JP3934010B2 - 開放型mri装置の磁場均一度調整方法 - Google Patents

開放型mri装置の磁場均一度調整方法 Download PDF

Info

Publication number
JP3934010B2
JP3934010B2 JP2002242147A JP2002242147A JP3934010B2 JP 3934010 B2 JP3934010 B2 JP 3934010B2 JP 2002242147 A JP2002242147 A JP 2002242147A JP 2002242147 A JP2002242147 A JP 2002242147A JP 3934010 B2 JP3934010 B2 JP 3934010B2
Authority
JP
Japan
Prior art keywords
magnetic field
space
uniformity
adjusting
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002242147A
Other languages
English (en)
Other versions
JP2004073752A5 (ja
JP2004073752A (ja
Inventor
宗孝 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002242147A priority Critical patent/JP3934010B2/ja
Publication of JP2004073752A publication Critical patent/JP2004073752A/ja
Publication of JP2004073752A5 publication Critical patent/JP2004073752A5/ja
Application granted granted Critical
Publication of JP3934010B2 publication Critical patent/JP3934010B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明が属する技術分野】
この発明は磁気共鳴イメージング装置(以下、MRI装置という)に係わり、特に、被検者に圧迫感を与えない開放型の超電導磁石を採用したMRI装置において、被検者の検査時に最も高い磁場均一度を達成できるMRI装置の調整方法に関する。
【0002】
【従来の技術】
核磁気共鳴(NMR)現象を利用して人体の断層像を得るMRI検査法は広く医療機関で利用されている。MRI装置としては、従来、細長い筒状のソレノイドコイルを用いたものが主流であったが、近年、側面に開口部を設けたり、磁石前面の被検者搬入部を広くした磁石を採用したMRI装置が開発され、普及している。このようなMRI装置は、MRI検査下でのインターベンショナル(以下、MRインターベンショナルという)手技を可能にした。
【0003】
この開放型のMRI装置の磁石としては、開放構造の作りやすさから比較的磁場強度が低い常電導磁石や永久磁石が用いられている。NMRの信号強度は静磁場強度に比例することから、MRI検査での高画質を達成したり、高速での撮影を可能にするため、静磁場強度を高くしたいとする要望が常にあり、高磁場を実現できる超電導磁石を用いた開放型のMRI装置も開発されている(例えば、特開平10−179646号公報)。
【0004】
しかし、静磁場強度の増加に比例して磁石外部に存在する磁束密度の強度(漏洩磁場)も増加する。漏洩磁場は生命維持装置(例えば、心臓ペースメーカ)や医療施設の電子機器に悪影響を与える恐れがあることから、MRI装置の設置にあたっては5ミリテスラ以上の漏洩磁場空間の安全管理が義務付けられており、この安全管理区域が磁石の設置部屋内に収まるように漏洩磁場空間を抑えることが好ましい。
【0005】
一般に、漏洩磁場強度を低減する方法としては、1)鉄ヨークにより磁束の閉回路を構成して、鉄ヨーク以外の空間に磁束をできるだけ漏れ出さないようにするパッシブシールド方式、2)静磁場を発生するコイルに対して、反磁界を発生するキャンセルコイルを組合わせ、トータルとして磁石の外部に発生する磁界をキャンセルするアクティブシールド方式がある。高磁場を発生する開放構造の超電導磁石を用いたMRI装置では、さらに超電導磁石を設置する部屋の壁面に磁気シールド材を配置し、磁石室の外部の磁束を低減する外部シールド方式を組合わせることにより、漏洩磁場強度を低磁場オープン型のMRI装置と同等に低減することが可能になっている。
【0006】
【発明が解決しようとする課題】
一方、磁石が発生する磁場の均一度は、画質に大きな影響を与えるため、高い均一度(例えば数ppm)が要求される。通常、MRI装置をシールド室内に設置する際に、必要な均一度となるような調整がなされる。磁場均一度の調整は、1)磁石表面に磁性体小片を貼り付けるパッシブシムと、2)磁場の不均一成分を打ち消すような磁場を発生するシムコイルを用いるアクティブシムとがあり、高度な均一度が要求されるMRI装置では、これらを組み合わせて調整される。
【0007】
しかし、上述した高磁場の開放型MRI装置において上述した調整を行なっても、実際の検査時に磁場均一度が劣化するという問題がある。磁場の不均一度は、前述のように画像精度を低下させ、脂肪組織からのNMR信号を選択的に抑制するアプリケーションや高い磁場均一度を要するエコー・プレナー・イメージングの実施を制限する。
【0008】
そこで本発明は、高磁場の開放型MRI装置において、検査時に最も高い磁場均一度を実現することができ、高精度の画像を取得することができるMRI装置と、そのための磁場調整方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明者は、高磁場の開放型MRI装置について、検査時の磁場均一度の劣化の原因を解析した結果、超電導磁石を用いた開放型MRI装置では、近傍の磁束密度は静磁場強度に比例して高いままであるため、この磁石外の高密度の磁束が、周辺に配置された機器の磁性体に大きな影響を及ぼし、その作用と逆の関係で、磁石周辺の磁性体が磁石中心の検査空間の磁場に影響し、検査空間の磁場均一度の低下として現れることがわかった。特に磁石に隣接して配設される患者テーブルは、できるだけ非磁性材で構成されているものの、その電動機構には磁性材料である鉄を使わざるを得ず、また重量を支える非磁性の金属材料にも僅かな鉄分が含有しているため、磁場の影響を完全には避けることができず、その結果として検査空間の磁場均一度を劣化させていることがわかった。本発明はこのような知見に基きなされたもので、周辺機器、特に患者テーブルを検査時と同じ状態でMRI装置の調整を図ることにより、検査時における磁場均一度の向上を達成したものである。
【0010】
即ち、本発明のMRI装置の磁場均一度調整方法は、被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間に被検体を搬入・搬出する搬送手段とを備えたMRI装置の磁場の均一度を調整する方法であって、前記搬送手段を磁気共鳴イメージング装置による検査時と同じ位置に設定するステップ、前記搬送手段を設定後、前記空間の磁場均一度を測定するステップ、測定した磁場均一度に基づき前記磁場調整手段による調整量を求めるステップ、及び前記調整量に基づき前記調整手段を機能させるステップを含むものである。
【0011】
また、本発明のMRI装置の磁場均一度調整方法は、被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間内に配置され、前記空間に高周波磁場及び傾斜磁場をそれぞれ発生する磁場発生コイルと、前記空間に被検体を搬入・搬出する搬送手段とを備えたMRI装置の磁場の均一度を調整する方法であって、空間に前記磁場発生コイルを配置する前に前記搬送手段を磁気共鳴イメージング装置による検査時と同じ位置に設定するステップ、前記搬送手段を設定後、前記空間の磁場均一度を測定するステップ、測定した磁場均一度が所定の均一度以上のときに前記磁場発生コイルを前記空間内に配置するステップ、前記磁場発生コイルを配置した後に前記空間の磁場均一度を測定するステップ、測定した磁場均一度に基づき前記磁場調整手段による調整量を求めるステップ、及び前記調整量に基づき前記調整手段を機能させるステップを含むものである。
【0012】
本発明の磁場均一度調整方法によれば、搬送手段を検査時と同じ位置に設定した状態で、磁場調整手段による調整量を求めることにより、静磁場発生手段の漏洩磁場により搬送手段に生じる磁場が磁場均一度に与える影響を排除し、検査時に最も高い磁場均一度を達成することができる。
【0013】
本発明において、磁場調整手段としては、例えば、静磁場発生手段の複数の位置に着脱可能に設けられる磁性片を採用することができ、調整量を求めるステップでは、静磁場発生手段に設けられる磁性片のシム量及び取付け位置を求める。
【0014】
また本発明の磁場均一度調製方法によれば、磁場均一度測定装置として、磁場測定器と、前記磁場測定器を前記空間の所望の位置に移動する移動手段と、前記磁場測定器が測定した前記空間の複数位置の磁場情報を元に前記空間の磁場不均一度を計測するとともに計測した不均一度を補正する補正量を算出する計算機とを備えたものを使用することができる。
【0015】
発明のMRI装置は、被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間内に配置され、前記空間に高周波磁場及び傾斜磁場をそれぞれ発生する磁場発生コイルと、前記空間に被検体を搬入・搬出する搬送手段とを備えた磁気共鳴イメージング装置において、前記磁場調整手段は、前記搬送手段が前記空間に搬入された状態で取得された前記均一度情報に基づいて前記均一度を調整するものである。さらに、前記均一度情報は、前記磁場発生コイルを前記空間内から除去した状態で取得された第1の均一度情報と、前記磁場発生コイルを前記空間内に配置した状態で取得された第2の均一度情報を有するものである。
のMRI装置は、磁場調整手段として、具体的には、複数の磁性片をそれぞれ着脱可能に固定する複数の磁性片固定部を備える。磁性片固定部は、静磁場方向に直交する所望の方向に取付けられたバーに設けることも可能である。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳述する。
【0017】
図1は本発明が適用されるオープン構造のMRI装置の全体概要を示す図である。このMRI装置は、被検者1が設置される空間に均一な磁場を発生する静磁場発生磁石2と、この静磁場発生磁石2より内側に配置された傾斜磁場コイル3と、さらにそれより内側に配置された高周波コイル5と、被検者1から発生するNMR信号を検出する検出コイル7とを備えている。さらに上述の各コイルを駆動する電源やNMR信号の増幅器や、それらの動作タイミングを制御するシーケンサ9と装置の制御を行うと共にNMR信号を処理し画像化するコンピュータ10と被検者1を静磁場発生磁石2の中心空間に配設する患者テーブル13を備えている。
【0018】
通常、静磁場発生磁石2と各コイルと患者テーブル13は電磁波遮蔽効果を有するシールド部屋14に設置され、外部から検査室内に侵入したり、MRI装置のコンピュータ10などが発生する電磁波ノイズが検出コイル7に混入するのを防いでいる。このため各コイルを駆動する電源やNMR信号の増幅器との接続はシールド部屋14の一部に組み込まれたフィルター回路15を介して行われる。更に、このシールド部屋14には壁面の一部に3から6ミリメートルの珪素鋼板16が組み込まれており、部屋の外部に漏洩する磁束の強度が1ミリテスラ以下になるようになっている。
【0019】
静磁場発生磁石2は、図示する実施形態では、上下一対の超電導磁石からなり、これらは被検体1の配設される空間に上下方向の均一度の高い静磁場を発生する。例えば静磁場強度は0.7テスラで、磁場均一度は磁石中心の直径35cmの球空間で約3ppm以下となるように調整されている。この磁場均一度は、後述する磁場調整手段によって達成される。磁場調整手段として、具体的には、超電導磁石2の表面に取付けられる複数の磁性体小片と、磁場の不均一成分であるZ2項とZ4項を打ち消すような磁場を発生するシムコイル(図では示されない)が組み合わされている。
【0020】
更に、これら一対の超電導磁石2は、その上下と側部を囲むように磁気回路を構成する鉄ヨーク27が組み合わされている。鉄ヨーク27には傾斜磁場コイル3や高周波コイル5を取付けるための支持金具17(図では一部のみ示されている)やガントリーカバー(図では示されていない)が取付けられている。
【0021】
傾斜磁場コイル3は、互いに直交するx、y、zの3軸方向に磁束密度を変化させるように巻かれた3組のコイルからなり、それぞれ傾斜磁場電源4に接続されている。シーケンサ9からの制御信号に従って傾斜磁場電源4を駆動して傾斜磁場コイル3に流れる電流値を変化させることにより3軸からなる傾斜磁場Gx、Gy、Gzを被検者1の配設空間の静磁場に重畳するようになっている。この傾斜磁場は、被検者1の検査部位から得られるNMR信号の空間的な分布を識別するのに用いられる。この傾斜磁場コイル3には上述のシムコイルが組み込まれている。
【0022】
高周波コイル5は、高周波コイル5に高周波電流を流すための高周波電力アンプ6に接続され、被検者1の検査部位の原子核を共鳴励起するための高周波磁場を発生する。原子核としては、通常、水素原子核が用いられるため、高周波コイル5と高周波電力アンプ6はその共鳴周波数(例えば30MHz)にチューニングされている。高周波電力アンプ6もシーケンサ9の制御信号で制御されている。
【0023】
検出コイル7は受信回路8に接続されており、受信回路8は検出コイル7で検出したNMR信号を増幅・検波するとともに、コンピュータ10による処理が可能なディジタル信号に変換する。受信回路8もシーケンサ9でその動作タイミングが制御されている。
【0024】
コンピュータ10はディジタル量に変換されたNMR信号を用いて画像再構成、スペクトル計算等の演算を行うとともに、シーケンサ9を介してMRI装置の各ユニットの動作を定められたタイミングで制御する。コンピュータ10と処理後のデータを表示するディスプレイ装置11と操作入力する操作卓12とで演算処理系が構成される。
【0025】
図2は、図1に示した静磁場発生磁石2と磁場調整手段の詳細な構成を示した図である。図において、静磁場発生磁石2は、上下一対から成るクライオスタット21、22の容器内に収められた超電導コイル(図示はされてない)を備えている。超電導コイルは被検者1が配設される空間23の磁場均一度が最良になるようにその形状と位置が設定されている。また上下クライオスタット21、22の外部には磁気回路を構成する鉄ヨーク27が取付けられている。この鉄ヨーク27によって超伝導コイルが発生する磁束の外部への漏洩磁束が極力低減されると共に、上下クライオスタット21、22が固定される。
【0026】
超電導コイルを収めるクライオスタット21、22の大きさや上下の間隙はMRI装置の使い勝手や設置性から決められ、磁場均一度のみを優先して決定できる訳ではない。そこで、磁場均一度を改善するため、クライオスタット21、22の空間23側には、磁場均一度を調整するための手段として、一対からなるシムトレー24、25が組み込まれている。このシムトレー24、25には磁性体小片26が組込まれるための穴が同心円上に複数設けられている。なお、図では穴の一部のみを示しているが、実際にはこのような穴がシムトレー24、25の全面に設けられている。更にシムトレー24 25には、精細なシム調整を実施するための微調整用シムバー28が組み込まれている。この微調整用シムバー28にも、その長手方向に沿って磁性体小片26を組み込むための複数の穴が設けられている。シムバー28は、シムトレー24、25周囲に穿設された凹部に差し込むことにより、シムトレー24、25に取付けることができる。凹部は複数箇所に設けられ、その取付け位置及びシムバー28に組み込む磁性体小片26の位置、量を変更することにより、磁場均一度の微調整を行なうことができる。
【0027】
次にこのような構成におけるMRI装置の調整方法(シミング手順)を説明する。図3は、調整に用いるための磁場測定装置を示す図、図4はシミング手順の一実施形態を示すフローチャートである。
【0028】
まず磁場測定装置の概要を説明する。図3に示すように、測定装置30は、磁場強度を測定するNMRプローブ31と、このNMRプローブ31を空間23内で3次元方向に移動するためのプロッタ32と、プロッタ32の駆動部とNMRプローブ31とを連結する非磁性材料(例えばファイバーガラス繊維)からなるバー33と、NMRプローブ31からの信号をもとに磁場強度を求めるテスラメータ34と、プロッタ32の駆動を制御するプロッタ制御部35と、テスラメータ34からの信号をもとに磁場調整量を算出するとともにプロッタ制御部35を制御する計算機36とを備えている。
【0029】
NMRプローブ31としては、磁場をppmオーダーで測定する必要から、例えば直径5mmの水を詰めたガラス球にNMR信号検出用のコイルが巻かれたもの等が用いられる。プロッタ32は、その鉄製部品が空間23の磁場均一度に影響しないように患者テーブル13の後部に配置され、NMRプローブ31は非磁性材料のバー33を介してプロッタ32に接続されている。計算機36は、汎用のパーソナルコンピュータを利用することができる。テスラメータ34、パーソナルコンピュータ36、プロッタ制御機35は空間23の磁場均一度に影響しないように患者テーブル13の後方に配置されている。
【0030】
次にこのような磁場測定装置30を用いた調整方法を説明する。シミング作業を始める前に、静磁場発生磁石2の前面に患者テーブル13を配置する。この位置は被検者1を空間23に配設する時と同じ位置になるようにし、この位置で鉄ヨーク27と患者テーブル13のベース部分を固定金具131で固定する(ステップ42)。次にプロッタ32にNMRプローブ31を取付け(ステップ43)、プロッタ32を操作して、NMRプローブ31により空間23(本実施例では直径35cmの球空間の表面)の複数点の磁場強度を計測する(ステップ44)。測定点の数は、前掲の球空間の場合、例えば図5に示すように、球表面のz方向(磁束の向き)に15面を設定し、上下頂点を除く各設定面において15°毎に24点(計312点)、さらにz軸上19点、合計331点とする。パーソナルコンピュータ36がプロッタ制御機35にNMRプローブ31のxyz座標に対応した位置情報を出力することにより任意の位置の磁場強度を測定することができる。
【0031】
テスラメータ34はNMRプローブ31の信号は処理し、NMRプローブ31の位置の磁場強度として数値出力する。テスラメータ34の出力はパーソナルコンピュータ36に取り込まれる。パーソナルコンピュータ36は、NMRプローブ31の位置情報と磁場強度が対応した331点のデータを取り込み、磁場の均一度を次式により求める(ステップ45)。
【0032】
【数1】
Figure 0003934010
求めた空間23の磁場均一度が目標仕様内(例えば3ppm以下)であればシミング作業は終了となる(ステップ46)。
【0033】
3ppmに達しない場合は、磁場不均一成分を補償する鉄片シムの位置をパーソナルコンピュータ36で更に計算する。具体的には、331点の計測データを球面調和関数(ルジャンドル関数)で展開して、x,y,z,x2,y2,z2,・・・など119の磁場不均一項の成分を求める。一方、シム片の貼り付け位置によって同じように119項の変化量を求めておき、補正すべき総量に近いシム片の組み合わせを計算で求める。
【0034】
このような磁場分布とシムトレー上の磁性体小片を組み込む穴の位置及び鉄シム量との関係は、パーソナルコンピュータ36によって、例えばテーブルとして出力される(ステップ47)。この表に従って所定の鉄片シムを組込む(ステップ48)。組込み後、図3の磁場測定装置を用いて空間23の表面の磁場強度を測定するステップ44に戻る。以後、ステップ44〜48までの操作を空間23の磁場均一度が目標仕様に達するまで繰返し、一連のシミング作業を完了する。
【0035】
このように本実施形態によれば、磁場環境を被検者検査時の状態と同一にして磁場均一度の調整を行なっているので、検査時に磁石近傍に設置される患者テーブル13が漏洩磁場によって逆に磁場均一度に与える影響を排除しておくことができ、検査時に極めて高い磁場均一度を達成することができる。
【0036】
以上説明した磁場調整法では、調整の初期段階から目的磁場均一度となるように調整を行なう場合を示したが、初期段階には静磁場磁石のみで粗調整を行い、その後、被検者の検査時と同じ状態になるように磁石周辺のユニットを配置して、目標磁場均一度まで調整することも可能である。
【0037】
このような段階的調整の手順を図6に示す。この実施形態では、傾斜磁場コイル3、高周波コイル5等の周辺機器を組合わせない状態で、10ppm程度の磁場均一度が達成されるまで、調整を行なう。即ち、静磁場発生磁石2にプロッタ32とNMRプローブ31を組合わせて(ステップ61)、空間23表面の磁場強度を計測する(ステップ62)。計測された複数点のデータをパーソナルコンピュータ36で計算処理して、磁場の不均一成分を求める(ステップ63)。計算された空間23の磁場均一度が例えば10ppmより大きいか小さいか判定し(ステップ64)、10ppmに達しない場合は、磁場不均一成分を補償する鉄片シムの位置をパーソナルコンピュータ36で更に計算する(ステップ65)。計算結果は上下シムトレー24、25の磁性体小片を組み込む穴26の位置情報と組み込む鉄シム量とが表となって出力される。この表に従って所定の鉄片シムをシムトレーに組込む(ステップ66)。組込み後、再び、複数点の磁場強度を測定するステップ62に戻る。
【0038】
ステップ64で、空間23の磁場均一度が例えば10ppm以下であると判断された場合は、静磁場発生磁石2の周辺ユニット例えば、傾斜磁場コイル3、高周波コイル5、これらの固定金具17を組み込む(ステップ67)。組込み後、空間23の表面の磁場強度を測定し(ステップ68)、複数点のデータから空間23の磁場均一度を計算する(ステップ69)。計算結果が目標仕様の3ppmより大きいか低いかを判定し(ステップ70)、3ppmに達しない場合は磁場不均一成分を補償する鉄片シムの位置をパーソナルコンピュータ36で更に計算する。傾斜磁場コイル3やRFコイル5の組込み後は微調整用シムバー28に取付ける鉄片シムの位置計算となり、その計算結果は微調整用シムバー28の位置情報と組み込む鉄シム量とが表となって出力される(ステップ71)。この表に従って所定の鉄片シムを微調シムバー28に組込む(ステップ72)。以後、ステップ68からステップ72までのステップを空間23の磁場均一度が目標仕様の例えば3ppm以下になるまで繰返し、一連のシミング作業を完了する。
【0039】
なお、本実施形態において患者テーブル13の位置は、図4の実施形態のように最初の粗調整時(ステップ61〜66)に検査時と同じ位置にしてもよいし、周辺ユニット組み込み後の微調整時(ステップ67〜72)に検査時と同じ位置にしてもよい。
また上記実施形態では、磁場均一度の調整をシム片の位置と鉄シム量とで調整する場合を説明したが、シム電流で調整する場合にも本発明を適用することが可能である。
【0040】
本実施形態によれば、初期の粗調整時には、作業しやすい静磁場発生磁石2の形態でシミングを行なうことができ、また磁場環境を実際の被検者を検査する状態に近づけた後では、シムトレーへの磁性体小片の貼り付けを伴わないシムバーのみの調整で高精度なシミングを達成できるので、作業性を大幅に改善することができる。
【0041】
【発明の効果】
本発明によれば、磁場環境の観点では磁場均一度の調整時と被検者の検査時の状態が同一になるので、調整時の磁場均一度を向上させておけば被検者の検査時の磁場均一度が最も良くなる。よって、高均一度の磁場空間でMRIの検査を実施することができ、検査結果の画像やスペクトルに対して高い信頼性を確保することができる。更に、高均一度を反映した、新しい検査手法の適用が可能となる効果がある。
【図面の簡単な説明】
【図1】本発明が適用されるMRI装置の全体構成を示す図。
【図2】図1のMRI装置の静磁場発生磁石と磁場調整手段を示す図。
【図3】本発明の磁場調整方法に用いる磁場測定装置の概略を示す図。
【図4】本発明の磁場均一度調整方法の一手順を示すフローチャート図。
【図5】磁場不均一度の測定を説明する図
【図6】本発明の磁場均一度調整方法の他の手順を示すフローチャート図。
【符号の説明】
1……被検体
2……静磁場発生磁石
3……傾斜磁場コイル
5……高周波コイル
13……患者テーブル
17……固定金具
24、25……シムトレー
26……磁性体小片
28……微調整用シムバー
32……プロッタ

Claims (3)

  1. 被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間に被検体を搬入・搬出する搬送手段とを備えた磁気共鳴イメージング装置の磁場の均一度を調整する方法であって、
    前記搬送手段を磁気共鳴イメージング装置による検査時と同じ位置に設定する第1ステップ、前記搬送手段を設定後、磁場検出手段を前記空間内で移動させて前記空間の磁場均一度を測定する第2ステップ、測定した磁場均一度に基づき前記調整手段による調整量を求め第3ステップ、及び前記調整量に基づき前記調整手段を機能させる第4ステップを含み、
    前記第1ステップは、前記空間に傾斜磁場を印加するための傾斜磁場発生コイルを前記空間に配置する前に行い、前記第4ステップは、前記調整手段を機能させた後に、前記傾斜磁場発生コイルを配置することを特徴とする磁気共鳴イメージング装置の磁場均一度調整方法。
  2. 被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間内に配置され、前記空間に高周波磁場及び傾斜磁場をそれぞれ発生する磁場発生コイルと、前記空間に被検体を搬入・搬出する搬送手段とを備えた磁気共鳴イメージング装置の磁場の均一度を調整する方法であって、
    前記空間に前記磁場発生コイルを配置する前に前記搬送手段を磁気共鳴イメージング装置による検査時と同じ位置に設定するステップ、前記搬送手段を設定後、前記空間の磁場均一度を測定するステップ、測定した磁場均一度が所定の均一度以上のときに前記磁場発生コイルを前記空間内に配置するステップ、前記磁場発生コイルを配置した後に前記空間の磁場均一度を測定するステップ、測定した磁場均一度に基づき前記調整手段による調整量を求めるステップ、及び前記調整量に基づき前記調整手段を機能させるステップを含む磁気共鳴イメージング装置の磁場均一度調整方法。
  3. 被検体の置かれる空間に均一な静磁場を発生する静磁場発生手段と、前記静磁場発生手段の均一度を調整する磁場調整手段と、前記空間に配置され、前記空間に高周波磁場及び傾斜磁場をそれぞれ発生する磁場発生コイルと、前記空間に被検体を搬入・搬出する搬送手段とを備えた磁気共鳴イメージング装置において、
    前記磁場調整手段は、前記搬送手段が前記空間に搬入された状態で磁場検出手段を前記空間内で移動させて取得した前記均一度情報に基づいて前記均一度を調整し、
    前記均一度情報は、前記磁場発生コイルを前記空間から除去した状態で取得された第1の均一度情報と、前記磁場発生コイルを前記空間内に配置した状態で取得された第2の均一度情報を有することを特徴とする磁気共鳴イメージング装置。
JP2002242147A 2002-08-22 2002-08-22 開放型mri装置の磁場均一度調整方法 Expired - Fee Related JP3934010B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242147A JP3934010B2 (ja) 2002-08-22 2002-08-22 開放型mri装置の磁場均一度調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242147A JP3934010B2 (ja) 2002-08-22 2002-08-22 開放型mri装置の磁場均一度調整方法

Publications (3)

Publication Number Publication Date
JP2004073752A JP2004073752A (ja) 2004-03-11
JP2004073752A5 JP2004073752A5 (ja) 2005-07-07
JP3934010B2 true JP3934010B2 (ja) 2007-06-20

Family

ID=32024420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242147A Expired - Fee Related JP3934010B2 (ja) 2002-08-22 2002-08-22 開放型mri装置の磁場均一度調整方法

Country Status (1)

Country Link
JP (1) JP3934010B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5670037B2 (ja) * 2009-09-28 2015-02-18 株式会社日立メディコ 静磁場測定器
IT1397713B1 (it) * 2010-01-22 2013-01-24 Esaote Spa Macchina per risonanza magnetica nucleare con mezzi per la correzione dell'omogeneità del campo magnetico.
CN113466765A (zh) * 2020-03-31 2021-10-01 通用电气精准医疗有限责任公司 磁共振扫描方法及系统、计算机可读存储介质

Also Published As

Publication number Publication date
JP2004073752A (ja) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4037272B2 (ja) 磁気共鳴イメージング装置及びそれに用いられる静磁場発生装置
JP2015039635A (ja) 種々の形式のシムコイルを使用する磁気共鳴トモグラフィシステムの特に患者に適応した静磁場均一化方法
US9903927B2 (en) Apparatus and method for canceling magnetic fields
US11209513B2 (en) Method and system for compensating stray magnetic fields in a magnetic resonance imaging system
US6799366B2 (en) Magnetic resonance imaging apparatus assembly method
JP6308794B2 (ja) パルス状の補償傾斜磁場を有するmr装置
KR101682198B1 (ko) 자기공명영상장치 및 그 제조방법
US10156619B2 (en) Magnetic resonance imaging system, static magnetic field homogeneity adjusting system, magnetic field homogeneity adjusting method, and magnetic field homogeneity adjusting program
JP2005515051A (ja) Mr装置用のコイルシステム及び上記コイルシステムを具備するmr装置
RU2716870C2 (ru) Система магнитно-резонансных исследований, имеющая зонды для исследования поля
JP3934010B2 (ja) 開放型mri装置の磁場均一度調整方法
US7372265B2 (en) Compensation of magnetic field disturbances due to vibrations in an MRI system
JPS62189056A (ja) 磁界の均質性を改善する方法
JP5670037B2 (ja) 静磁場測定器
US9182465B2 (en) MRT gradient system with integrated main magnetic field generation
US20030094949A1 (en) Method for calculating conductor paths in a switched gradient coil system, and magnetic resonance tomography apparatus employing such a switched gradient coil system
JP3887082B2 (ja) 磁気共鳴イメージング装置
WO1998042256A1 (fr) Dispositif d'inspection a resonance magnetique
JP4107799B2 (ja) Mri装置
JP4528389B2 (ja) 磁気共鳴診断装置
JP3748657B2 (ja) 磁気共鳴検査装置
JPH05300896A (ja) 磁気共鳴イメージング装置
JP2002263080A (ja) 磁気共鳴イメージング装置
JP2013146283A (ja) 磁気共鳴イメージング装置
JP2003290173A (ja) 開放型mri装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees