relationship in synchronization with the AC voltage from the AC power source 1, and the release ignition command calculation circuit 7 is released with a waveform of periods T 3 and T 4 . The release control signal calculated as the ignition command is transmitted to the release ignition signal circuit 5, and the release ignition signal circuit 5 receives the release control signal and sends a period to each thyristor element of the release thyristor rectifier 3. Commercial output to output as T 3 and T 4 waveforms It shows that a release ignition signal having a predetermined phase relationship is commanded to be distributed in synchronization with the AC voltage from the three-phase AC power supply 1.
[0008]
FIG. 6 shows the detailed configuration of the suction firing command calculation circuit 6 ′ including the peripheral portion. Here, the I part indicates a suction command part necessary for the description in the operation command circuit 8 ', the II part indicates a suction circuit necessary for the description of the suction ignition command calculation circuit 6', and III part represents a suction ignition signal circuit 4 'side, IV unit operation command circuit 8' of local and suction firing command calculation circuit for controlling the control output voltage V 0 which period T 13 in FIG 6 ' The V part indicates the local part of the operation command circuit 8 ′ for controlling the control output voltage V 0 in the period T 2 in FIG. 5 and the local part of the suction firing command calculation circuit 6 ′.
[0009]
Here, in the rated output operation circuit A 0 of the IV section, after the suction operation by the operation controller 9, the rated output command contact M 0 is closed by the control step in the control circuit (not shown), and the rated output command signal is output to the rated output. It is transmitted to the command receiving circuit B 0. When the rated output command signal is transmitted to the rated output command receiving circuit B 0 , the photo moss relay S 0 is turned on, whereby the next-stage rated output firing command setting circuit C 0 is activated. In the rated output ignition command setting circuit C 0 , the suction control obtained by arbitrarily setting the ignition signal level with the rated output ignition signal setting resistor R 0 within a predetermined threshold range in which an upper limit and a lower limit are determined in advance. The signal C S is output to the suction firing signal circuit 4 ′ side. At this time, the suction regenerative output circuits A 1 , B 1 , C 1 control the output voltage of the suction control signal C S as a suction firing command so as to have a waveform of the period T 2 in the control output voltage V 0 . To do.
[0010]
In such a hanging amount adjustment control device, as shown in FIG. 7, the steel material 12 is sucked and adsorbed by the lifting magnet 10 in the steel material transporting operation, and then transported to a predetermined position, and then the steel material 12 is released to release the hopper 13. Drop into the inside. In this steel material transporting operation, it is usually required that the steel material 12 is quickly sucked and adsorbed and transported to a predetermined position and then released quickly.
[0011]
By the way, if the steel material 12 is scrap (raw material for making iron), the steel material 12 sucked and adsorbed to the inlet of the hopper 13 needs to be released little by little in addition to quickly performing suction adsorption and release, Alternatively, when the steel material 12 is put into the bucket instead of the hopper 13, it is necessary to put the steel material 12 sucked and adsorbed into the bucket by a specified weight. In such a case, the adjustment release is performed in which the steel material 12 is slightly adjusted and released. Cost.
[0012]
FIG. 8 is a timing chart showing output waveforms of the control DC voltage (output DC voltage V 0 ) and current (excitation current I 0 ) during the adjustment release operation in the main part of the hanging amount adjustment control device. This output waveform corresponds to the suction regeneration output period T 2 in FIG.
[0013]
Here, the operation waveform is an output waveform when the suction and turn-off operations are repeated by the operation controller 9 to decrease the excitation current I 0 and release the steel material 12 little by little, and the periods T 13 and T 2 in FIG. Is repeatedly output. However, as described above, the excitation current I 0 is quickly attenuated in the period T 2 as described above, so that skill is required to perform the adjustment release intended by the driver.
[0014]
[Problems to be solved by the invention]
In the case of the lifting magnet adjustment control device described above, when the steel material is transported, when the adjustment release to the steel material sucked and adsorbed is required, the driver performs the operation of repeating the suction and OFF operations with the driver. However, it is difficult to perform the intended adjustment release in practice, and the operation requires considerable skill, and the automatic operation of such adjustment release is impossible with the current system configuration. Since it is near, there is a problem that the adjustment release of the steel material cannot be performed with high accuracy.
[0015]
Therefore, if the steel material is adjusted and released by the existing hanging amount adjustment control device, there is a risk that the operation may be mistaken when the steel material is released into the hopper little by little, or the hopper may be damaged or its outlet may be clogged. Such troubles in driving cannot be avoided.
[0016]
The present invention has been made to solve such problems, and its technical problem is to provide a lifting amount adjustment control device for a lifting magnet that can accurately adjust and release steel materials during steel material transportation work. is there.
[0017]
[Means for Solving the Problems]
According to the present invention, a commercial power source for supplying power, a full-wave rectification type suction thyristor rectifier having a multi-phase bridge configuration with a plurality of thyristors as rectifier elements, and an excitation coil wound around a magnetic material are provided. In addition, a lifting magnet that attracts and attracts steel by exciting the exciting coil by an exciting current from a suction thyristor rectifier to which an applied voltage from a commercial power source is applied, and a driving operation signal for suction according to the driver's operation. Driving controller for outputting, operation command circuit for converting the driving operation signal to an operation command signal necessary for control, and a control signal for suction indicating a control output voltage required for a lifting magnet suction command according to the operation command signal In order to output a predetermined output DC voltage from the suction thyristor rectifier according to the suction control signal A suction ignition signal circuit that outputs a quoted ignition signal as a calculation distribution command, and further, the suction ignition command calculation circuit controls the output voltage of the suction control signal as a predetermined control as a suction ignition command. In a lifting magnet suspension adjustment control device that includes a suction regenerative output circuit that controls the waveform so that the suction regenerative output period is set at the output voltage, the adjustment release that sets the degree of suction in stages according to the driver's operation selection An adjustment release controller that outputs an operation signal is provided. The operation command circuit converts the adjustment release operation signal into an adjustment operation command signal necessary for control. The suction firing command calculation circuit is used for suction according to the adjustment release operation signal. Provided with multiple adjustment suction regenerative output circuits that set and control the output level of each control signal step by step, and the suction ignition signal circuit corresponds to the suction control signal set for each step Calculating distribution amount hanging for lifting magnet variably setting the output level of the suction ignition signal by performing command adjustment control device is obtained.
[0018]
Further, according to the present invention, in the lifting magnet lifting amount adjustment control apparatus, the suction regenerative output circuit is lifted for the lifting magnet that operates when the adjustment release operation device is not operated and when the operation operating device is turned OFF. A quantity adjustment control device is obtained.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the lifting amount adjustment control device for a lifting magnet according to the present invention will be described in detail with reference to the drawings.
[0020]
FIG. 1 is a circuit block diagram showing a basic configuration of a lifting magnet lifting amount adjusting control apparatus according to an embodiment of the present invention.
[0021]
This suspension amount adjusting control device also has a commercial three-phase AC power source 1, a suction thyristor rectifier 2, a release thyristor rectifier 3, a lifting magnet 10 and an operation similar to those of the conventional device shown in FIG. An operation device 9, an operation command circuit 8, a suction firing command calculation circuit 6 ′, a release firing command computation circuit 7, a suction firing signal circuit 4, and a release firing signal circuit 5. In this embodiment, however, an adjustment release operation device 11 is newly provided that outputs an adjustment release operation signal in which the degree of suction is set for each stage in accordance with the driver's operation selection.
[0022]
Further, the operation command circuit 8 here converts the adjusted release operation signal into an adjusted operation command signal necessary for control, and the suction firing command calculation circuit 6 sets the output level of the suction control signal according to the adjusted release operation signal. A plurality of adjustment suction regenerative output circuits that are set and controlled for each stage are provided, and the suction ignition signal circuit 4 outputs a suction ignition signal by issuing a calculation distribution command in accordance with the suction control signals set for each stage. The level is variably set.
[0023]
That is, in the case of this suspension amount adjustment control device, the output level of the suction ignition signal is variably set, so that the adjustment release of the steel material can be increased while changing the exciting current I 0 of the lifting magnet 10 during the steel material transporting operation. Can be done with precision.
[0024]
FIG. 2 shows a detailed configuration of the suction ignition command calculation circuit 6 of the suspension amount adjustment control device including the peripheral portion. Here, however, the I part indicates a suction command part necessary for the description of the operation command circuit 8, the II part indicates a suction circuit necessary for the description of the suction ignition command calculation circuit 6, and the III part indicates 5 shows the suction ignition signal circuit 4 side, and IV part shows a local part of the operation command circuit 8 for controlling the control output voltage V 0 in the period T 13 in FIG. 5 and a local part of the suction ignition command calculation circuit 6. V indicates a local part of the operation command circuit 8 that controls the control output voltage V 0 in the period T 2 in FIG. 5 and a local part of the suction ignition command calculation circuit 6, and a VI part indicates the period T 2 in FIG. A local part of the operation command circuit 8 and a local part of the suction firing command calculation circuit 6 which control the control output voltage V 0 according to the adjusted release operation signal from the adjusted release operation unit 11 are shown.
[0025]
Compared to the configuration shown in FIG. 6, the configuration here is also controlled so that the output voltage of the suction control signal C S becomes the waveform of the period T 2 in the control output voltage V 0 as the suction firing command for the V portion. the suction regeneration output circuit a 1, B 1, C 1 and equivalent circuit, for adjusting a plurality of (two in this case) to be newly set control the output level of the suction control signal C S step by step each as part VI The suction regeneration output circuit A 2 , B 2 , C 2 , A 3 , B 3 , C 3 is added.
[0026]
That is, here, the firing signal level set and output from the circuits C 1 , C 2 , C 3 by the operation command or the adjustment operation command for the circuits A 1 , A 2 , A 3 is preliminarily classified at different stages according to the degree of suction. By setting, the output level of the suction control signal C S is selected and output step by step, and any one of the circuits A 1 , A 2 , A 3 is selected by a setting switch (not shown). As a result, the suction control signal C S is output according to the output level of any one of the selected circuits C 1 , C 2 , C 3 , and the suction control signal set for each stage on the suction firing signal circuit 4 side. In order to variably set the output level of the suction ignition signal by issuing a calculation distribution command according to C S , the control output voltage V 0 in the suction thyristor rectifier 2 and the exciting current I 0 of the lifting magnet 10 are also changed. As a result, the steel material can be adjusted and released with high accuracy while changing the exciting current I 0 of the lifting magnet 10 during the steel material transport operation.
[0027]
The suction regenerative output circuits A 1 , B 1 , C 1 of the V section are activated when the adjustment release controller 11 is not operated and when the operation controller 9 is turned OFF. Further, the circuit A 2 , B 2 , C 2 , A 3 , B 3 , and C 3 for adjustment regenerative output in the VI section are connected to the circuits A 2 , B 2 , C 2 and the circuit A by operating the adjustment release controller 11. Any of 3 , B 3 and C 3 is selected and operated.
[0028]
FIG. 3 is a timing chart showing output waveforms of the control DC voltage (output DC voltage V 0 ) and current (excitation current I 0 ) during the adjustment release operation in the main part of the hanging amount adjustment control device.
[0029]
Here, when the suction regenerative output circuits A 1 , B 1 , C 1 are activated, the output DC voltage V 0 becomes the waveform V 1 , and the exciting current I 0 of the lifting magnet 10 at that time becomes the waveform I 1 , and the steel material It shows that it becomes the mode to release quickly. When the adjustment regeneration circuits A 2 , B 2 , and C 2 are operated, the output DC voltage V 0 becomes the waveform V 2 , and the exciting current I 0 of the lifting magnet 10 at that time becomes the waveform I 2 . This shows that the mode becomes a mode in which the steel material is released slightly more slowly than when the suction regenerative output circuits A 1 , B 1 , C 1 are operated. Further, when the adjustment regenerative output circuits A 3 , B 3 , C 3 are activated, the output DC voltage V 0 becomes the waveform V 3 , and the exciting current I 0 of the lifting magnet 10 at that time becomes the waveform I 3 , This shows that the mode becomes a mode in which the steel material is released more slowly than when the adjustment suction regenerative output circuits A 2 , B 2 and C 2 are operated.
[0030]
In this way, the adjustment release of the steel material that has been sucked and adsorbed can be adjusted and released in a small amount, but in this process it is also possible to interrupt the adjustment release operation and shift to the suction operation state again. If suction is also used together with the adjustment release, the adjustment release can be performed with higher accuracy depending on the situation.
[0031]
【The invention's effect】
As described above, according to the lifting amount adjustment control device for lifting magnets of the present invention, the steel material is quickly adjusted or released during the steel material transport operation, or in addition to performing it gently, using suction as necessary, etc. Since the adjusted release can be performed accurately according to the situation, when the steel material is released gradually into the container such as hopper or bucket, the operation is caused by the danger of damaging the container or clogging its discharge port. The above trouble can be avoided.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram showing a basic configuration of a lifting amount adjustment control device for a lifting magnet according to an embodiment of the present invention.
FIG. 2 shows a detailed configuration of a suction firing command calculation circuit included in the lifting amount adjusting control device for a lifting magnet shown in FIG. 1 including peripheral portions.
3 is a timing diagram showing output waveforms of a control DC voltage (output DC voltage V 0 ) and a current (excitation current I 0 ) at the time of adjustment release in the main part of the lifting amount adjusting control device for lifting magnet shown in FIG. 1; It is a chart.
FIG. 4 is a circuit block diagram showing a basic configuration of a conventional lifting amount adjusting control device for a lifting magnet.
5 is an output of control DC voltage (output DC voltage V 0 ) and current (excitation current I 0 ) during a series of operations from suction to release in the main part of the lifting amount adjustment control device for lifting magnet shown in FIG. 4; It is the timing chart which showed the waveform.
6 shows a detailed configuration of a suction ignition command calculation circuit included in the lifting amount adjusting control device for a lifting magnet shown in FIG. 4 including peripheral portions.
FIG. 7 illustrates an example of a steel material transporting operation by a lifting magnet of the lifting amount adjusting control device for a lifting magnet shown in FIG. 4;
8 is a timing diagram showing output waveforms of a control DC voltage (output DC voltage V 0 ) and a current (excitation current I 0 ) during an adjustment release operation in the main part of the lifting amount adjustment control device for the lifting magnet shown in FIG. 4; It is a chart.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Commercial 3-phase AC power supply 2 Suction thyristor rectifier 3 Release thyristor rectifier 4, 4 'Suction ignition signal circuit 5 Release ignition signal circuit 6, 6' Suction ignition command calculation circuit 7 Release ignition command Arithmetic circuit 8, 8 'Operation command circuit 9, 9' Driving controller 10 Lifting magnet (LM)
11 Adjusted release controller 12 Steel 13 Hopper

Claims (2)

電源供給を行う商用電源と、複数のサイリスタを整流素子として多相ブリッジ構成を成す全波整流型の吸引用サイリスタ整流器と、磁性体に巻回された励磁コイルを有し、且つ前記商用電源からの印加電圧が印加された前記吸引用サイリスタ整流器からの励磁電流により該励磁コイルが励磁されて鋼材を吸引吸着するリフティングマグネットと、運転者の操作に応じて吸引の運転操作信号を出力する運転操作器と、前記運転操作信号を制御に必要な操作指令信号に変換する操作指令回路と、前記操作指令信号に従って前記リフティングマグネットの吸引用点弧指令に必要な制御出力電圧を示す吸引用制御信号を演算出力する吸引用点弧指令演算回路と、前記吸引用制御信号に従って前記吸引用サイリスタ整流器から所定の出力直流電圧を出力させるために吸引用点弧信号を演算分配指令して出力する吸引用点弧信号回路とを備え、更に、前記吸引用点弧指令演算回路は、吸引用点弧指令として前記吸引用制御信号の出力電圧を前記所定の制御出力電圧における吸引回生出力期間の波形となるように制御する吸引回生出力用回路を含むリフティングマグネット用吊量調整制御装置において、運転者の操作選択に応じて吸引の度合いを段階別に設定した調整釈放操作信号を出力する調整釈放操作器を備え、前記操作指令回路は、前記調整釈放操作信号を制御に必要な調整操作指令信号に変換し、前記吸引用点弧指令演算回路は、前記調整釈放操作信号に従って前記吸引用制御信号の出力レベルをそれぞれ段階別に設定制御する複数の調整用吸引回生出力用回路を備え、前記吸引用点弧信号回路は、段階別に設定された吸引用制御信号に応じて前記演算分配指令を行って前記吸引用点弧信号の出力レベルを可変設定することを特徴とするリフティングマグネット用吊量調整制御装置。A commercial power source for supplying power, a full-wave rectification type suction thyristor rectifier having a multi-phase bridge configuration with a plurality of thyristors as rectifier elements, an excitation coil wound around a magnetic material, and the commercial power source A lifting magnet that attracts and attracts steel by exciting the exciting coil with an exciting current from the suction thyristor rectifier to which the applied voltage is applied, and a driving operation that outputs a suction driving operation signal according to the driver's operation An operation command circuit for converting the driving operation signal into an operation command signal necessary for control, and a suction control signal indicating a control output voltage required for the suction firing command of the lifting magnet according to the operation command signal Outputs a predetermined output DC voltage from the suction thyristor rectifier according to the suction control signal and the suction control signal for calculation output A suction firing signal circuit for outputting and outputting a suction firing signal, and further, the suction firing command computing circuit is configured to output the suction control signal as a suction firing command. In the lifting amount adjustment control device for a lifting magnet including a suction regenerative output circuit for controlling the output voltage so as to have a waveform of the suction regenerative output period at the predetermined control output voltage, the degree of suction according to the driver's operation selection An adjustment release operation device that outputs an adjustment release operation signal that is set for each stage, and the operation command circuit converts the adjustment release operation signal into an adjustment operation command signal necessary for control, and calculates the suction firing command calculation. The circuit includes a plurality of adjustment suction regenerative output circuits for setting and controlling the output level of the suction control signal in stages according to the adjustment release operation signal, and the suction ignition signal Circuit includes a variable set hanging amount adjusting control device for a lifting magnet, characterized in that the output level of the suction ignition signal by performing the calculation dispensing command depending on the suction control signal set in tiered. 請求項1記載のフティングマグネット用吊量調整制御装置において、前記吸引回生出力用回路は、前記調整釈放操作器の非操作時で、且つ前記運転操作器によるOFF操作時に作動することを特徴とするリフティングマグネット用吊量調整制御装置。2. The lifting amount adjusting control device for a footing magnet according to claim 1, wherein the suction regenerative output circuit operates when the adjustment release operation device is not operated and when the operation operation device is turned OFF. Lifting amount adjustment control device for lifting magnet.
JP16031998A 1998-06-09 1998-06-09 Lifting amount adjustment control device for lifting magnet Expired - Fee Related JP3934791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16031998A JP3934791B2 (en) 1998-06-09 1998-06-09 Lifting amount adjustment control device for lifting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16031998A JP3934791B2 (en) 1998-06-09 1998-06-09 Lifting amount adjustment control device for lifting magnet

Publications (2)

Publication Number Publication Date
JPH11349273A JPH11349273A (en) 1999-12-21
JP3934791B2 true JP3934791B2 (en) 2007-06-20

Family

ID=15712394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16031998A Expired - Fee Related JP3934791B2 (en) 1998-06-09 1998-06-09 Lifting amount adjustment control device for lifting magnet

Country Status (1)

Country Link
JP (1) JP3934791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410983B1 (en) * 2012-06-27 2014-06-23 (주)에스엔테크 phase controlled lifting magnet controller considering harmonics

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008265997A (en) * 2007-04-24 2008-11-06 Sumitomo Heavy Ind Ltd Lifting magnet driving circuit and lifting magnet device
JP5000394B2 (en) * 2007-06-20 2012-08-15 住友重機械工業株式会社 Lifting magnet control system and lifting magnet control method
JP5746835B2 (en) * 2010-06-30 2015-07-08 キャタピラージャパン株式会社 Magnet working machine control method and magnet working machine control device
JP7031959B2 (en) * 2017-03-06 2022-03-08 住友重機械工業株式会社 Lifting magnet machine and control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410983B1 (en) * 2012-06-27 2014-06-23 (주)에스엔테크 phase controlled lifting magnet controller considering harmonics

Also Published As

Publication number Publication date
JPH11349273A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
US5077508A (en) Method and apparatus for determining load holding torque
JP3934791B2 (en) Lifting amount adjustment control device for lifting magnet
US4364704A (en) Grab bucket suspended from hoisting installation
CA2398459A1 (en) Method and system for solid state dc crane control
JPH0789750B2 (en) Crane V / F inverter control method
US4166649A (en) Device for removing workpieces from a container
EP0221240A2 (en) Tension control
JP2537283B2 (en) Lifting steel plate amount control device for lifting electromagnet
JP2537284B2 (en) Lifting steel plate amount control device for lifting electromagnet
US2858485A (en) Controls for material handling magnets
US2590453A (en) Control system for hoist motors
JPH0759468B2 (en) Steel plate hanging number selection control method
RU2709642C1 (en) Method of electric locomotive transmission control in electric brake mode
US967186A (en) Control system for electromagnets.
JPH1028390A (en) Driver of apparatus
JPH10332466A (en) Adjustment of attracting weight by lifting magnet
CA1261086A (en) Mine hoist control method and apparatus
WO1985000147A1 (en) Apparatus for controlling forklift
JP3250178B2 (en) Excitation circuit and excitation method for lifting magnet
JP2946803B2 (en) Voltage control method of PWM inverter
JPS603107A (en) Exciting circuit of lifting electromagnet
JPH09194178A (en) Lifting magnet power supply device
JPH06183681A (en) Control device of suspended electric magnet
JPH09238500A (en) Controller of induction motor
JPS6243996Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees