JP3933985B2 - Manufacturing method of laminate - Google Patents

Manufacturing method of laminate Download PDF

Info

Publication number
JP3933985B2
JP3933985B2 JP2002130445A JP2002130445A JP3933985B2 JP 3933985 B2 JP3933985 B2 JP 3933985B2 JP 2002130445 A JP2002130445 A JP 2002130445A JP 2002130445 A JP2002130445 A JP 2002130445A JP 3933985 B2 JP3933985 B2 JP 3933985B2
Authority
JP
Japan
Prior art keywords
laminate
film
laminated
base material
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002130445A
Other languages
Japanese (ja)
Other versions
JP2003320635A (en
Inventor
治 白崎
秀夫 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kasei Co Ltd
Original Assignee
Toho Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kasei Co Ltd filed Critical Toho Kasei Co Ltd
Priority to JP2002130445A priority Critical patent/JP3933985B2/en
Publication of JP2003320635A publication Critical patent/JP2003320635A/en
Application granted granted Critical
Publication of JP3933985B2 publication Critical patent/JP3933985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層体の製造方法に関し、さらに詳しくは、加熱により積層材料を基材に積層させることからなる改良された積層体の製造方法に関する。
【0002】
【従来の技術】
フッ素樹脂を基材に積層する方法としては、フッ素樹脂フィルムまたはシートを加熱して基材の片面または両面に圧着させる方法、溶融フッ素樹脂を基材と共押出する方法、フッ素樹脂ディスパージョンを基材に(浸漬、噴霧等により)適用して基材にフッ素樹脂を含浸させる方法などがある。基材は、主として無機材料から形成され、例えば、ガラス繊維、カーボン繊維、アラミド繊維等の無機繊維のクロス、ニット類、金属線を使用した金網類が挙げられる。また、有機材料、例えば耐熱性に優れたアラミド繊維のクロス、ニットなども、基材と使用できる。
【0003】
しかしながら、フッ素樹脂は他の樹脂に比較して比重が高く、静電気も発生し易いことから、扱いが困難であり、上記の積層方法にもそれぞれ問題点がある。
例えば、含浸法では、ばらつきのない厚みの積層体を得るには、ディスパージョンの粘度、ディスパージョン中のフッ素樹脂濃度、分散に用いる界面活性剤の種類等を適切に選択する必要がある。また、界面活性剤によっては、臭気があり、含浸物を乾燥させる際に、臭気対策を講じる必要がある。
【0004】
ロールを用いてフィルムまたはシートを基材に積層(ラミネート)する方法の場合、特に両面積層では、ロールからの離型性が最も大きい問題である。また、フッ素樹脂の融点が高いため、耐熱性のよいロールを用いる必要があるが、現在ロールの温度分布を最適にするために使用されている熱媒体(シリコーン、ナフタレンなど)の性質から、ロールの耐熱限界は、約400℃であると言われており、フッ素樹脂を十分に溶融させてラミネートするには不十分である。また、ロールで溶融フッ素樹脂フィルムまたはシートを金網等の基材にラミネートすると、金属線上では膜厚が薄くなり、積層したフッ素樹脂フィルムまたはシートの均一性が損なわれ、薄くなった部分でフィルムまたはシートが破れやすくなる。ロール表面の異物が積層体表面に付着するという問題も生じる。さらに、ロールクリアランスが均一でない場合、あるいはロールにひずみ・たわみが生じた場合、積層体の厚さが不均一になる。
【0005】
加えて、上記した従来の積層方法のいずれであっても、積層体の寸法が大きくなるにつれ、装置が大型になり、装置設置のための費用が莫大なものになる。
【0006】
【発明が解決しようとする課題】
本発明が解決しようする課題は、上記のような含浸法およびロールを使用した積層方法に見られる問題を解決した、新規な積層方法を提供することである。
【0007】
【課題を解決するための手段】
本発明によれば、上記の課題は、基材に積層材料を重ね、基材と積層材料との間の空間を、重ねた基材と積層材料の外側に対して、減圧に保ちながら、外部からの力を加えずに、該減圧を適用する個所から最も遠い個所から加熱を開始し、該減圧を適用する個所に向けて積層材料を外側から加熱して、基材に積層材料を積層することを特徴とする積層体の製造方法により解決される。
【0008】
【発明の実施の形態】
本発明において使用する積層材料としては、加熱により柔軟になり、融着できる材料ならいずれも使用できる。例えば、融点が約80℃の汎用樹脂から融点が327℃以上のポリテトラフルオロエチレン(PTFE)などのフッ素樹脂まで、あらゆる重合体材料が使用できる。とりわけ、フッ素樹脂としては、PTFE、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリフッ化ビニリデン(PVDF)などの、透明なフッ素樹脂から半透明ないし不透明なフッ素樹脂まで、いずれも本発明の方法に使用できる。
【0009】
積層体を着色する必要がある場合、積層材料としてカラーフィルムを使用すればよい。あるいは、透明な積層材料を用い、基材と積層材料との間にカラーフィルムを挟んでもよい。この場合、積層材料が減圧により基材に密着するので、挟んだカラーフィルムの位置がずれることはないので、模様を忠実に形成することができる。
【0010】
耐磨耗性に優れた積層体が必要とされる場合には、ガラス繊維、カーボン繊維等の無機充填補強剤を積層材料に添加することができる。また、積層体表面への異物付着防止性、帯電防止性が要求される場合には、カーボン、グラファイト等の導電性添加剤を積層材料に添加すればよい。
【0011】
基材としては、従来の積層体に使用されている、主として無機材料から形成された基材、例えば、ガラス繊維、カーボン繊維、アラミド繊維等の無機繊維のクロス、ニット類、金属線を使用した金網類などが使用できる。
基材を磁性材料から製造した場合、電磁誘導により基材を発熱させることができるので、積層体を面状発熱体またはフィルムヒーターとして使用することができる。あるいは、基材を発熱性材料で作ることもできる。
【0012】
本発明の積層方法では、基材と積層材料との間の空間が減圧にされているので、積層材料を加熱して柔軟化すると、減圧により積層材料が基材に融着される。従って、本発明の積層方法では、外部からの力(減圧により生じる力以外の力)を加えずに積層材料を積層するのが好ましい。しかし、融着を促進するために、ロール等の手段により外部から圧力を加えてもよい。
減圧の程度および加熱温度は、積層材料(フィルム等)の融点、厚み、積層枚数等により決定される。例えば、25μm厚のフィルム2枚を積層する場合であれば、減圧程度を小さくするか、あるいは加熱温度を融点近くの比較的低い温度にすることが望ましい。一方、1000μm厚のフィルム2枚を積層する場合であれば、加熱温度を融点よりも比較的高い温度にするか、あるいは減圧程度を大きくするのが望ましい。加熱速度、例えば熱風の流量は、フィルムの厚みに依存して調節するのが望ましい。積層材料の融点以上に加熱すると、強度が極端に低下し、薄い積層材料であれば破壊される恐れがあるからである。
【0013】
積層材料は、減圧を適用できるなら、どのような形状、寸法のものであってもよいが、好ましくは減圧を適用する個所以外では、積層材料と基材との間が外部と遮断されていることが好ましい。例えば、積層材料の2枚のフィルムまたはシートを重ね合わせ、減圧を適用するための部分を除いて周囲を封止しておく。あるいは、面状の気体非透過性部材の上に基材を配置し、基材を覆うように積層材料を配置し、気体非透過性部材に積層材料周縁を封止してもよい。封止は、積層材料のフィルムまたはシートの周縁を熱融着してもよいし、周縁に接着テープ等を張り付けてもよい。
【0014】
加熱は、どのように行ってもよいが、好ましくは、減圧を適用する個所から最も遠い個所から加熱を開始し、減圧を適用する個所に向かって加熱個所を移動させる。移動速度は特に限定されないが、積層材料が基材に対して十分融着されるように調節する。
【0015】
加熱手段は特に限定されないが、好ましくは熱風を熱源として使用する。他の加熱手段、例えばヒーター等からの輻射熱も用いることができる。いずれの場合にも、加熱手段は、積層材料と直接接触しないようにして用いるのが好ましい。
本発明の方法によれば、広範囲の厚さの積層体が製造でき、例えば全体の厚さが25μm〜20mm程度の積層体を製造することができる。加熱を適切に行えば、これより薄いまたは厚い積層体も製造することができる。
【0016】
本発明の方法により製造した積層体は、種々の用途に利用できる。代表的な用途は以下の通りである。
1.建築物の屋根材、壁材(例えば、膜構造建築物の構造材、車庫の屋根等)、融雪屋根、温室材料(屋根、壁、窓等)
2.屋上防水シート
3.屋内外の分離シャッター
4.防音(遮音)壁
5.フェンス(垣根)、ベランダ
6.アンテナ
7.排煙道またはダクト
8.耐蝕槽
9.鉄道融雪用機器(ポイントや信号の融雪用)
10.面状発熱体、フィルムヒーター、床、壁または天井暖房用パネル
11.投げ込みヒーター
12.防爆膜
13.プリント基盤
14.建築物の免振盤(または装置)
15.自動車用幌
16.防汚膜
【0017】
【実施例】
以下、実施例を示し、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0018】
実施例1
積層材料として、ダイキン工業株式会社製変性PTFE(M112)の100μm厚フィルム(400mm幅×800mm)を用いた。一方、SUS304金網(8メッシュ;線径約0.54mmφ)(350mm角)を300℃で空焼きして、基材として用いた。
【0019】
清浄化した台の上に、先ず変性PTFEフィルムをシワがないように広げ、変性PTFEフィルムの半分(一端から長さ400mm部分)上にSUS304金網を載せた後、その上にPTFEフィルムの残り半分を折り返し、3層構造の仮積層体とした。
次ぎに仮積層体の一部に真空吸引孔を残して3層構造仮積層体全周を密封シールした。続いて、真空ポンプを使用し、真空吸引孔からフィルム内部空間を760mmHgGまで減圧にして、密封したフィルム内部の空気を除去し、3層構造の前駆積層体を形成した。
【0020】
次いで、360℃に昇温した2台の熱風溶接機を用い、吸引しながらの前駆積層体の端部(真空吸引孔から遠い端部)の両面に熱風を吹き付けて変性PTFEフィルムを加熱した。この際、前駆積層体表面と溶接機ノズル先端との間隔は約5〜7mmを保った。加熱により変性PTFEフィルムは、透明になった。その状態で、熱風溶接機のノズルを真空吸引孔に向けて移動させ、前駆積層体全体を溶着した。変性PTFEフィルムは金網と密着した。溶接機ノズルがフィルム上を通過した後でフィルムを冷却して、半透明の変性PTFEフィルムが金網の両側に積層された積層体を得た。フィルム内部に残留気泡は見られなかった。
【0021】
積層体の剥離強度の測定
得られた積層体を10mm幅にカットした後、島津製作所製オートグラフを用いて、剥離速度100mm/分で180°剥離試験をおこなった。剥離強度は0.3〜0.7kgf/cmであった。剥離途中でフィルムが破断する場合もあった。
【0022】
実施例2
積層材料として、ダイキン工業株式会社製PTFE(M12)の100μm厚フィルム(400mm幅×800mm)1枚、およびダイキン工業株式会社製PFAの50μm厚フィルム(350mm角)1枚を用いた。一方、実施例1で用いたのと同じSUS304金網を基材として用いた。
【0023】
清浄化した台の上に、まず変性PTFEフィルムを広げ、変性PTFEフィルムの半分上にSUS304金網を置き、更にその上にPFAフィルムを置いた後、PFAフィルム上に変性PTFEフィルムの残り半分を折り返し、4層構造の仮積層体とした。
次ぎに仮積層体の一部に真空吸引孔を残して4層構造仮積層体全周を密封シールした。続いて、真空ポンプを使用し、真空吸引孔からフィルム内部空間を760mmHgGまで減圧にして、密封したフィルム内部の空気を除去し、4層構造の放出し前駆積層体を形成した。
【0024】
次いで、実施例1と同様に、前駆積層体の一端から真空吸引孔に向かって前駆積層体を加熱して、金網とフィルムとが溶着された積層体を得た。フィルム内部に残留気泡は見られなかった。
【0025】
積層体の剥離強度の測定
得られた積層体について、実施例1と同様の手順で180°剥離試験を行った。剥離強度は1.3〜1.46kgf/cmであった。
【0026】
実施例3
積層材料として、ダイキン工業株式会社製変性PTFE(M112)の250μm厚フィルム(400mm幅×800mm)1枚、およびダイキン工業株式会社製PFAの50μm厚フィルム(350mm角)1枚を用いた。一方、実施例1で用いたのと同じSUS金網を基材として用いた。
【0027】
清浄化した台の上に、先ず変性PTFEフィルムを広げ、変性PTFEフィルムの半分上にPFAフィルムをシワなく置き、更にその上にSUS304金網を載せた後、更にその上に変性PTFEフィルムの残り半分を折り返し、4層構造の仮積層体とした。
【0028】
次に、仮積層体の一部に真空吸引孔の部分を残して4層構造仮積層体の全周を密封シールした。続いて、真空ポンプを使用して、真空吸引孔からフィルム内部空間を760mmHgGまで減圧して、密封したフィルム内部の空気を除去し、4層構造の前駆積層体を形成した。
【0029】
次いで、実施例1と同様に、前駆積層体の一端から真空吸引孔に向かって前駆積層体を加熱して、金網とフィルムとが溶着された積層体を得た。フィルム内部に残留気泡は見られなかった。
【0030】
積層体の剥離強度の測定
得られた積層体について、実施例1と同様の手順で180°剥離試験を行った。剥離強度は3.5〜3.9kgf/cmであった。
【0031】
実施例4
積層材料として、ダイキン工業株式会社製変性PTFE(M112)の100μm厚フィルム(400mm幅×800mm)1枚、およびダイキン工業株式会社製PFAの50μm厚フィルム(350mm角)2枚を用いた。一方、ガラスクロス(粗目)(350mm角)を350℃で空焼きし、ガラスクロスにシリコーンを含浸・乾燥・焼付けして、基材として用いた。
【0032】
清浄化した台上に、変性PTFEフィルムをシワなく広げ、その半分上にPFAフィルム1枚を置き、次いで350mm角のガラスクロスを置き、更にガラスクロス上にPFAフィルムの残りの1枚を重ねた。次いで、変性PTFEフィルムの残り半分を折り返し、5層構造の仮積層体とした。
次ぎに、仮積層体の一部に真空吸引孔を残して5層構造仮積層体全周を密封シールした。続いて、真空ポンプを使用し、吸引孔からフィルム内部空間を760mmHgGまで減圧にして、密封したフィルム内部の空気を除去し、5層構造の前駆積層体を形成した。
【0033】
次いで、実施例1と同様に、前駆積層体の一端から真空吸引孔に向かって前駆積層体を加熱して、金網とフィルムとが溶着された積層体を得た。フィルム内部に残留気泡は見られなかった。
【0034】
積層体の剥離強度の測定
得られた積層体について、実施例1と同様の手順で180°剥離試験を行った。剥離は、基材部分で生じ、剥離強度は0.6〜0.8kgf/cmであった。
【0035】
実施例5
ダイキン工業株式会社製PFAフィルムAF−0100(厚み100μm)を幅400mm、長さ80cmに切断したものを積層材料として用いた。一方、SUS304金網(8メッシュ)(350mm角)を基材として用いた。
【0036】
清浄化した台上に、PFAフィルムを広げその半分(40cm)にSUS304金網を置き、PFAフィルムの残り半分を折り返し、3層構造の仮積層体とした。次ぎに、仮積層体の一部に真空吸引孔を残して3層構造仮積層体の全周を密閉シールした。続いて、真空ポンプを使用し、真空吸引孔からフィルム内部空間を760mmHgGまで減圧にして、3層構造の前駆積層体を形成した。
【0037】
熱風溶接機(スイス、ライスター社製)を用い、前駆積層体の真空吸引孔から最も遠い部分の積層体端部の両面に360〜370℃の熱風を吹き付け、フィルムを完全に透明になるまで加熱溶融し、その状態を保ちながら、熱風溶接機を真空吸引孔に向けて移動させ、前駆積層体全体を融着した。
【0038】
実施例1と同様の剥離試験を行ったところ、剥離強度は0.8〜1kg/cmであったが、大部分でフィルムが破断した。すなわち、フィルムと金網とは強固に接着されていた。
【0039】
実施例6
ダイキン工業株式会社製PFAフィルムAF−0500(厚み500μm)を幅400mm、長さ80cmに切断したものを積層材料として用い、SUS304金網(30メッシュ)(350mm角)を基材として用いた以外は実施例5と同様の手順で、積層体を製造した。
加熱により透明になったPFAフィルムは、吸引された金網内へ入り込んだ。フィルム表面は比較的凹凸が少なく、良好な積層体が得られた。
実施例1と同様の手順で180℃剥離試験をおこなった。剥離強度は6.3〜7.5kgf/cmであった。試験片の大部分は破断した。
【0040】
実施例7
積層材料として、ダイキン工業株式会社製変性PTFE(M112)の0.5mm厚フィルム(400mm幅×80cm)1枚、およびダイキン工業株式会社製PFAフィルムAF−0100(350mm角)2枚を用いた。一方、SUS304パンチングメタル板(厚み0.3mm;350mm角;直径0.5mmφの孔を約39000個穿孔)1枚を、基材として用いた。
清浄化した台の上に、変性PTFEフィルムを広げ、変性PTFEフィルムの半分上に、一方のPFAフィルム、パンチングメタル板および他方のPFAフィルムをこの順に重ね、次いでPTFEフィルムの残り半分を折り返し5層構造の仮積層体とした。
【0041】
次ぎに、仮積層体の一部に真空吸引孔を残して仮積層体全体を密閉シールし、真空ポンプを使用して、真空吸引孔からフィルム内部空間を760mmHgGまで減圧にした。続いて、360〜380℃の熱風ヒーターを用い、真空吸引孔の反対側のフィルム端部を両面から加熱した。加熱により、変性PTFEフィルムは透明状態となった。加えて、フィルムの溶融粘度が低下して樹脂はパンチングメタルの0.5φ孔に入り込んだ。同時に、熱風ヒーターを真空吸引孔に向けて順次移動させて、仮積層体角全体を焼成し、パンチングメタル板を基材とする積層体を形成した。
【0042】
パンチングメタル板の孔に樹脂が入り込み、孔を通して表裏のフィルムが結合され、5層構造を有する一枚の積層体が得られた。
この場合、SUS板を、ブラスト処理する、またはプライマなどを用いて表面処理すると、フッ素樹脂(PTFE、PFAなど)のSUSに対する接着性は更に向上する。
【0043】
実施例8
積層材料として、ダイキン工業株式会社製変性FEPフィルム(NF−0500)の500μm厚フィルム(400mm幅×80cm)1枚を用いた。一方、ガラスクロス(厚み0.3mm)(350mm角)1枚を、基材として用いた。
【0044】
清浄化した台の上に、FEPフィルムを広げ、FEPフィルムの半分上にガラスクロスを載せた後、その上にPTFEフィルムの残り半分を折り返し、3層の仮積層体を形成した。
【0045】
次ぎに仮積層体の一部に真空吸引孔を残して仮積層体の外周を密閉シールし、真空ポンプを使用して吸引孔からフィルム内部空間を760mmHgGまで減圧した。その後、熱風溶接機を用い、360〜380℃の熱風により、真空吸引孔と反対側にあるフィルム端部の両面を加熱し、FEPフィルムが透明になったことを確認しながら徐々に溶接機を吸引孔に向けて移動して、積層体を形成した。
剥離強度は、7〜8kgf/cmであり、試験片の大半でフィルムが破断した。
【0046】
実施例9
アルミ板(厚み1.5mm;400mm角)1枚、300℃で熱処理後シリコーン含浸処理したガラスクロス(350mm角)1枚、ダイキン工業製PFAフィルム(厚み50μm;5〜7%延伸;340mm角)1枚、およびダイキン工業株式会社製変性PTFE(M112;5〜7%延伸)の100μm厚フィルム(400mm角)1枚を用意した。
まずアルミ板表面をアセトンにより清浄化し、その上にガラスクロスを置き、その上にPFAフィルムおよびPTFEフィルムを重ねて4層の仮積層体とし、真空吸引孔を残してアルミ板とPTFEとの間を密封した。
【0047】
真空ポンプを使用し、真空吸引孔から仮積層体内の空間を760mmHgGまで減圧にして、前駆積層体を形成した。
更に真空吸引しながら、擬装積層体の真空吸引孔から最も遠い端部の両側から370℃の熱風溶接機で加熱し、加熱部分を真空吸引孔に向けて移動してフッ素樹脂フィルムを加熱溶着した。その後、アルミ板を除去して、ガラスクロスの片面にPFAフィルムおよびPTFEフィルムが積層された積層体を得た。
なお、積層時に基材の凹凸が小さい場合、延伸フィルムを使用することにより加熱時に発生する膨張を吸収でき、積層体のシワ発生率が大幅に減少することが確認された。
【0048】
【発明の効果】
本発明の積層方法によれば、加熱ロール等の加熱器具を積層材料、例えばフッ素樹脂フィルムまたはシートに直接接触させずに、積層(ラミネート)することができる。また、積層体が汚染されにくい。加熱積層後に積層体を加圧することは可能である。加熱源及び加圧源に積層材料が接触しないため、離型の問題が生じない。
加熱を間接的に行えるので、簡単に広幅、長尺の積層体製品が製造できる。加圧しないので、積層体の厚みのバラツキが非常に小さい。加熱を積層フィルムの融点以上で行うので、微妙な温度コントロールは必要ない。
基材が繊維からなる場合、繊維部分上でフィルムの膜切れが生じない。
ロールを用いないので、センターずれによるしわが発生しない。
積層材料の積層前後に基材が他の物品に接触しないため、基材となる金網、ガラスクロス等の目ずれが起こらない。
減圧吸引しながら積層するので、積層体内部に気泡が残留しない。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a laminate, and more particularly to an improved method for producing a laminate comprising laminating a laminate material on a substrate by heating.
[0002]
[Prior art]
The method of laminating the fluororesin on the base material is to heat the fluororesin film or sheet and press it on one or both sides of the base material, to co-extrude the molten fluororesin with the base material, or based on the fluororesin dispersion. For example, there is a method of impregnating a base material with a fluororesin by applying to the material (by dipping, spraying, etc.). The base material is mainly formed of an inorganic material, and examples thereof include cloth of inorganic fibers such as glass fibers, carbon fibers, and aramid fibers, knits, and wire mesh using metal wires. Organic materials such as aramid fiber cloths and knits having excellent heat resistance can also be used as the base material.
[0003]
However, the fluororesin has a higher specific gravity than other resins and easily generates static electricity, so that it is difficult to handle, and the above laminating methods also have problems.
For example, in the impregnation method, in order to obtain a laminate having a uniform thickness, it is necessary to appropriately select the dispersion viscosity, the fluororesin concentration in the dispersion, the type of surfactant used for dispersion, and the like. Some surfactants have an odor, and it is necessary to take measures against the odor when the impregnated product is dried.
[0004]
In the case of laminating (laminating) a film or sheet on a substrate using a roll, particularly in double-sided lamination, the release property from the roll is the biggest problem. Also, since the melting point of fluororesin is high, it is necessary to use a roll with good heat resistance. However, because of the nature of the heat medium (silicone, naphthalene, etc.) currently used to optimize the temperature distribution of the roll, The heat resistance limit is said to be about 400 ° C., which is insufficient for laminating the fluororesin sufficiently. In addition, when a molten fluororesin film or sheet is laminated to a substrate such as a wire mesh with a roll, the film thickness is reduced on the metal wire, the uniformity of the laminated fluororesin film or sheet is impaired, and the film or The sheet is easily torn. Another problem is that foreign matter on the roll surface adheres to the surface of the laminate. Further, when the roll clearance is not uniform, or when the roll is distorted or bent, the thickness of the laminate becomes non-uniform.
[0005]
In addition, in any of the conventional lamination methods described above, as the size of the laminate increases, the device becomes larger and the cost for installing the device becomes enormous.
[0006]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a novel lamination method that solves the problems found in the above-described impregnation method and lamination method using rolls.
[0007]
[Means for Solving the Problems]
According to the present invention, the above problem is repeatedly laminated material to a substrate, the space between the substrate and the laminate material, with respect to the outer and overlapping substrate laminate material, while maintaining the vacuum, an external Heating is started from a position farthest from the place where the reduced pressure is applied without applying a force from the outside, and the laminated material is heated from the outside toward the place where the reduced pressure is applied, and the laminated material is laminated on the substrate. It is solved by the manufacturing method of the laminated body characterized by this.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As the laminated material used in the present invention, any material can be used as long as it becomes flexible by heating and can be fused. For example, any polymer material can be used, from a general-purpose resin having a melting point of about 80 ° C. to a fluororesin such as polytetrafluoroethylene (PTFE) having a melting point of 327 ° C. or higher. In particular, fluororesins include PTFE, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-hexafluoropropylene copolymer (FEP), polyfluoride. Any of a transparent fluororesin and a translucent or opaque fluororesin such as vinylidene (PVDF) can be used in the method of the present invention.
[0009]
When it is necessary to color the laminate, a color film may be used as the laminate material. Alternatively, a transparent laminate material may be used, and a color film may be sandwiched between the base material and the laminate material. In this case, since the laminated material is brought into close contact with the base material under reduced pressure, the position of the sandwiched color film is not shifted, so that the pattern can be formed faithfully.
[0010]
When a laminate excellent in abrasion resistance is required, an inorganic filler reinforcing agent such as glass fiber or carbon fiber can be added to the laminate material. In addition, in cases where foreign matter adhesion prevention and antistatic properties are required on the surface of the laminate, a conductive additive such as carbon or graphite may be added to the laminate material.
[0011]
As a base material, the base material mainly used for the laminated body formed from the inorganic material, for example, glass fiber, carbon fiber, inorganic fiber cloth such as aramid fiber, knit, metal wire was used. Wire mesh can be used.
When the substrate is manufactured from a magnetic material, the substrate can be heated by electromagnetic induction, so that the laminate can be used as a planar heating element or a film heater. Alternatively, the substrate can be made of an exothermic material.
[0012]
In the laminating method of the present invention, since the space between the base material and the laminated material is reduced in pressure, when the laminated material is heated and softened, the laminated material is fused to the base material by the reduced pressure. Therefore, in the laminating method of the present invention, it is preferable to laminate the laminating material without applying external force (force other than force generated by decompression). However, in order to promote fusion, pressure may be applied from the outside by means such as a roll.
The degree of depressurization and the heating temperature are determined by the melting point, thickness, number of laminated layers, etc. of the laminated material (film or the like). For example, in the case of laminating two 25 μm-thick films, it is desirable to reduce the degree of decompression or set the heating temperature to a relatively low temperature near the melting point. On the other hand, when two films having a thickness of 1000 μm are laminated, it is desirable to set the heating temperature to a temperature relatively higher than the melting point or to increase the degree of pressure reduction. It is desirable to adjust the heating rate, for example, the flow rate of hot air, depending on the thickness of the film. This is because, when heated to the melting point or higher of the laminated material, the strength is extremely lowered, and if it is a thin laminated material, it may be destroyed.
[0013]
The laminate material may have any shape and size as long as it can apply a reduced pressure, but preferably the laminate material and the substrate are shielded from the outside except where the reduced pressure is applied. It is preferable. For example, two films or sheets of laminated material are overlapped, and the periphery is sealed except for a portion for applying reduced pressure. Or a base material may be arrange | positioned on a planar gas impermeable member, a laminated material may be arrange | positioned so that a base material may be covered, and a laminated material peripheral edge may be sealed to a gas impermeable member. For sealing, the periphery of the film or sheet of the laminated material may be heat-sealed, or an adhesive tape or the like may be attached to the periphery.
[0014]
Heating may be performed in any manner, but preferably, heating is started from a location farthest from the location where the reduced pressure is applied, and the heating location is moved toward the location where the reduced pressure is applied. The moving speed is not particularly limited, but is adjusted so that the laminated material is sufficiently fused to the substrate.
[0015]
The heating means is not particularly limited, but preferably hot air is used as a heat source. Radiant heat from other heating means such as a heater can also be used. In any case, the heating means is preferably used so as not to come into direct contact with the laminated material.
According to the method of the present invention, a laminate having a wide range of thicknesses can be produced. For example, a laminate having an overall thickness of about 25 μm to 20 mm can be produced. With proper heating, thinner or thicker laminates can be produced.
[0016]
The laminate produced by the method of the present invention can be used for various applications. Typical uses are as follows.
1. Building roofing materials, wall materials (eg, membrane construction building materials, garage roofs, etc.), snowmelt roofs, greenhouse materials (roofs, walls, windows, etc.)
2. 2. Rooftop waterproof sheet 3. Indoor / outdoor separation shutter 4. Sound insulation (sound insulation) wall Fences, verandas6. Antenna 7. 7. flue or duct 8. Corrosion resistant tank Railway snow melting equipment (for snow melting of points and signals)
10. 10. Panel heating element, film heater, floor, wall or ceiling heating panel Throw heater 12. Explosion-proof membrane 13. Print substrate 14. Building isolator (or equipment)
15. Automotive hood 16. Antifouling membrane [0017]
【Example】
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to these Examples.
[0018]
Example 1
As the laminated material, a 100 μm thick film (400 mm width × 800 mm) of modified PTFE (M112) manufactured by Daikin Industries, Ltd. was used. On the other hand, SUS304 wire mesh (8 mesh; wire diameter of about 0.54 mmφ) (350 mm square) was baked at 300 ° C. and used as a substrate.
[0019]
First, the modified PTFE film is spread on the cleaned table so that there is no wrinkle, and SUS304 wire mesh is placed on half of the modified PTFE film (the length of 400 mm from one end). Was folded to obtain a temporary laminate having a three-layer structure.
Next, the whole circumference of the three-layer structure temporary laminate was hermetically sealed, leaving a vacuum suction hole in a part of the temporary laminate. Subsequently, using a vacuum pump, the internal space of the film was reduced to 760 mmHgG from the vacuum suction hole to remove the air inside the sealed film, thereby forming a three-layered precursor laminate.
[0020]
Next, using two hot air welders heated to 360 ° C., the modified PTFE film was heated by blowing hot air on both sides of the end portion (end portion far from the vacuum suction hole) of the precursor laminate while sucking. At this time, the distance between the surface of the precursor laminate and the tip of the welder nozzle was kept about 5 to 7 mm. The modified PTFE film became transparent by heating. In this state, the nozzle of the hot air welder was moved toward the vacuum suction hole, and the entire precursor laminate was welded. The modified PTFE film was in close contact with the wire mesh. After the welder nozzle passed over the film, the film was cooled to obtain a laminate in which translucent modified PTFE films were laminated on both sides of the wire mesh. Residual bubbles were not observed inside the film.
[0021]
Measurement of peel strength of laminate After the obtained laminate was cut into a width of 10 mm, a 180 ° peel test was performed at an peel rate of 100 mm / min using an autograph manufactured by Shimadzu Corporation. The peel strength was 0.3 to 0.7 kgf / cm. In some cases, the film was broken during peeling.
[0022]
Example 2
As a laminated material, one 100 μm thick film (400 mm width × 800 mm) of PTFE (M12) manufactured by Daikin Industries, Ltd. and one 50 μm thick film (350 mm square) of PFA manufactured by Daikin Industries, Ltd. were used. On the other hand, the same SUS304 wire mesh used in Example 1 was used as a base material.
[0023]
First, spread the modified PTFE film on the cleaned table, place the SUS304 wire mesh on the half of the modified PTFE film, place the PFA film on it, and then fold the other half of the modified PTFE film on the PFA film. It was set as the temporary laminated body of 4 layer structure.
Next, the entire circumference of the four-layer structure temporary laminate was hermetically sealed, leaving a vacuum suction hole in a part of the temporary laminate. Subsequently, using a vacuum pump, the internal space of the film was reduced to 760 mmHgG from the vacuum suction hole to remove the air inside the sealed film, and a four-layer structure was released to form a precursor laminate.
[0024]
Next, in the same manner as in Example 1, the precursor laminate was heated from one end of the precursor laminate toward the vacuum suction hole to obtain a laminate in which a wire mesh and a film were welded. Residual bubbles were not observed inside the film.
[0025]
Measurement of peel strength of laminate The laminate obtained was subjected to a 180 ° peel test in the same procedure as in Example 1. The peel strength was 1.3 to 1.46 kgf / cm.
[0026]
Example 3
As the laminated material, one 250 μm thick film (400 mm width × 800 mm) of modified PTFE (M112) manufactured by Daikin Industries, Ltd. and one 50 μm thick film (350 mm square) of PFA manufactured by Daikin Industries, Ltd. were used. On the other hand, the same SUS wire mesh used in Example 1 was used as a base material.
[0027]
First, the modified PTFE film is spread on a cleaned table, the PFA film is placed on the modified PTFE film half without wrinkles, and a SUS304 wire mesh is further placed thereon, and then the remaining half of the modified PTFE film is further deposited thereon. Was folded to form a temporary laminate having a four-layer structure.
[0028]
Next, the entire circumference of the four-layer structure temporary laminate was hermetically sealed, leaving a portion of the vacuum suction hole in a part of the temporary laminate. Subsequently, using a vacuum pump, the internal space of the film was reduced to 760 mmHgG from the vacuum suction hole to remove the air inside the sealed film, thereby forming a four-layered precursor laminate.
[0029]
Next, in the same manner as in Example 1, the precursor laminate was heated from one end of the precursor laminate toward the vacuum suction hole to obtain a laminate in which a wire mesh and a film were welded. Residual bubbles were not observed inside the film.
[0030]
Measurement of peel strength of laminate The laminate obtained was subjected to a 180 ° peel test in the same procedure as in Example 1. The peel strength was 3.5 to 3.9 kgf / cm.
[0031]
Example 4
As a laminated material, one 100 μm thick film (400 mm width × 800 mm) of modified PTFE (M112) manufactured by Daikin Industries, Ltd. and two 50 μm thick films (350 mm square) of PFA manufactured by Daikin Industries, Ltd. were used. On the other hand, glass cloth (coarse) (350 mm square) was baked at 350 ° C., and the glass cloth was impregnated with silicone, dried and baked, and used as a substrate.
[0032]
Spread the modified PTFE film without wrinkles on the cleaned table, place one sheet of PFA film on the half, then place a 350 mm square glass cloth, and then stack the remaining sheet of PFA film on the glass cloth. . Next, the remaining half of the modified PTFE film was folded to obtain a temporary laminate having a five-layer structure.
Next, the entire circumference of the five-layer structure temporary laminate was hermetically sealed, leaving a vacuum suction hole in a part of the temporary laminate. Subsequently, using a vacuum pump, the internal space of the film was reduced to 760 mmHgG from the suction hole to remove the air inside the sealed film, thereby forming a five-layered precursor laminate.
[0033]
Next, in the same manner as in Example 1, the precursor laminate was heated from one end of the precursor laminate toward the vacuum suction hole to obtain a laminate in which a wire mesh and a film were welded. Residual bubbles were not observed inside the film.
[0034]
Measurement of peel strength of laminate The laminate obtained was subjected to a 180 ° peel test in the same procedure as in Example 1. Peeling occurred at the substrate portion, and the peel strength was 0.6 to 0.8 kgf / cm.
[0035]
Example 5
A laminate of a PFA film AF-0100 (thickness: 100 μm) manufactured by Daikin Industries, Ltd. cut to a width of 400 mm and a length of 80 cm was used. On the other hand, SUS304 wire mesh (8 mesh) (350 mm square) was used as a substrate.
[0036]
A PFA film was spread on a cleaned table, a SUS304 wire mesh was placed on half of the PFA film (40 cm), and the other half of the PFA film was folded back to form a three-layer temporary laminate. Next, the entire circumference of the three-layer structure temporary laminate was hermetically sealed, leaving a vacuum suction hole in a part of the temporary laminate. Subsequently, using a vacuum pump, the internal space of the film was reduced from the vacuum suction hole to 760 mmHgG to form a three-layered precursor laminate.
[0037]
Using a hot air welder (manufactured by Leister, Switzerland), hot air of 360 to 370 ° C. is blown on both sides of the end of the laminate that is farthest from the vacuum suction hole of the precursor laminate, and the film is heated until it is completely transparent While melting and maintaining that state, the hot air welder was moved toward the vacuum suction hole to fuse the entire precursor laminate.
[0038]
When the same peel test as in Example 1 was performed, the peel strength was 0.8 to 1 kg / cm, but the film was mostly broken. That is, the film and the wire mesh were firmly bonded.
[0039]
Example 6
Implemented except that Daikin Industries, Ltd. PFA film AF-0500 (thickness 500 μm) cut to a width of 400 mm and a length of 80 cm was used as the laminated material, and SUS304 wire mesh (30 mesh) (350 mm square) was used as the base material A laminate was produced in the same procedure as in Example 5.
The PFA film that became transparent by heating entered the sucked wire mesh. The film surface had relatively few irregularities and a good laminate was obtained.
A 180 ° C. peel test was performed in the same procedure as in Example 1. The peel strength was 6.3 to 7.5 kgf / cm. Most of the specimens broke.
[0040]
Example 7
As a laminated material, one 0.5 mm thick film (400 mm width × 80 cm) of modified PTFE (M112) manufactured by Daikin Industries, Ltd. and two PFA films AF-0100 (350 mm square) manufactured by Daikin Industries, Ltd. were used. On the other hand, one SUS304 punched metal plate (thickness 0.3 mm; 350 mm square; about 39000 holes with a diameter of 0.5 mmφ) was used as a substrate.
Spread the modified PTFE film on the cleaned table, and stack one PFA film, punched metal plate and the other PFA film in this order on the half of the modified PTFE film, and then fold the other half of the PTFE film back to 5 layers. It was set as the temporary laminated body of the structure.
[0041]
Next, the entire temporary laminate was hermetically sealed leaving a vacuum suction hole in a part of the temporary laminate, and the internal space of the film was reduced from the vacuum suction hole to 760 mmHgG using a vacuum pump. Then, the film edge part on the opposite side of a vacuum suction hole was heated from both surfaces using the hot air heater of 360-380 degreeC. The modified PTFE film became transparent by heating. In addition, the melt viscosity of the film decreased and the resin entered the 0.5φ hole of the punching metal. At the same time, the hot air heater was sequentially moved toward the vacuum suction hole, and the entire temporary laminated body corner was fired to form a laminated body having a punching metal plate as a base material.
[0042]
Resin entered the holes of the punching metal plate, and the front and back films were bonded through the holes to obtain a single laminate having a five-layer structure.
In this case, when the SUS plate is blasted or surface-treated with a primer or the like, the adhesiveness of fluororesin (PTFE, PFA, etc.) to SUS is further improved.
[0043]
Example 8
As the laminated material, one 500 μm thick film (400 mm width × 80 cm) of a modified FEP film (NF-0500) manufactured by Daikin Industries, Ltd. was used. On the other hand, one glass cloth (thickness 0.3 mm) (350 mm square) was used as a substrate.
[0044]
The FEP film was spread on a cleaned table, and a glass cloth was placed on the half of the FEP film, and then the remaining half of the PTFE film was folded back to form a three-layer temporary laminate.
[0045]
Next, the outer periphery of the temporary laminate was hermetically sealed, leaving a vacuum suction hole in a part of the temporary laminate, and the internal space of the film was reduced from the suction hole to 760 mmHgG using a vacuum pump. Then, using a hot air welder, heat both sides of the film end opposite to the vacuum suction hole with hot air of 360 to 380 ° C., and gradually check the FEP film while making the FEP film transparent. It moved toward the suction hole to form a laminate.
The peel strength was 7 to 8 kgf / cm, and the film broke in most of the test pieces.
[0046]
Example 9
One aluminum plate (thickness 1.5 mm; 400 mm square), one glass cloth (350 mm square) heat-treated at 300 ° C. and impregnated with silicone, Daikin Industries PFA film (thickness 50 μm; stretched 5-7%; 340 mm square) One sheet and one 100 μm-thick film (400 mm square) of modified PTFE (M112; stretched 5 to 7%) manufactured by Daikin Industries, Ltd. were prepared.
First, the surface of the aluminum plate is cleaned with acetone, a glass cloth is placed thereon, a PFA film and a PTFE film are stacked thereon to form a four-layer temporary laminate, and a vacuum suction hole is left between the aluminum plate and PTFE. Sealed.
[0047]
Using a vacuum pump, the space in the temporary laminate was reduced to 760 mmHgG from the vacuum suction hole to form a precursor laminate.
Further, while vacuum suction was applied, heating was performed with a hot air welding machine at 370 ° C. from both sides of the end farthest from the vacuum suction hole of the camouflaged laminate, and the heated portion was moved toward the vacuum suction hole to heat-weld the fluororesin film. . Thereafter, the aluminum plate was removed to obtain a laminate in which a PFA film and a PTFE film were laminated on one side of a glass cloth.
In addition, when the unevenness | corrugation of the base material was small at the time of lamination | stacking, it was confirmed that the expansion | swelling which generate | occur | produces at the time of a heating can be absorbed by using a stretched film, and the wrinkle generation rate of a laminated body reduces significantly.
[0048]
【The invention's effect】
According to the laminating method of the present invention, a heating device such as a heating roll can be laminated (laminated) without directly contacting a laminated material such as a fluororesin film or sheet. Further, the laminate is not easily contaminated. It is possible to pressurize the laminate after heating lamination. Since the laminated material does not contact the heating source and the pressure source, there is no problem of mold release.
Since heating can be performed indirectly, a wide and long laminate product can be easily produced. Since pressure is not applied, the thickness variation of the laminate is very small. Since heating is performed above the melting point of the laminated film, delicate temperature control is not necessary.
When the substrate is made of fibers, film breakage of the film does not occur on the fiber portion.
Since no roll is used, wrinkles due to center misalignment do not occur.
Since the base material does not come into contact with other articles before and after the lamination of the laminated material, misalignment of a wire mesh or a glass cloth as the base material does not occur.
Since the layers are laminated while being sucked under reduced pressure, no bubbles remain inside the laminate.

Claims (4)

基材に積層材料を重ね、基材と積層材料との間の空間を、重ねた基材と積層材料の外側に対して、減圧に保ちながら、外部からの力を加えずに、該減圧を適用する個所から最も遠い個所から加熱を開始し、該減圧を適用する個所に向けて積層材料を外側から加熱して、基材に積層材料を積層することを特徴とする積層体の製造方法。The laminated material is stacked on the base material, and the pressure between the base material and the laminated material is reduced without applying external force while maintaining the reduced pressure with respect to the outer side of the stacked base material and the laminated material. A method for producing a laminate , wherein heating is started from a place farthest from a place to be applied, the laminate material is heated from the outside toward a place to which the reduced pressure is applied, and the laminate material is laminated on a base material. 重ねた積層材料の周縁は、減圧を適用する個所以外では封止されている請求項に記載の積層体の製造方法。 Periphery of the laminate material overlaid method for manufacturing a laminate according to claim 1, which is sealed except in places where vacuum is applied. 積層材料が、フッ素樹脂からなる請求項1または2に記載の積層体の製造方法。The manufacturing method of the laminated body of Claim 1 or 2 in which a laminated material consists of a fluororesin. 加熱を、積層材料の融点以上の温度で行う請求項1〜のいずれかに記載の積層体の製造方法。The manufacturing method of the laminated body in any one of Claims 1-3 which heats at the temperature more than melting | fusing point of a laminated material.
JP2002130445A 2002-05-02 2002-05-02 Manufacturing method of laminate Expired - Fee Related JP3933985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002130445A JP3933985B2 (en) 2002-05-02 2002-05-02 Manufacturing method of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002130445A JP3933985B2 (en) 2002-05-02 2002-05-02 Manufacturing method of laminate

Publications (2)

Publication Number Publication Date
JP2003320635A JP2003320635A (en) 2003-11-11
JP3933985B2 true JP3933985B2 (en) 2007-06-20

Family

ID=29543497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002130445A Expired - Fee Related JP3933985B2 (en) 2002-05-02 2002-05-02 Manufacturing method of laminate

Country Status (1)

Country Link
JP (1) JP3933985B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423943A (en) * 2011-08-19 2012-04-25 北京航空航天大学 Anti-icing coating fabric for membrane structure building, and preparation method thereof
CN106690615A (en) * 2017-03-06 2017-05-24 无锡赛丽特科技有限公司 Environment-friendly and waterproof transfer-printing fabric special for outdoors
CN110626545A (en) * 2019-09-28 2019-12-31 福州市仓山区伟超日用品有限公司 Explosion-proof membrane pad pasting device that fish bowl was used

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087135B2 (en) * 2003-11-14 2006-08-08 Bio Med Sciences, Inc. Process for the manufacture of interpenetrating polymer network sheeting and useful articles thereof
CA2624992C (en) * 2005-10-11 2014-09-16 James W. Thomson Fragrance product, dispenser, and dispenser assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423943A (en) * 2011-08-19 2012-04-25 北京航空航天大学 Anti-icing coating fabric for membrane structure building, and preparation method thereof
CN106690615A (en) * 2017-03-06 2017-05-24 无锡赛丽特科技有限公司 Environment-friendly and waterproof transfer-printing fabric special for outdoors
CN110626545A (en) * 2019-09-28 2019-12-31 福州市仓山区伟超日用品有限公司 Explosion-proof membrane pad pasting device that fish bowl was used

Also Published As

Publication number Publication date
JP2003320635A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
JP5881293B2 (en) Multi-layer article
JP6604396B2 (en) Composite material sheet, sandwich panel, curved panel member, method for producing composite material sheet, and method for producing sandwich panel
KR20010088867A (en) Flexible laminate for flexible circuit
JP2006125631A (en) Vacuum insulation material and manufacturing method thereof
JP3933985B2 (en) Manufacturing method of laminate
JP4384573B2 (en) Laminate for automotive interior ceiling materials
CA1245540A (en) Process for laminating film to woven fabric
JP6179632B2 (en) Incombustible decorative panel
JP4205889B2 (en) Method for producing heat-resistant flexible laminate
JP4383799B2 (en) Sheet material laminated with fluororesin film
KR101901566B1 (en) Manufacturing method of insulating film for building and insulating film for building manufactured by thereof method
JP2013199003A (en) Incombustible decorative panel
JP2002064258A (en) Method of manufacturing heat-resistant flexible board
JP2000079654A (en) Laminate and method for connecting it
JP6294070B2 (en) Method for producing hollow structure plate
JP2005014598A (en) Release laminated film
JP2004181770A (en) Laminate and its manufacturing method
JP2015104833A (en) Flame retardant frp structure
JP2015058548A (en) Noncombustible decorative plate
JP2012183780A (en) Nonflammable decorative board
JPH06238800A (en) Stereostructure forming laminated body with hole
JP2014030926A (en) Noncombustible decorative sheet
KR200370722Y1 (en) Flame retarded sheet for flexible duct
JP2004284222A (en) Fluoroplastic composite sheet and manufacturing method thereof
JPH0522400Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Ref document number: 3933985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees