JP3933823B2 - Surface force measuring apparatus and method - Google Patents

Surface force measuring apparatus and method Download PDF

Info

Publication number
JP3933823B2
JP3933823B2 JP29193899A JP29193899A JP3933823B2 JP 3933823 B2 JP3933823 B2 JP 3933823B2 JP 29193899 A JP29193899 A JP 29193899A JP 29193899 A JP29193899 A JP 29193899A JP 3933823 B2 JP3933823 B2 JP 3933823B2
Authority
JP
Japan
Prior art keywords
sample holder
sample
surface force
elastic member
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29193899A
Other languages
Japanese (ja)
Other versions
JP2001108603A5 (en
JP2001108603A (en
Inventor
和枝 栗原
晴雄 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP29193899A priority Critical patent/JP3933823B2/en
Publication of JP2001108603A publication Critical patent/JP2001108603A/en
Publication of JP2001108603A5 publication Critical patent/JP2001108603A5/ja
Application granted granted Critical
Publication of JP3933823B2 publication Critical patent/JP3933823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、各種試料の表面間に作用する相互作用力(斥力、引力、接着力等)を直接測定する表面力測定装置及びその方法に関する。
【0002】
【発明が解決しようとする課題】
物質における表面間の相互作用の距離依存性を測定することにより、分子間力、表面力、表面近傍の物質構造等を解明でき、生体物質(DNA)や生体関連物質に適用すると、細胞膜における分子認識や細胞間の相互作用のような生態系の特異な分子相互作用を知るための重要な情報が得られる。
【0003】
従来の表面力測定装置としては、例えば特開平9−257810号公報を示すものが提案されている。該公報に記載された表面力測定装置は、被測定表面を対向配置した試料と、一方の試料を載置する試料部を先端にもつカンチレバーと、該カンチレバー又は他方の試料を微小移動させるマイクロステップドライバ駆動のステッピングモータを有する微動機構と、試料表面間距離を計測するための干渉光学系とを備え、微動機構の移動量と光学計測による距離変化とカンチレバーのバネ定数から表面間に働く力の距離依存性を求めて試料の表面力を測定している。
【0004】
この内、試料間の距離変化を等色次数干渉法により測定する表面力測定装置にあっては、光源から照射された光を、一対の試料保持体における円筒面に修飾された試料膜に透過させて分光装置に受光して干渉光の干渉縞を測定することにより表面力を測定しているが、この装置にあっては測定可能な試料としては光が透過可能なものに限定され、光が透過不能な試料については表面力を測定できなかった。
【0005】
また、上記した等色次数干渉法では、干渉光による干渉縞の間隔等を目視により確認して試料表面間の変位を測定するため、測定作業を自動化できない問題を有していた。
【0006】
更に、一方の試料保持体が取り付けられるカンチレバーの撓み量をバイモルフや歪みゲージ等の電気信号により検出して表面力を測定する装置にあっては、バイモルフや歪みゲージ自体にヒステリシスがあるため、測定結果の信頼性が低く、表面力を高い精度及び信頼性で測定できなかった。
【0007】
本発明は上記した欠点を解決するために発明されたものであり、その課題とする処は、光が透過不能な試料であっても、試料間の表面力を高い精度で測定することができる表面力測定装置及びその方法を提供することにある。
【0008】
また、本発明の他の課題は、試料表面間に作用する表面力の測定を自動化することができる表面力測定装置及びその方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の請求項1は、チャンバー内に設けられる第1試料保持体と、先端部が第1試料保持体に相対して撓み変形可能で、所定のばね定数からなる弾性部材と、該弾性部材の先端部に設けられ、第1試料保持体の表面に相対する表面を有すると共に該表面の反対側に反射面を有した第2試料保持体と、一方が固定された試料保持体に対して他方の試料保持体を微小移動して近接させる微小移動手段と、チャンバー外に配置され、回折光を第2試料保持体の反射面にて収束するように照射し、該反射面からの回折光が結合した干渉光の光強度に基づいて弾性部材の撓み量を測定する干渉光検出装置とを備え、干渉光検出装置により検出された弾性部材の撓み量とそのばね定数により試料表面間に作用する表面力を測定することを特徴とする。
請求項4は、チャンバー内に設けられた所定のばね定数からなる弾性部材の先端部に設けられた第2試料保持体及び該第2試料保持体の表面に相対する表面を有した第1試料保持体のいずれか一方を微小移動手段により互いに近接する方向へ微小移動し、近接した試料表面間に作用する表面力を測定する表面力測定方法において、回折光を第2試料保持体における表面と反対側に設けられた反射面にて収束するように照射し、該反射面からの反射回折光を結合した干渉光の光強度に基づいて弾性部材の撓み量を検出し、該撓み量と弾性部材のばね定数により試料表面間に作用する表面力を測定可能にしたことを特徴とする。
【0010】
【発明の実施形態】
以下、本発明の実施形態を図に従って説明する。
図1は表面力測定装置例の概略を示す説明図、図2は試料保持体を拡大して示す説明図、図3は干渉光検出装置の概略構成図である。
【0011】
表面力測定装置1のチャンバー3内には上下方向に軸線を有したスライド軸5が上下方向へ摺動可能に支持され、チャンバー3の上面から外部に突出したスライド軸5の軸端には微小移動装置7が連結されている。該微小移動装置7はスライド軸5の軸下部に交換可能に取り付けられ、表面が球面、円筒面及び平面のいずれかからなり、ガラス製又は金属製の第1試料保持体9を測定範囲内まで移動させる粗動機構7aと、測定範囲内にて第1試料保持体9をμm、nm単位で微小移動させる微動機構7bとからなる。
【0012】
微動機構7bの例としては、例えば5相励磁構造で500puls/rのパルスモータと、駆動パルスを所定数に分割して分割駆動パルスを発生させる分割駆動回路と、パルスモータに連結され、所定の送り量からなる送りねじ機構と、差動ばね機構(いずれも図示せず)からなる。
【0013】
この構成において、駆動パルスの分割数を250、送りねじの送り量が1mm/rとした場合、1分割駆動パルス当りの送りねじによる送り量を0.008μmにすることができる。そして例えば本出願人が先に出願した特願平10−17914号(特開平11−202214号)に示す微小移動装置の差動ばね機構を採用することによりスライド軸5の移動量をnm単位にすることができる。差動ばね機構の詳細構造については、上記出願の発明の詳細な説明に記載された事項を援用する。
【0014】
スライド軸5の側方に応じたチャンバー3内には取り付け部材11の下部に基端部が固定され、先端部がスライド軸5の下部に向かって延出する弾性部材としてのカンチレバー13が取り付けられている。該カンチレバー13は予め決定されたばね定数の板ばねからなり、その先端部には中心部に光透過孔15aを有したホルダ15が取り付けられている。そしてホルダ15には表面が球面、円筒面及び平面のいずれかからなり、表面が上方を向いたガラス製又は金属製の第2試料保持体17が交換可能に取り付けられる。そして各第1及び第2試料保持体9・17の各表面には生体物質又は生体関連物質等の各種試料9c・17cを吸着法又はLB膜法等により製膜してなる。
【0015】
なお、微小移動装置7によりカンチレバー13を微小移動して第1試料保持体9に第2試料保持体17を近接する構成であってもよい。また、上記第1試料保持体9及び第2試料保持体17の各表面に、平滑性に優れた雲母(厚さ:2μm)を接着し、修飾される各種試料9c・17cの平滑性を確保してもよい。又、弾性部材としては板ばね状のカンチレバーを使用したが、この他に第1試料保持体9の移動方向に撓み変形可能な圧縮ばね等の弾性体であれば実施可能である。さらに、第1及び第2試料保持体9・17の表面に表面力を測定しようとする試料9c・17cを修飾したが、例えば測定しようとする試料が合成樹脂やセラミックス等にあっては表面に試料を修飾することなく、これらの材質で第1及び第2試料保持体9・17を直接形成して測定してもよい。
【0016】
上記第1試料保持体9・第2試料保持体17としては、予め試料9c・17cが製膜されたものを用意しておき、表面力を測定しようとする試料9c・17cに応じて交換する。又、第1試料保持体9・第2試料保持体17は上記したように表面が球面、円筒面或いは平面のいずれかであればよいが、これらを円筒体で構成する場合には相互の軸線を直交させることにより両表面間を、局所的には球と平面又は球相互を近接させた配置と等価にすることができる。
【0017】
上記第1試料保持体9・第2試料保持体17の内、カンチレバー13に取り付けられる第2試料保持体17の下面には銀膜又は金膜の金属反射膜17dが製膜され、後述する回折光を反射させる。なお、金属反射膜17dとしては第2試料保持体17が取り付けられるホルダ15の底面に反射板を直接取り付けた構造又はホルダ15自体を鏡面仕上げして後述する回折光を反射可能にした構造であってもよい。
【0018】
第2試料保持体17の下方に位置するチャンバー3外には干渉光検出装置19がチャンバー3底面に設けられた透過窓21を介して配置される。干渉光検出装置19は平行ビームのレーザ光を照射するレーザ光源19aと、レーザ光源19aからのレーザ光を各次数の回折光に分離すると共に後述するように金属反射膜17dから反射した回折光を結合して干渉光にする回折格子19bと、回折格子19bからの回折光を第2試料保持体17の金属反射膜17d上に所定のスポット径で収束させる光学レンズ19cと、回折格子19bにより結合された回折光の干渉光を受光して光強度に応じた電気信号を出力する受光素子19dと、回折格子19bから金属反射膜17dに至る回折光の光路長と等しい位置に配置され、基準回折光を反射して回折格子19bに戻す参照用ミラー19eとからなる。なお、参照用ミラー19eとしてはチャンバー3内に設けた取り付け台や、カンチレバー13における基端部等の撓まない個所に取り付けてもよい。
【0019】
なお、受光素子19dとしては、例えば4分割フォトダイオードのように複数のチャンネルで干渉光を受光させて夫々のチャンネルで光強度に応じた電気信号を出力させることにより表面力測定を高精度化すると共にカンチレバー13の撓み方向を測定可能にしてもよい。
【0020】
次に、表面力測定装置1による表面力の測定作用を説明する。
図4〜図5はカンチレバーの撓み状態を示す説明図である。
【0021】
先ず、チャンバー3内に液体又は不活性ガス等を充満したり、チャンバー3内を真空化した状態で微小移動装置7の粗動機構7aを駆動して第2試料保持体17に対して第1試料保持体9を、表面力の影響がない位置から表面力の影響が現れる測定範囲内へ移動させる。
【0022】
一方、干渉光検出装置19を作動してレーザ光源19aから照射されるレーザ光を回折格子19bにより±n次光(nは任意の整数)に分離された回折光の内、例えばプラスの所定次数の回折光を金属反射膜17d上に、又マイナスの所定次数の回折光を参照用ミラー19e上に夫々収束するように照射し、これら金属反射膜17d及び参照用ミラー19eから反射した回折光を回折格子19bにより結合して干渉光にした後に受光素子19dにて受光させる。このとき、カンチレバー13が非撓み状態で、金属反射膜17dに至る測定用光路長と参照用ミラー19eに至る参照用光路長とが一致している。
【0023】
上記状態にて微小移動装置7の微動機構7bを駆動して第2試料保持体17の表面に対して第1試料保持体9をnm単位で微小駆動して接近させると、カンチレバー13は、先ず第2試料保持体17に対する第1試料保持体9の接近に伴って夫々の円筒面に修飾された試料9c・17cの表面間に作用する引力により上方へ撓んだ(図4に示す)後、両者間に作用する斥力により下方へ撓み(図5に示す)、最後にカンチレバー13のばね力が斥力以上の力となった際に両者が接触し合う。
【0024】
このとき、試料9c及び試料17cの両表面間に作用する引力や斥力によりカンチレバー13が上方或いは下方へ撓んだ際には回折格子19bから金属反射膜17dに至る測定用光路長が、参照用光路長よりカンチレバー13の撓み(変位)に応じた分、長くなったり、短くなったりするため、回折格子19bにより回折光を結合した際に干渉光が生じ、該干渉光の光強度を受光素子19dにより検出する。
【0025】
受光素子19dに受光される干渉光の光強度はカンチレバー13の撓み量に対してλ/2周期で変化する。この結果、光強度の変化はカンチレバー13の撓みに対して正弦波を描くため、光強度変化をカンチレバー13の撓み量にnm単位で換算することができる。そして測定されたカンチレバー13の撓み量と該カンチレバー13のばね定数とから試料9c及び試料17c間に作用する引力や斥力等の表面力を測定することができる。
【0026】
本実施形態は、金属反射膜17dにより反射された回折光と参照用ミラー19eにより反射された回折光とを結合した干渉光の光強度に基づいて試料9c・17cの両表面間に作用する表面力を測定することができ、試料9c・17cが光を透過させないものであっても、両者間に作用する表面力を高精度に測定することができる。また、回折光による干渉光の光強度の変化に基づいてカンチレバー13の撓み量を測定することができるため、表面力測定を自動化することができる。
【0027】
【発明の効果】
本発明は、光が透過不能な試料であっても、試料間の表面力を高い精度で測定することができる。また、本発明は試料表面間に作用する表面力の測定を自動化することができる。
【図面の簡単な説明】
【図1】表面力測定装置例の概略を示す説明図である。
【図2】試料保持体を拡大して示す説明図である。
【図3】干渉光検出装置の概略構成図である。
【図4】カンチレバーが上方へ撓んだ状態を示す説明図である。
【図5】カンチレバーが下方へ撓んだ状態を示す説明図である。
【符号の説明】
1−表面力測定装置、3−チャンバー、9−第1試料保持体、13−弾性部材としてのカンチレバー、17−第2試料保持体、19−干渉光検出装置
[0001]
[Technical field to which the invention belongs]
The present invention relates to a surface force measuring apparatus and method for directly measuring an interaction force (repulsive force, attractive force, adhesive force, etc.) acting between the surfaces of various samples.
[0002]
[Problems to be solved by the invention]
By measuring the distance dependence of the interaction between surfaces in substances, intermolecular forces, surface forces, substance structures near the surface, etc. can be elucidated. When applied to biological substances (DNA) and biological substances, molecules in cell membranes It provides important information to know the unique molecular interactions of ecosystems such as recognition and cell-cell interactions.
[0003]
As a conventional surface force measuring device, for example, a device disclosed in Japanese Patent Laid-Open No. 9-257810 has been proposed. The surface force measuring device described in the publication includes a sample having a surface to be measured facing, a cantilever having a sample portion on which one sample is placed at the tip, and a microstep for minutely moving the cantilever or the other sample. It has a fine movement mechanism with a driver-driven stepping motor and an interference optical system for measuring the distance between the sample surfaces. The amount of force acting between the surfaces is determined by the amount of movement of the fine movement mechanism, the change in distance due to optical measurement, and the spring constant of the cantilever. The surface force of the sample is measured for distance dependency.
[0004]
Among these, in a surface force measurement device that measures the change in distance between samples by the color matching order interference method, the light emitted from the light source is transmitted through the sample film modified to the cylindrical surface of the pair of sample holders. The surface force is measured by measuring the interference fringes of the interference light by receiving the light into the spectroscopic device. However, in this device, the measurable sample is limited to the one that can transmit light, However, the surface force could not be measured for the sample that was unable to penetrate.
[0005]
In addition, the above-described uniform color order interferometry has a problem in that the measurement operation cannot be automated because the distance between the sample surfaces is measured by visually confirming the interval between the interference fringes due to the interference light.
[0006]
Furthermore, in a device that measures the surface force by detecting the amount of deflection of the cantilever to which one of the sample holders is attached using an electrical signal such as a bimorph or strain gauge, the bimorph or strain gauge itself has hysteresis, so measurement is required. The reliability of the results was low, and the surface force could not be measured with high accuracy and reliability.
[0007]
The present invention has been invented to solve the above-described drawbacks, and the problem is that the surface force between samples can be measured with high accuracy even if the sample cannot transmit light. An object of the present invention is to provide a surface force measuring apparatus and method.
[0008]
Another object of the present invention is to provide a surface force measuring apparatus and method that can automate the measurement of the surface force acting between sample surfaces.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a first sample holder provided in the chamber, an elastic member having a predetermined spring constant whose tip is deformable relative to the first sample holder, and the elastic member. A second sample holder having a surface facing the surface of the first sample holder and having a reflecting surface on the opposite side of the surface, and a sample holder to which one is fixed A fine moving means for finely moving the other sample holder close to the other, and a diffracted light that is arranged outside the chamber and irradiates the diffracted light so as to converge on the reflective surface of the second sample holder. And an interference light detecting device that measures the amount of deflection of the elastic member based on the light intensity of the interference light coupled to each other. The amount of deflection of the elastic member detected by the interference light detecting device and its spring constant act between the sample surfaces. It is characterized in that the surface force to be measured is measured.
According to a fourth aspect of the present invention, there is provided a second sample holder provided at the tip of an elastic member having a predetermined spring constant provided in the chamber, and a first sample having a surface opposite to the surface of the second sample holder. In a surface force measurement method for measuring a surface force acting between adjacent sample surfaces by minutely moving either one of the holders in a direction close to each other by a minute moving means, the diffracted light is separated from the surface of the second sample holder. Irradiating so as to converge at the reflecting surface provided on the opposite side, and detecting the amount of bending of the elastic member based on the light intensity of the interference light combined with the reflected diffracted light from the reflecting surface. The surface force acting between the sample surfaces can be measured by the spring constant of the member.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram showing an outline of an example of a surface force measuring device, FIG. 2 is an explanatory diagram showing an enlarged sample holder, and FIG. 3 is a schematic configuration diagram of an interference light detecting device.
[0011]
A slide shaft 5 having an axial line in the vertical direction is supported in the chamber 3 of the surface force measuring device 1 so as to be slidable in the vertical direction, and the shaft end of the slide shaft 5 protruding outward from the upper surface of the chamber 3 has a minute amount. A moving device 7 is connected. The micro-moving device 7 is attached to the lower part of the slide shaft 5 so as to be replaceable. The surface is made of any one of a spherical surface, a cylindrical surface, and a flat surface, and the first sample holder 9 made of glass or metal is brought into the measurement range. A coarse movement mechanism 7a to be moved and a fine movement mechanism 7b to finely move the first sample holder 9 in units of μm and nm within the measurement range.
[0012]
As an example of the fine movement mechanism 7b, for example, a pulse motor of 500 puls / r with a five-phase excitation structure, a divided drive circuit that divides a drive pulse into a predetermined number and generates a divided drive pulse, and a pulse motor are connected. It consists of a feed screw mechanism consisting of a feed amount and a differential spring mechanism (both not shown).
[0013]
In this configuration, when the number of drive pulse divisions is 250 and the feed amount of the feed screw is 1 mm / r, the feed amount of the feed screw per split drive pulse can be 0.008 μm. For example, by adopting a differential spring mechanism of a micro-movement device shown in Japanese Patent Application No. 10-17914 (Japanese Patent Laid-Open No. 11-202214) filed earlier by the present applicant, the amount of movement of the slide shaft 5 can be reduced to the unit of nm. can do. For the detailed structure of the differential spring mechanism, the matters described in the detailed description of the invention of the above application are incorporated.
[0014]
In the chamber 3 corresponding to the side of the slide shaft 5, a base end portion is fixed to the lower portion of the attachment member 11, and a cantilever 13 as an elastic member whose front end portion extends toward the lower portion of the slide shaft 5 is attached. ing. The cantilever 13 is made of a leaf spring having a predetermined spring constant, and a holder 15 having a light transmission hole 15a at the center is attached to the tip. A second sample holder 17 made of glass or metal having a surface made of any one of a spherical surface, a cylindrical surface, and a flat surface and facing upward is attached to the holder 15 in a replaceable manner. Various samples 9c and 17c such as biological substances or biological substances are formed on the surfaces of the first and second sample holders 9 and 17 by an adsorption method or an LB film method.
[0015]
Note that a configuration in which the cantilever 13 is slightly moved by the minute moving device 7 and the second sample holder 17 is brought close to the first sample holder 9 may be adopted. In addition, mica (thickness: 2 μm) excellent in smoothness is adhered to each surface of the first sample holder 9 and the second sample holder 17 to ensure smoothness of various modified samples 9c and 17c. May be. Further, although a leaf spring-shaped cantilever is used as the elastic member, any other elastic body such as a compression spring that can be bent and deformed in the moving direction of the first sample holder 9 can be used. Further, the surfaces of the first and second sample holders 9 and 17 are modified with the samples 9c and 17c for measuring the surface force. For example, if the sample to be measured is a synthetic resin or ceramics, Measurement may be performed by directly forming the first and second sample holders 9 and 17 with these materials without modifying the sample.
[0016]
As the first sample holder 9 and the second sample holder 17, samples in which the samples 9 c and 17 c are formed in advance are prepared and exchanged according to the samples 9 c and 17 c to be measured for surface force. . Further, as described above, the first sample holder 9 and the second sample holder 17 may have either a spherical surface, a cylindrical surface, or a flat surface as described above. Can be made equivalent to an arrangement in which the sphere and the plane or the sphere are close to each other.
[0017]
Of the first sample holder 9 and the second sample holder 17, a metal reflective film 17d made of a silver film or a gold film is formed on the lower surface of the second sample holder 17 attached to the cantilever 13, and diffraction is described later. Reflect light. The metal reflecting film 17d has a structure in which a reflecting plate is directly attached to the bottom surface of the holder 15 to which the second sample holder 17 is attached, or a structure in which the holder 15 itself is mirror-finished so that diffracted light described later can be reflected. May be.
[0018]
An interference light detection device 19 is disposed outside the chamber 3 located below the second sample holder 17 through a transmission window 21 provided on the bottom surface of the chamber 3. The interference light detection device 19 separates the laser light from the laser light source 19a for irradiating the parallel laser beam and the laser light from the laser light source 19a into the diffracted light of each order and reflects the diffracted light reflected from the metal reflecting film 17d as described later. The diffraction grating 19b is combined with interference light, and the diffraction lens 19b is combined with the optical lens 19c that converges the diffracted light from the diffraction grating 19b on the metal reflection film 17d of the second sample holder 17 with a predetermined spot diameter. A light receiving element 19d that receives the interference light of the diffracted light and outputs an electric signal corresponding to the light intensity, and is disposed at a position equal to the optical path length of the diffracted light from the diffraction grating 19b to the metal reflecting film 17d, It comprises a reference mirror 19e that reflects light back to the diffraction grating 19b. Note that the reference mirror 19e may be attached to an unbent portion such as a mounting base provided in the chamber 3 or a base end portion of the cantilever 13.
[0019]
As the light receiving element 19d, for example, a surface force measurement is made highly accurate by receiving interference light through a plurality of channels and outputting an electrical signal corresponding to the light intensity through each channel, such as a quadrant photodiode. At the same time, the bending direction of the cantilever 13 may be measured.
[0020]
Next, the surface force measuring action by the surface force measuring device 1 will be described.
4-5 is explanatory drawing which shows the bending state of a cantilever.
[0021]
First, the chamber 3 is filled with a liquid, an inert gas, or the like, or the chamber 3 is evacuated to drive the coarse movement mechanism 7 a of the micro-movement device 7 to the first sample holder 17 with respect to the first sample holder 17. The sample holder 9 is moved from a position where there is no influence of the surface force into a measurement range where the influence of the surface force appears.
[0022]
On the other hand, among the diffracted lights obtained by operating the interference light detection device 19 and separating the laser light emitted from the laser light source 19a into ± n-order light (n is an arbitrary integer) by the diffraction grating 19b, for example, a predetermined positive order Are diffracted on the metal reflection film 17d and diffracted light of a predetermined negative order so as to converge on the reference mirror 19e, and the diffracted light reflected from the metal reflection film 17d and the reference mirror 19e is irradiated. After being combined by the diffraction grating 19b to be interference light, it is received by the light receiving element 19d. At this time, when the cantilever 13 is not bent, the optical path length for measurement reaching the metal reflecting film 17d and the optical path length for reference reaching the reference mirror 19e coincide with each other.
[0023]
When the fine movement mechanism 7b of the fine moving device 7 is driven in the above-described state to bring the first sample holding body 9 into the fine movement in the unit of nm with respect to the surface of the second sample holding body 17, the cantilever 13 first After the first sample holder 9 approaches the second sample holder 17, it is bent upward by an attractive force acting between the surfaces of the samples 9c and 17c modified to the respective cylindrical surfaces (shown in FIG. 4). When the spring force of the cantilever 13 finally becomes a force greater than the repulsive force, the two come into contact with each other.
[0024]
At this time, when the cantilever 13 is bent upward or downward by an attractive force or a repulsive force acting between both surfaces of the sample 9c and the sample 17c, the measurement optical path length from the diffraction grating 19b to the metal reflection film 17d is a reference value. Since it becomes longer or shorter than the optical path length in accordance with the deflection (displacement) of the cantilever 13, interference light is generated when diffracted light is coupled by the diffraction grating 19b, and the light intensity of the interference light is determined by the light receiving element. It is detected by 19d.
[0025]
The light intensity of the interference light received by the light receiving element 19d changes with a period of λ / 2 with respect to the bending amount of the cantilever 13. As a result, the change in the light intensity draws a sine wave with respect to the bending of the cantilever 13, so that the change in the light intensity can be converted into the amount of bending of the cantilever 13 in nm units. From the measured amount of bending of the cantilever 13 and the spring constant of the cantilever 13, the surface force such as attractive force or repulsive force acting between the sample 9c and the sample 17c can be measured.
[0026]
In the present embodiment, the surface acting between both surfaces of the samples 9c and 17c based on the light intensity of the interference light obtained by combining the diffracted light reflected by the metal reflecting film 17d and the diffracted light reflected by the reference mirror 19e. The force can be measured, and even if the samples 9c and 17c do not transmit light, the surface force acting between them can be measured with high accuracy. Further, since the amount of bending of the cantilever 13 can be measured based on the change in the light intensity of the interference light caused by the diffracted light, the surface force measurement can be automated.
[0027]
【The invention's effect】
The present invention can measure the surface force between samples with high accuracy even if the sample cannot transmit light. Further, the present invention can automate the measurement of the surface force acting between the sample surfaces.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of an example of a surface force measuring device.
FIG. 2 is an explanatory view showing an enlarged sample holder.
FIG. 3 is a schematic configuration diagram of an interference light detection device.
FIG. 4 is an explanatory view showing a state where the cantilever is bent upward.
FIG. 5 is an explanatory view showing a state where the cantilever is bent downward.
[Explanation of symbols]
1-surface force measuring device, 3-chamber, 9-first sample holder, 13-cantilever as elastic member, 17-second sample holder, 19-interference light detector

Claims (6)

チャンバー内に設けられる第1試料保持体と、先端部が第1試料保持体に対して撓み変形可能で、所定のばね定数からなる弾性部材と、該弾性部材の先端部に設けられ、第1試料保持体の表面に相対する表面を有すると共に該表面の反対側に反射面を有した第2試料保持体と、一方が固定された試料保持体に対して他方の試料保持体を微小移動して近接させる微小移動手段と、チャンバー外に配置され、回折光を第2試料保持体の反射面にて収束するように照射し、該反射面からの回折光が結合した干渉光の光強度に基づいて弾性部材の撓み量を測定する干渉光検出装置とを備え、干渉光検出装置により検出された弾性部材の撓み量とそのばね定数により試料表面間に作用する表面力を測定する表面力測定装置。A first sample holder provided in the chamber, the tip portion is a resiliently deformable in phase against the first sample holder, and an elastic member having a predetermined spring constant, provided at the distal end portion of the elastic member, the A second sample holder having a surface opposite to the surface of one sample holder and having a reflecting surface on the opposite side of the surface, and the other sample holder being moved slightly relative to the sample holder to which one is fixed And a micro-moving means to be brought close to each other , and the light intensity of the interference light which is arranged outside the chamber and irradiates the diffracted light so as to converge on the reflecting surface of the second sample holder, and the diffracted light from the reflecting surface is combined. And an interference light detecting device that measures the amount of deflection of the elastic member based on the surface force, and the surface force that measures the surface force acting between the sample surfaces by the amount of deflection of the elastic member detected by the interference light detecting device and its spring constant measuring device. 請求項1において、第1及び第2試料保持体は表面力が測定される物質からなる表面力測定装置。2. The surface force measuring device according to claim 1, wherein the first and second sample holders are made of a substance whose surface force is measured. 請求項1において、第1及び第2試料保持体の表面には測定される物質を修飾した表面力測定装置。2. The surface force measuring device according to claim 1, wherein the surface of the first and second sample holders is modified with a substance to be measured. チャンバー内に設けられた所定のばね定数からなる弾性部材の先端部けられた第2試料保持体及び該第2試料保持体の表面に相対する表面を有した第1試料保持体のいずれか一方を微小移動手段により互いに近接する方向へ微小移動、近接した試料表面間に作用する表面力を測定する表面力測定方法において、回折光を第2試料保持体における表面と反対側に設けられた反射面にて収束するように照射し、該反射面からの反射回折光を結合した干渉光の光強度に基づいて弾性部材の撓み量を検出し、該撓み量と弾性部材のばね定数により試料表面間に作用する表面力を測定可能にした表面力測定方法。 The first sample holder having opposing surfaces on the surface of the second sample holder and the second sample holder was kicked set on the tip portion of the elastic member having a predetermined spring constant provided et the inside chamber In a surface force measurement method in which either one is moved minutely in a direction close to each other by a minute moving means and a surface force acting between adjacent sample surfaces is measured, the diffracted light is moved to the opposite side of the surface of the second sample holder. Irradiating so as to converge on the provided reflecting surface, detecting the amount of bending of the elastic member based on the light intensity of the interference light combined with the reflected diffracted light from the reflecting surface, the amount of bending and the spring of the elastic member A surface force measurement method that makes it possible to measure the surface force acting between sample surfaces by a constant. 請求項4において、第1及び第2試料保持体は表面力が測定される物質からなる表面力測定方法。5. The surface force measurement method according to claim 4, wherein the first and second sample holders are made of a substance whose surface force is measured. 請求項4において、第1及び第2試料保持体の表面には測定される物質を修飾した表面力測定方法。5. The surface force measurement method according to claim 4, wherein the surface of the first and second sample holders is modified with a substance to be measured.
JP29193899A 1999-10-14 1999-10-14 Surface force measuring apparatus and method Expired - Lifetime JP3933823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29193899A JP3933823B2 (en) 1999-10-14 1999-10-14 Surface force measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29193899A JP3933823B2 (en) 1999-10-14 1999-10-14 Surface force measuring apparatus and method

Publications (3)

Publication Number Publication Date
JP2001108603A JP2001108603A (en) 2001-04-20
JP2001108603A5 JP2001108603A5 (en) 2005-08-04
JP3933823B2 true JP3933823B2 (en) 2007-06-20

Family

ID=17775410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29193899A Expired - Lifetime JP3933823B2 (en) 1999-10-14 1999-10-14 Surface force measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP3933823B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7845231B2 (en) * 2005-09-28 2010-12-07 Japan Science And Technology Agency Shear measuring method and its device
JP4601000B2 (en) * 2006-02-03 2010-12-22 セイコーインスツル株式会社 Specific substance observation device and specific substance observation method
JP5546651B1 (en) 2013-01-28 2014-07-09 株式会社エリオニクス Surface force measuring method and surface force measuring apparatus

Also Published As

Publication number Publication date
JP2001108603A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
US6655194B2 (en) Rheometer for rapidly measuring small quantity samples
US7084384B2 (en) Diffractive optical position detector in an atomic force microscope having a moveable cantilever
EP0896201B1 (en) Scanning probe microscope
US5990477A (en) Apparatus for machining, recording, and reproducing, using scanning probe microscope
US7170054B2 (en) Scanning probe microscopy cantilever holder and scanning probe microscope using the cantilever holder
US6239426B1 (en) Scanning probe and scanning probe microscope
US11789037B2 (en) Integrated dual-probe rapid in-situ switching measurement method and device of atomic force microscope
CN108663010A (en) Scanning type probe microscope and its scan method
JP3933823B2 (en) Surface force measuring apparatus and method
JP3047030B2 (en) Scanning near-field atomic force microscope
KR0126250B1 (en) Method for measuring width of fine gap
JP4388559B2 (en) Scanning near-field microscope
JP2000035375A (en) Optical scanner tester
Mollenhauer et al. High‐precision positioning and measurement systems for microtribotesting
JPH0915137A (en) Frictional force measuring apparatus and scanning frictional force microscope
JPH06294638A (en) Surface profile measuring equipment
Della Bitta et al. Electro-Optical Testing Solution at Wafer Level for MEMS PZT Micromirrors Actuation and Mechanical Angle Sensing
JP2003130774A (en) Micro hardness meter
JPH07174545A (en) Scanning-type probe microscope
Nakazawa et al. Confocal laser displacement sensor using MEMS varifocal mirror
JPH10221352A (en) Lighting equipment
JPH0771951A (en) Controlling method for scanning probing microscope
JPH08201463A (en) Surface charge measuring apparatus
JPH1144695A (en) Optical lever detection mechanism and scanning probe microscope
JP2005274217A (en) Micro-hardness tester

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Ref document number: 3933823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term