JP4388559B2 - Scanning near-field microscope - Google Patents

Scanning near-field microscope Download PDF

Info

Publication number
JP4388559B2
JP4388559B2 JP2007021909A JP2007021909A JP4388559B2 JP 4388559 B2 JP4388559 B2 JP 4388559B2 JP 2007021909 A JP2007021909 A JP 2007021909A JP 2007021909 A JP2007021909 A JP 2007021909A JP 4388559 B2 JP4388559 B2 JP 4388559B2
Authority
JP
Japan
Prior art keywords
light
probe
voltage
sample
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007021909A
Other languages
Japanese (ja)
Other versions
JP2007121316A (en
Inventor
徳男 千葉
宏 村松
典孝 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007021909A priority Critical patent/JP4388559B2/en
Publication of JP2007121316A publication Critical patent/JP2007121316A/en
Application granted granted Critical
Publication of JP4388559B2 publication Critical patent/JP4388559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

この発明は、走査型プローブ顕微鏡の1つであり、計測物質の微細領域での光学特性を計測する走査型近視野顕微鏡に関する。   The present invention relates to a scanning near-field microscope that is one of scanning probe microscopes and measures optical characteristics in a fine region of a measurement substance.

原子間力顕微鏡(AFM)、走査型トンネル顕微鏡(STM)に代表される走査型プローブ顕微鏡は、試料表面の微細な形状を観察することができることから広く普及している。   A scanning probe microscope represented by an atomic force microscope (AFM) and a scanning tunneling microscope (STM) is widely used because it can observe a fine shape of a sample surface.

一方、先端が尖鋭化された光媒体からなるプローブを光の波長以下まで測定試料に近づけることによって、試料の光学特性や形状を測定しようという試みがあり、いくつかの近接場光顕微鏡が提案されている。この一つの装置として、試料に対して垂直に保持した光ファイバープローブの先端を試料表面に対して水平に振動させ、試料表面とプローブ先端の摩擦によって生じる振動の振幅の変化を光ファイバープローブ先端から照射され試料を透過したレーザー光の光軸のズレとして検出し、試料を微動機構で動かすことによって、プローブ先端と試料表面の間隔を一定に保ち、微動機構に入力した信号強度から表面形状を検出するとともに試料の光透過性の測定を行う装置が提案されている。   On the other hand, there have been attempts to measure the optical properties and shape of a sample by bringing a probe made of an optical medium with a sharp tip close to the sample to be measured below the wavelength of light, and several near-field optical microscopes have been proposed. ing. As one of these devices, the tip of the optical fiber probe held perpendicular to the sample is vibrated horizontally with respect to the sample surface, and the change in the amplitude of vibration caused by the friction between the sample surface and the probe tip is irradiated from the tip of the optical fiber probe. By detecting the optical axis misalignment of the laser beam that has passed through the sample and moving the sample with the fine movement mechanism, the distance between the probe tip and the sample surface is kept constant, and the surface shape is detected from the signal intensity input to the fine movement mechanism. An apparatus for measuring the light transmittance of a sample has been proposed.

また、特許文献1には、鈎状に成形した光ファイバープローブをAFMのカンチレバーとして使用し、AFM動作すると同時に、光ファイバープローブの先端から試料にレーザー光を照射し、表面形状を検出するとともに試料の光学特性の測定を行う走査型近視野原子間力顕微鏡について記述されている。   In Patent Document 1, an optical fiber probe shaped like a bowl is used as an AFM cantilever, and at the same time as AFM operation is performed, the sample is irradiated with laser light from the tip of the optical fiber probe to detect the surface shape and the optical of the sample. A scanning near-field atomic force microscope for measuring properties is described.

これらの光伝搬体プローブを用いる走査型プローブ顕微鏡では、試料表面とプローブ先端の摩擦によって生じる振動振幅の変化の検出、あるいは試料表面とプローブ先端に作用する原子間力の検出は、プローブの弾性機能、即ちプローブのたわみを検出することにより行っている。従来、この弾性機能としては光ファイバー自体の弾性をそのまま使用していた。   In scanning probe microscopes that use these light propagator probes, detection of changes in vibration amplitude caused by friction between the sample surface and the probe tip, or detection of atomic force acting on the sample surface and probe tip, is an elastic function of the probe. That is, it is performed by detecting the deflection of the probe. Conventionally, the elasticity of the optical fiber itself has been used as the elastic function.

しかし、一般にAFMのカンチレバーのバネ定数は100分の1N/mから数N/m程度であるのに対し、光ファイバー自体の弾性機能を利用する場合のプローブのバネ定数は数N/mから数100N/mである。プローブのバネ定数が大きい場合、試料やプローブ先端の損傷の危険があるばかりでなく、プローブ先端とサンプル間に作用する原子間力をはじめとする諸物理量の検出感度が劣化する。特許文献2は、バネ定数を小さくした光ファイバープローブを使用した走査型近視野顕微鏡が、コンタクトモード走査や走査型摩擦力顕微鏡などの走査が可能であることが記述されている。しかし、従来の走査型近視野顕微鏡装置では試料表面の電位を測定することはできない。
特許第2704601号公報 特開平10−104244号公報
However, in general, the spring constant of an AFM cantilever is about 1/100 N / m to several N / m, whereas the spring constant of a probe when using the elastic function of the optical fiber itself is several N / m to several 100 N. / M. When the spring constant of the probe is large, not only is there a risk of damage to the sample or the probe tip, but also the detection sensitivity of various physical quantities including atomic force acting between the probe tip and the sample deteriorates. Patent Document 2 describes that a scanning near-field microscope using an optical fiber probe with a small spring constant can be scanned by a contact mode scanning, a scanning friction force microscope, or the like. However, the conventional scanning near-field microscope apparatus cannot measure the potential of the sample surface.
Japanese Patent No. 2704601 JP-A-10-104244

本発明の目的は、試料表面の形状像及び2次元的な光学特性像に加えて、試料表面の電位分布を高分解能で観察可能な走査型近視野顕微鏡を提供することにある。   An object of the present invention is to provide a scanning near-field microscope capable of observing a potential distribution on a sample surface with high resolution in addition to a shape image and a two-dimensional optical characteristic image on the sample surface.

上記の目的を達成するために、第1思想に係る走査型近視野顕微鏡は、端部に光を透過する透過口を有する光伝搬体からなり、透過口部を除く先端部に導電性の金属膜被覆を有する光伝搬体プローブを有し、前記光伝搬体プローブの先端部と測定すべき試料あるいは媒体表面との間隔を、前記光伝搬体プローブの先端部と前記表面との間に原子間力あるいはその他の相互作用に関わる力が作用する動作距離内に近づけた状態で、2次元的な走査手段によって前記試料表面を走査するとともに、制御手段によって前記表面の形状に沿って前記光伝搬体プローブを制御し、前記表面の微小領域に対して、光照射あるいは光検出を行い、試料形状と2次元光学情報を同時に測定する走査型近視野顕微鏡において、前記光伝搬体プローブの先端と前記表面を相対的に垂直方向に振動させる振動手段と、前記光伝搬体プローブの変位を検出する変位検出手段と、前記変位検出手段が出力する検出信号に基づいて前記光伝搬体プローブの先端部と前記表面の間隔を一定に保つための制御手段と、前記光伝搬体プローブ先端部と測定すべき試料あるいは媒体表面間に交流電圧を印加する電圧印加手段と、前記印加電圧に起因する前記光伝搬体プローブの振動を除去するように電圧を帰還する電圧帰還手段とを有することを特徴とする。   In order to achieve the above object, a scanning near-field microscope according to the first idea is composed of a light propagating body having a transmission port that transmits light at an end portion, and a conductive metal at a tip portion excluding the transmission port portion. A light propagating probe having a film coating, and the distance between the tip of the light propagating probe and the surface of the sample or medium to be measured between the tip of the light propagating probe and the surface. The surface of the sample is scanned by a two-dimensional scanning unit in a state where the force or other interaction-related force is applied, and the light propagating body is moved along the shape of the surface by a control unit. In a scanning near-field microscope that controls a probe, performs light irradiation or light detection on a minute region of the surface, and simultaneously measures a sample shape and two-dimensional optical information, the tip of the light propagator probe and the Vibration means for vibrating the surface in a relatively vertical direction, displacement detection means for detecting the displacement of the light propagation probe, and a tip of the light propagation probe based on a detection signal output by the displacement detection means; Control means for keeping the surface spacing constant, voltage application means for applying an AC voltage between the tip of the light propagation probe and the sample or medium to be measured, and the light propagation caused by the applied voltage Voltage feedback means for feeding back a voltage so as to eliminate vibration of the body probe.

この発明によれば、光伝搬体プローブの先端部と試料表面の間隔を一定に保つための制御信号は、試料表面の形状を反映し、また、前記印加電圧に起因する前記光伝搬体プローブの振動を除去するように電圧を帰還する電圧帰還手段の信号は、試料表面の表面電位を反映している。従って、光伝搬体プローブ先端の微小開口で光を入出力することにより試料表面の光学特性、試料表面形状及び試料表面電位を同時に測定することができる。   According to this invention, the control signal for keeping the distance between the tip of the light propagator probe and the sample surface constant reflects the shape of the sample surface, and the control signal of the light propagator probe caused by the applied voltage is reflected. The signal of the voltage feedback means that feeds back the voltage so as to eliminate vibration reflects the surface potential of the sample surface. Therefore, the optical characteristics of the sample surface, the sample surface shape, and the sample surface potential can be simultaneously measured by inputting and outputting light through the minute opening at the tip of the light propagator probe.

また、第2思想に係る走査型近視野顕微鏡は、端部に光を透過する透過口を有する光伝搬体からなり、透過口部を除く先端部に導電性の金属膜被覆を有する光伝搬体プローブを有し、前記光伝搬体プローブの先端部と測定すべき試料あるいは媒体表面との間隔を、前記光伝搬体プローブの先端部と前記表面との間に原子間力あるいはその他の相互作用に関わる力が作用する動作距離内に近づけた状態で、2次元的な走査手段によって前記試料表面を走査するとともに、制御手段によって前記表面の形状に沿って前記光伝搬体プローブを制御し、前記表面の微小領域に対して、光照射あるいは光検出を行い、試料形状と2次元光学情報を同時に測定する走査型近視野顕微鏡において、前記光伝搬体プローブの変位を検出する変位検出手段と、前記変位検出手段が出力する検出信号に基づいて前記光伝搬体プローブの先端部と前記表面の間隔を一定に保つための制御手段と、前記光伝搬体プローブ先端部と測定すべき試料あるいは媒体表面間に交流電圧を印加する電圧印加手段と、前記印加電圧に起因する前記光伝搬体プローブの振動を除去するように電圧を帰還する電圧帰還手段とを有することを特徴とする。   Further, the scanning near-field microscope according to the second idea includes a light propagating body having a transmission port that transmits light at an end portion, and has a conductive metal film coating at a tip portion excluding the transmission port portion. A probe, and the distance between the tip of the light propagator probe and the sample or medium surface to be measured is determined by an atomic force or other interaction between the tip of the light propagator probe and the surface. The surface of the sample is scanned by a two-dimensional scanning unit in a state of being close to the operating distance in which the force concerned acts, and the light propagating body probe is controlled by the control unit along the shape of the surface. In a scanning near-field microscope that performs light irradiation or light detection on a minute region of the sample and simultaneously measures a sample shape and two-dimensional optical information, a displacement detection means that detects the displacement of the light propagator probe; Control means for keeping the distance between the tip of the light propagating probe and the surface constant based on a detection signal output from the displacement detecting means, and the distance between the tip of the light propagating probe and the sample or medium surface to be measured And a voltage feedback means for feeding back the voltage so as to remove the vibration of the light propagating probe caused by the applied voltage.

この発明によれば、第1思想に係わる発明とはプローブ先端と試料表面の距離制御方法は異なるが、光伝搬体プローブの先端部と試料表面の間隔を一定に保つための制御信号は、試料表面の形状を反映し、また、前記印加電圧に起因する前記光伝搬体プローブの振動を除去するように電圧を帰還する電圧帰還手段の信号は、試料表面の表面電位を反映している。従って、光伝搬体プローブ先端の微小開口で光を入出力することにより試料表面の光学特性、試料表面形状及び試料表面電位を同時に測定することができる。   According to this invention, although the distance control method between the probe tip and the sample surface is different from the invention related to the first idea, the control signal for keeping the distance between the tip of the light propagator probe and the sample surface constant is The signal of the voltage feedback means that reflects the shape of the surface and feeds back the voltage so as to remove the vibration of the light propagating probe due to the applied voltage reflects the surface potential of the sample surface. Therefore, the optical characteristics of the sample surface, the sample surface shape, and the sample surface potential can be simultaneously measured by inputting and outputting light through the minute opening at the tip of the light propagator probe.

また、第3思想に係る走査型近視野顕微鏡は、端部に光を透過する透過口を有する光伝搬体からなり、透過口部を除く先端部に導電性の金属膜被覆を有する光伝搬体プローブを有し、前記光伝搬体プローブの先端部と測定すべき試料あるいは媒体表面との間隔を、前記光伝搬体プローブの先端部と前記表面との間に原子間力あるいはその他の相互作用に関わる力が作用する動作距離内に近づけた状態で、2次元的な走査手段によって前記試料表面を走査するとともに、制御手段によって前記表面の形状に沿って前記光伝搬体プローブを制御し、前記表面の微小領域に対して、光照射あるいは光検出を行い、試料形状と2次元光学情報を同時に測定する走査型近視野顕微鏡において、前記光伝搬体プローブの先端と前記表面を相対的に垂直方向に振動させる振動手段と、前記光伝搬体プローブの変位を検出する変位検出手段と、前記変位検出手段が出力する検出信号に基づいて前記光伝搬体プローブの先端部と前記表面の間隔を一定に保つための制御手段と、前記光伝搬体プローブ先端部と測定すべき試料あるいは媒体表面間に交流電圧を印加する電圧印加手段と、前記印加電圧に起因する前記光伝搬体プローブの振動を除去するように電圧を帰還する電圧帰還手段と、前記表面の微小領域に対して、光照射あるいは光検出を行うための光源に光変調を行う変調手段と、前記印加電圧に起因する前記光伝搬体プローブの振動検出信号を、前記変調手段の変調信号に対応して位相検波する位相検波手段とを有することを特徴とする。   Further, the scanning near-field microscope according to the third idea is composed of a light propagating body having a transmission port that transmits light at an end portion, and has a conductive metal film coating at a tip portion excluding the transmission port portion. A probe, and the distance between the tip of the light propagator probe and the sample or medium surface to be measured is determined by an atomic force or other interaction between the tip of the light propagator probe and the surface. The surface of the sample is scanned by a two-dimensional scanning unit in a state of being close to the operating distance in which the force concerned acts, and the light propagating body probe is controlled by the control unit along the shape of the surface. In a scanning near-field microscope that performs light irradiation or light detection on a minute region of the sample and simultaneously measures a sample shape and two-dimensional optical information, the tip of the light propagator probe and the surface are relatively perpendicular to each other. A vibrating means for vibrating, a displacement detecting means for detecting the displacement of the light propagating body probe, and a distance between the tip of the light propagating body probe and the surface is kept constant based on a detection signal output from the displacement detecting means. Control means, voltage applying means for applying an alternating voltage between the tip of the light propagating probe and the surface of the sample or medium to be measured, and vibration of the light propagating probe caused by the applied voltage is removed. A voltage feedback means for feeding back a voltage to the light source, a modulation means for performing light modulation on a light source for performing light irradiation or light detection on a minute region of the surface, and the light propagating probe caused by the applied voltage. Phase detection means for detecting the phase of the vibration detection signal in correspondence with the modulation signal of the modulation means is provided.

この発明によれば、光伝搬体プローブの先端部と試料表面の間隔を一定に保つための制御信号は、試料表面の形状を反映し、また、記印加電圧に起因する前記光伝搬体プローブの振動を除去するように電圧を帰還する電圧帰還手段の信号は、試料表面の表面電位を反映している。従って、光伝搬体プローブ先端の微小開口で光を入出力することにより試料表面の光学特性、試料表面形状及び試料表面電位を同時に測定することができる。さらに、光照射あるいは光検出を行うための光源に光変調を行うことにより、光照射、未照射による試料表面の電位像を同時に測定することが可能である。   According to the present invention, the control signal for keeping the distance between the tip of the light propagator probe and the sample surface constant reflects the shape of the sample surface, and the control signal of the light propagator probe caused by the applied voltage is recorded. The signal of the voltage feedback means that feeds back the voltage so as to eliminate vibration reflects the surface potential of the sample surface. Therefore, the optical characteristics of the sample surface, the sample surface shape, and the sample surface potential can be simultaneously measured by inputting and outputting light through the minute opening at the tip of the light propagator probe. Further, by performing light modulation on a light source for light irradiation or light detection, it is possible to simultaneously measure a potential image on the sample surface by light irradiation and non-irradiation.

また、第4思想に係る走査型近視野顕微鏡は、第1思想乃至第3思想の発明において、光伝搬体プローブは、基板状の基部と、前記基板状の基部上に少なくとも1層以上の積層構造をなす光導波層を有し、前記光導波層が前記基部より突き出て梁状のカンチレバーを形成していることを特徴とする。   Further, the scanning near-field microscope according to the fourth idea is the invention according to the first idea to the third idea, wherein the light propagating probe is a substrate-like base and a laminate of at least one layer on the substrate-like base. An optical waveguide layer having a structure is provided, and the optical waveguide layer protrudes from the base to form a beam-shaped cantilever.

この発明によれば、光伝搬体プローブは光導波層からなるカンチレバーとして構成することができ、従来のAFM用カンチレバーと同等のバネ定数を与えることが可能となる。従って、表面電位測定に十分な感度を有する走査型近視野顕微鏡を構成することが可能となる。   According to the present invention, the light propagating probe can be configured as a cantilever composed of an optical waveguide layer, and a spring constant equivalent to that of a conventional AFM cantilever can be provided. Therefore, it is possible to configure a scanning near-field microscope having sufficient sensitivity for surface potential measurement.

また、第5思想に係る走査型近視野顕微鏡は、第1思想乃至第3思想の発明において、光伝搬体プローブは、弾性機能を有する部分と、この弾性機能を有する部分を支持する基部からなり、前記弾性的機能を有する部分がこの弾性機能部を支持する柱状の基部と一体に形成されるとともに少なくとも柱状部を有し、この柱状部の外形が前記柱状基部の外形より細く形成されていることを特徴とする。   Further, in the scanning near-field microscope according to the fifth idea, in the inventions of the first idea to the third idea, the light propagating body probe includes a part having an elastic function and a base part supporting the part having the elastic function. The part having the elastic function is formed integrally with a columnar base part supporting the elastic function part and has at least a columnar part, and the outer shape of the columnar part is formed narrower than the outer shape of the columnar base part. It is characterized by that.

この発明によれば、光伝搬体プローブは細化した光伝搬体で構成することができ、従来のAFM用カンチレバーと同等のバネ定数を与えることが可能となる。従って、表面電位測定に十分な感度を有する走査型近視野顕微鏡を構成することが可能となる。   According to the present invention, the light propagating probe can be constituted by a thinned light propagating body, and a spring constant equivalent to that of a conventional AFM cantilever can be provided. Therefore, it is possible to configure a scanning near-field microscope having sufficient sensitivity for surface potential measurement.

また、第6思想に係る走査型近視野顕微鏡は、第4思想の発明において、光伝搬体は、薄膜光導波路であることを特徴とする。   The scanning near-field microscope according to the sixth idea is characterized in that, in the invention of the fourth idea, the light propagating body is a thin film optical waveguide.

この発明によれば、光伝送効率の高い光導波路を光伝搬体プローブとして用いるため、微小開口への光伝送損失の少ない、または微小開口からの光伝送損失の少ない走査型近視野顕微鏡を構成することができ、高感度の光学特性の測定を行うことができる。   According to the present invention, since an optical waveguide with high optical transmission efficiency is used as an optical propagator probe, a scanning near-field microscope with low optical transmission loss to the microscopic aperture or low optical transmission loss from the microscopic aperture is configured. And high-sensitivity optical characteristics can be measured.

また、第7思想に係る走査型近視野顕微鏡は、第5思想の発明において、光伝搬体は、光ファイバーであることを特徴とする。   The scanning near-field microscope according to the seventh idea is characterized in that, in the invention of the fifth idea, the light propagating body is an optical fiber.

この発明によれば、光伝送効率の高い光ファイバーを光伝搬体プローブとして用いるため、微小開口への光伝送損失の少ない、または微小開口からの光伝送損失の少ない走査型近視野顕微鏡を構成することができ、高感度の光学特性の測定を行うことができる。   According to the present invention, since an optical fiber with high optical transmission efficiency is used as a light propagator probe, a scanning near-field microscope with low optical transmission loss to a microscopic aperture or low optical transmission loss from a microscopic aperture is configured. And high-sensitivity optical characteristics can be measured.

また、第8思想に係る走査型近視野顕微鏡は、第1思想乃至第3思想の発明において、前記光伝搬体プローブを搭載する光伝搬体プローブ保持機構は、基材と、圧電素子と、絶縁膜と、電気的に接地された電極板と積層した構造であることを特徴とする。   Further, the scanning near-field microscope according to the eighth idea is the invention according to the first idea to the third idea, wherein the light propagating body probe holding mechanism on which the light propagating body probe is mounted includes a base material, a piezoelectric element, and an insulating material. It is characterized by a structure in which a film and an electrode plate that is electrically grounded are laminated.

この発明によれば、前記光伝搬体プローブを前記保持機構に搭載するのみで、電位測定上必要となる電気的な接地電位を確保できるので、表面電位測定が正確かつ容易な、走査型近視野顕微鏡を構成することができる。   According to the present invention, since the electrical ground potential required for potential measurement can be ensured only by mounting the light propagator probe on the holding mechanism, the scanning-type near field of view allows accurate and easy surface potential measurement. A microscope can be constructed.

また、第9思想に係わる走査型近視野顕微鏡は、第1思想乃至第3思想の発明において、光伝搬体プローブは、透過口部を除く先端部に導電性の金属膜被覆を有し、前記金属膜は前記透過口部を囲むように配置され、前記光伝搬体は前記金属膜の端面より陥没していることを特徴とする。   Further, the scanning near-field microscope according to the ninth idea is the invention of the first idea to the third idea, in which the light propagating probe has a conductive metal film coating at a tip part excluding a transmission port part, The metal film is disposed so as to surround the transmission port portion, and the light propagating body is depressed from an end surface of the metal film.

この発明によれば、前記光伝搬体プローブの先端部分は誘電体が配置されず、プローブ先端部は金属膜被覆のみとなるので、電気的な接地電位を安定させることができ、正確な表面電位測定が行える、走査型近視野顕微鏡を構成することができる。   According to the present invention, since the dielectric is not disposed at the tip portion of the light propagating probe and the tip portion of the probe is only covered with the metal film, the electrical ground potential can be stabilized, and an accurate surface potential can be obtained. A scanning near-field microscope capable of measurement can be configured.

以下に、本発明に係る走査型近視野顕微鏡の実施の形態を図面に基づいて詳細に説明する。   Embodiments of a scanning near-field microscope according to the present invention will be described below in detail with reference to the drawings.

(実施の形態1)
図1は、実施の形態1に係る走査型近視野顕微鏡の概略構成を示すブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram showing a schematic configuration of a scanning near-field microscope according to the first embodiment.

図1において、実施の形態1に係る走査型近視野顕微鏡は、光伝搬体プローブ1と、光伝搬体プローブ1を加振させる圧電素子2と、圧電素子2に加振電圧を供給する交流電圧源21と、光伝搬体プローブ1の変位計測用レーザー光源5及びその光検出器6と、光検出器6で検出した信号を周波数分離する周波数分離回路24と、光伝搬体プローブ1にレーザー光を導入するためのレーザー光源7及びレーザー光導入光学系8と、試料3及び試料を載せる試料台4と、試料を3次元に移動させるXYZ移動機構12と、集光光学系9と、反射ミラー10と、試料からの信号光を検出する光検出器11と、試料に電圧を印加するための電位測定用交流電圧源22およびオフセット調整回路23と、全体の走査制御及び形状、光、表面電位などの信号を取得する制御装置20と、から構成される。   In FIG. 1, the scanning near-field microscope according to Embodiment 1 includes a light propagating probe 1, a piezoelectric element 2 that vibrates the light propagating probe 1, and an AC voltage that supplies an excitation voltage to the piezoelectric element 2. A source 21, a laser light source 5 for measuring the displacement of the light propagator probe 1 and its photodetector 6, a frequency separation circuit 24 for frequency-separating a signal detected by the photodetector 6, and a laser beam applied to the light propagator probe 1. A laser light source 7 and a laser light introducing optical system 8, a sample stage 4 on which the sample 3 is placed, an XYZ moving mechanism 12 for moving the sample three-dimensionally, a condensing optical system 9, and a reflecting mirror 10, a photodetector 11 for detecting signal light from the sample, an AC voltage source for potential measurement 22 for applying a voltage to the sample, and an offset adjustment circuit 23, the overall scanning control and shape, light, surface potential Such as And a control unit 20 for acquiring items, composed.

図4は、光伝搬体プローブ1の一つの例を示した。基部104には光導波路101が取り付けられている。光導波路101はAFM制御を用いた走査制御を行うために、先端付近が下向きに曲げられている。光導波路101の周囲は、後端を除いて金属被覆102で被覆され、先端部には微小開口103が形成されている。微小開口103の大きさは使用されるレーザー光の波長以下のサイズで、例えば数10nmである。光導波路101としては例えば石英系の光導波路が用いられる。光導波路の構造は、図4は単層の構造を示しているが、光学的な屈折率の高いコア層を屈折率の低いクラッド層ではさんだ形状の、ステップインデックス型光導波路を用いることもできる。金属被覆102の厚さは数10nmから数100nmで、その材料はアルミニウム、クロム、金、白金など導電率の高い光反射材料が用いられる。基部104は例えば薄膜プロセスで一般にウエハーとして用いられるシリコン基板やガラス基板であり、製造過程において、光導波路を積層パターニングしたあと、エッチングにより素子分離したものである。プローブの長さは数10ミクロンから数100ミクロン、厚さは数ミクロン、幅は数10ミクロンから100ミクロン程度である。このとき、光伝搬体プローブ1をカンチレバーとした場合のバネ定数は、100分の数N/mから数N/mで、一般のAFMカンチレバーのバネ定数と同等である。   FIG. 4 shows an example of the light propagator probe 1. An optical waveguide 101 is attached to the base 104. The optical waveguide 101 is bent downward in the vicinity of the tip in order to perform scanning control using AFM control. The periphery of the optical waveguide 101 is covered with a metal coating 102 except for the rear end, and a minute opening 103 is formed at the tip. The size of the minute aperture 103 is a size equal to or smaller than the wavelength of the laser beam used, for example, several tens of nm. For example, a silica-based optical waveguide is used as the optical waveguide 101. As for the structure of the optical waveguide, FIG. 4 shows a single-layer structure, but a step index type optical waveguide having a shape in which a core layer having a high optical refractive index is sandwiched by a cladding layer having a low refractive index can also be used. . The thickness of the metal coating 102 is several tens nm to several hundreds nm, and a light reflecting material having high conductivity such as aluminum, chromium, gold, platinum or the like is used as the material. The base 104 is, for example, a silicon substrate or a glass substrate that is generally used as a wafer in a thin film process. In the manufacturing process, the optical waveguide is laminated and patterned, and then elements are separated by etching. The probe has a length of several tens of microns to several hundreds of microns, a thickness of several microns, and a width of several tens of microns to 100 microns. At this time, the spring constant when the light propagator probe 1 is a cantilever is several hundredths of N / m to several N / m, which is equivalent to the spring constant of a general AFM cantilever.

図5は光伝搬体プローブ1の他の例を示した。光ファイバー111は先端部付近が細化され、AFM制御を用いた走査制御を行うために、先端付近が下向きに曲げられている。   FIG. 5 shows another example of the light propagator probe 1. The optical fiber 111 is thinned in the vicinity of the tip, and the vicinity of the tip is bent downward in order to perform scanning control using AFM control.

ファイバー111の周囲は、後端を除いて金属被覆112で被覆され、先端部には微小開口103が形成されている。微小開口103の大きさは使用されるレーザー光の波長以下のサイズで、例えば数10nmである。光ファイバー111は、使用する光源の波長に応じた設計のシングルモード光ファイバーやマルチモード光ファイバーが用いられる。金属被覆112の厚さは数10nmから数100nmで、その材料はアルミニウム、クロム、金、白金など導電率の高い光反射材料が用いられる。光ファイバー111の細化された部分の直径は10ミクロンから60ミクロン程度、長さは0.5mmから3mmで、そのバネ定数は10分の数N/mから数10N/mである。   The periphery of the fiber 111 is covered with a metal coating 112 except for the rear end, and a minute opening 103 is formed at the tip. The size of the minute aperture 103 is a size equal to or smaller than the wavelength of the laser beam used, for example, several tens of nm. As the optical fiber 111, a single mode optical fiber or a multimode optical fiber designed according to the wavelength of the light source to be used is used. The thickness of the metal coating 112 is several tens nm to several hundreds nm, and a light reflecting material having high conductivity such as aluminum, chromium, gold, platinum or the like is used as the material. The diameter of the thinned portion of the optical fiber 111 is about 10 to 60 microns, the length is 0.5 to 3 mm, and the spring constant is several tenths of N / m to several tens of N / m.

図7および図8は、光伝搬体プローブの例を示した図であり、先端の微小開口部付近の縦断面図を表している。光導波路や光ファイバーなど誘電率の大きい光伝搬体130は先端付近で錐状をなしている。光伝搬体130の先端付近の周囲は、金属膜被覆112で被覆されている。先端には微小開口103が形成されている。微小開口103が形成されている先端面に光伝搬体130はなく、光伝搬体130は金属膜被覆112の端面より陥没している。すなわち、光伝搬体プローブ先端の微小開口付近に誘電体はなく、金属膜被覆103のみが配置されている。   FIG. 7 and FIG. 8 are diagrams showing examples of the light propagating body probe, and show a longitudinal sectional view in the vicinity of the minute opening at the tip. The light propagating body 130 having a large dielectric constant such as an optical waveguide or an optical fiber has a conical shape near the tip. The vicinity of the tip of the light propagating body 130 is covered with a metal film coating 112. A minute opening 103 is formed at the tip. There is no light propagating body 130 at the front end surface where the minute opening 103 is formed, and the light propagating body 130 is depressed from the end surface of the metal film coating 112. That is, there is no dielectric near the minute opening at the tip of the light propagator probe, and only the metal film coating 103 is disposed.

図7および図8に示した光伝搬体プローブは、先端の微小開口103部分の形状が異なる。この形状の違いは、製造方法の違いに起因する。図7に示した微小開口形状は、従来の光ファイバープローブ製造と同様に、尖鋭化した光伝搬体130に、微小開口103を除いて金属膜被覆112を例えば回転蒸着により形成する。その後、金属膜被覆112をマスクとし、微小開口103を通して、先端付近の光伝搬体を等方性エッチングすることにより所望の形状を製造することができる。図8に示した微小開口形状は、尖鋭化した光伝搬体130の先端付近の微小開口部分を含めた全体に、例えば蒸着、スパッタリング、メッキなどの手法により金属膜被覆112を形成する。その後、集束イオンビームを使用して微小開口103部分の金属膜被覆を除去することにより所望の形状を製造することができる。   The light propagator probe shown in FIGS. 7 and 8 is different in the shape of the micro opening 103 at the tip. This difference in shape is caused by a difference in manufacturing method. In the fine aperture shape shown in FIG. 7, the metal film coating 112 is formed on the sharpened light propagating body 130 except for the fine aperture 103 by, for example, rotary vapor deposition, as in the conventional optical fiber probe manufacturing. Thereafter, the metal film coating 112 is used as a mask, and a light propagating body near the tip is isotropically etched through the minute opening 103, whereby a desired shape can be manufactured. In the minute opening shape shown in FIG. 8, the metal film coating 112 is formed on the entire surface including the minute opening near the tip of the sharpened light propagating body 130 by a technique such as vapor deposition, sputtering, or plating. Thereafter, a desired shape can be manufactured by removing the metal film covering of the minute aperture 103 using a focused ion beam.

以上のような光伝搬体プローブの構造によれば、プローブ先端部は金属膜被覆のみとなるので、電気的な接地電位を安定させることができ、正確な表面電位測定が行える、走査型近視野顕微鏡を構成することができる。   According to the structure of the light propagator probe as described above, since the tip of the probe is only coated with a metal film, the electrical ground potential can be stabilized and accurate surface potential measurement can be performed. A microscope can be constructed.

図1において、光伝搬体プローブ1の変位検出は、光てこを示しているが、レーザー干渉計、圧電センサー、静電容量センサーなど他の変位検出器も用いることができる。また、レーザー光導入光学系8は、レンズ光学系、光ファイバー光学系などが用いられる。   In FIG. 1, the displacement detection of the light propagator probe 1 shows an optical lever, but other displacement detectors such as a laser interferometer, a piezoelectric sensor, and a capacitance sensor can also be used. The laser light introducing optical system 8 is a lens optical system, an optical fiber optical system, or the like.

圧電素子2には、交流電圧源21から、光伝搬体プローブ1の共振周波数に対応する加振電圧Vr・sinωrtが印加される。ここで、Vrは電圧振幅、ωrは光伝搬体プローブの共振周波数、tは時間である。光伝搬体プローブ1の振動は、光てこを構成する変位計測用レーザー光源5及びその光検出器6で検出され、周波数分離回路24で生成された周波数ωr成分の信号を用いて、ダイナミックモードのAFM制御により走査制御される。試料の走査はXYZ移動機構12で行われ、その制御は制御装置20によって行われる。   An excitation voltage Vr · sin ωrt corresponding to the resonance frequency of the light propagating probe 1 is applied to the piezoelectric element 2 from the AC voltage source 21. Here, Vr is a voltage amplitude, ωr is a resonance frequency of the light propagating probe, and t is time. The vibration of the light propagator probe 1 is detected by the displacement measurement laser light source 5 constituting the optical lever and its photodetector 6, and using the signal of the frequency ωr component generated by the frequency separation circuit 24, the dynamic mode probe 1. Scanning is controlled by AFM control. The scanning of the sample is performed by the XYZ moving mechanism 12, and the control is performed by the control device 20.

一方、光伝搬体プローブ1は圧電素子2とは電気的に絶縁され、かつ、電気的なグランドに接続されている。即ち、光伝搬体プローブはグランド電位とされている。試料台4と電気的に接続された試料3には、電位測定用交流電圧源22から電圧VACsinωtが印加される。このとき、試料表面の電位に応じて光伝搬体カンチレバーには周波数ωの振動が生じる。この周波数ωの振動は周波数分離回路24で表面電位信号として分離され、制御装置20へ伝送される。制御装置は、電圧VACsinωtによる光伝搬体プローブ1の振動がなくなるようにオフセット調整回路23のオフセット電圧を調整する。このオフセット電圧が、試料表面の電位に−1を掛けた値を示している。   On the other hand, the light propagating probe 1 is electrically insulated from the piezoelectric element 2 and connected to an electrical ground. That is, the light propagator probe is set to the ground potential. A voltage VACsinωt is applied from the potential measurement AC voltage source 22 to the sample 3 electrically connected to the sample stage 4. At this time, vibration of the frequency ω is generated in the light propagating cantilever according to the potential of the sample surface. The vibration of the frequency ω is separated as a surface potential signal by the frequency separation circuit 24 and transmitted to the control device 20. The control device adjusts the offset voltage of the offset adjustment circuit 23 so that the vibration of the light propagator probe 1 due to the voltage VACsinωt is eliminated. This offset voltage indicates a value obtained by multiplying the potential of the sample surface by -1.

本実施の形態においては、光伝搬体プローブ1の電位を電気的な接地電位とし、試料3に電位測定用の交流電圧を印加する構成を示した。これとは逆に、試料3を電気的な接地電位とし、光伝搬体プローブ1に電位測定用の交流電圧を印加しても電位測定を行うことが可能である。   In the present embodiment, a configuration in which the potential of the light propagating probe 1 is set to an electrical ground potential and an AC voltage for potential measurement is applied to the sample 3 is shown. On the contrary, the potential measurement can be performed even when the sample 3 is set to an electrical ground potential and an AC voltage for potential measurement is applied to the light propagating probe 1.

さらに、光伝搬体プローブ1を上記のように、ダイナミックモードのAFM制御により走査制御しながら、光伝搬体プローブ1の後端に、レーザー光源7のレーザー光が、レーザー光導入光学系8を用いて導入される。プローブ先端部の微小開口から試料に近視野光が照射され、試料を透過したレーザー光は、集光光学系9及び反射ミラー10を介して光検出器11で検出される。図1は、光伝搬体プローブ1の先端の微小開口から近視野光を照射するイルミネーションモードの構成を示しているが、微小開口で試料表面に局在した近視野光を検出する構成(コレクションモード)や、微小開口から近視野光を照射し、同一の微小開口を用いてサンプルからの信号光を検出するイルミネーション・コレクションモードの構成も可能である。   Further, the laser beam of the laser light source 7 is applied to the rear end of the light propagator probe 1 using the laser beam introduction optical system 8 while scanning the light propagator probe 1 by dynamic mode AFM control as described above. Introduced. The near-field light is irradiated to the sample from the minute opening at the probe tip, and the laser light transmitted through the sample is detected by the photodetector 11 via the condensing optical system 9 and the reflection mirror 10. FIG. 1 shows a configuration of an illumination mode in which near-field light is irradiated from a minute opening at the tip of the light propagator probe 1, but a structure for detecting near-field light localized on the sample surface through the minute opening (collection mode). It is also possible to employ an illumination / collection mode configuration in which near-field light is irradiated from a minute aperture and signal light from a sample is detected using the same minute aperture.

上記のような走査型近視野顕微鏡の構成によれば、試料表面の形状、光学特性に加えて、試料の表面電位を同時に測定することが可能である。また、光照射による走査データ、光照射しない場合の走査データを比較することにより、試料表面電位の光照射(光刺激)による変化を測定することも可能である。   According to the configuration of the scanning near-field microscope as described above, it is possible to simultaneously measure the surface potential of the sample in addition to the shape and optical characteristics of the sample surface. It is also possible to measure changes in the sample surface potential due to light irradiation (photostimulation) by comparing scanning data with light irradiation and scanning data without light irradiation.

(実施の形態2)
図2は、実施の形態2に係る走査型近視野顕微鏡の概略構成を示すブロック図である。
(Embodiment 2)
FIG. 2 is a block diagram showing a schematic configuration of a scanning near-field microscope according to the second embodiment.

図2において、図1と同一の構成要素には同一の番号を付してある。実施の形態2に係る走査型近視野顕微鏡は、光伝搬体プローブ1と、光伝搬体プローブ1の変位計測用レーザー光源5及びその光検出器6と、光検出器6で検出した信号を周波数分離する周波数分離回路24と、光伝搬体プローブ1にレーザー光を導入するためのレーザー光源7及びレーザー光導入光学系8と、試料3及び試料を載せる試料台4と、試料を3次元に移動させるXYZ移動機構12と、集光光学系9と、反射ミラー10と、試料からの信号光を検出する光検出器11と、試料に電圧を印加するための電位測定用交流電圧源22およびオフセット調整回路23と、全体の走査制御及び形状、光、表面電位などの信号を取得する制御装置20と、から構成される。図1に示した実施の形態1とは、圧電素子2を設置していないところが異なる。   2, the same components as those in FIG. 1 are denoted by the same reference numerals. The scanning near-field microscope according to the second embodiment includes a light propagating probe 1, a laser light source 5 for measuring displacement of the light propagating probe 1, its photodetector 6, and a signal detected by the photodetector 6 with a frequency. A frequency separation circuit 24 for separating, a laser light source 7 and a laser light introducing optical system 8 for introducing laser light into the light propagating body probe 1, a sample 3 and a sample stage 4 on which the sample is placed, and a sample are moved three-dimensionally. An XYZ moving mechanism 12, a condensing optical system 9, a reflecting mirror 10, a photodetector 11 for detecting signal light from the sample, an AC voltage source for potential measurement 22 for applying a voltage to the sample, and an offset The adjustment circuit 23 includes the entire scanning control and a control device 20 that acquires signals such as shape, light, and surface potential. This embodiment is different from the first embodiment shown in FIG. 1 in that the piezoelectric element 2 is not installed.

電気的にグランド電位とした光伝搬体プローブ1と試料3の間にバイアス電圧を印加する。即ち、試料にVACsinωtで表される交流電圧を印加したとき、光伝搬体プローブ1の先端と試料3表面の静電的な結合により、光伝搬体プローブ1が励振される。光てこで検出された光伝搬体プローブ1の振動は、周波数分離回路24で周波数分離される。   A bias voltage is applied between the light propagator probe 1 and the sample 3 which are electrically grounded. That is, when an AC voltage represented by VAC sin ωt is applied to the sample, the light propagating probe 1 is excited by electrostatic coupling between the tip of the light propagating probe 1 and the surface of the sample 3. The vibration of the light propagator probe 1 detected by the optical lever is frequency separated by the frequency separation circuit 24.

ここで、2ωの項は光伝搬体プローブ1先端と試料3表面の距離の項であり、この値を一定とするようにXYZ移動機構で高さ制御して走査することにより、試料3の表面形状を得ることができる。   Here, the term 2ω is the term of the distance between the tip of the light propagator probe 1 and the surface of the sample 3, and the surface of the sample 3 is scanned by controlling the height with an XYZ moving mechanism so that this value is constant. Shape can be obtained.

一方、周波数ωの項は試料の表面電位の項である。周波数ωの信号は周波数分離回路24で表面電位信号として分離され、制御装置20へ伝送される。制御装置は、周波数ωの振動がなくなるようにオフセット調整回路23のオフセット電圧を調整する。このオフセット電圧が、試料表面の電位に−1を掛けた値を示している。   On the other hand, the term of frequency ω is a term of the surface potential of the sample. The signal of the frequency ω is separated as a surface potential signal by the frequency separation circuit 24 and transmitted to the control device 20. The control device adjusts the offset voltage of the offset adjustment circuit 23 so that the vibration at the frequency ω is eliminated. This offset voltage indicates a value obtained by multiplying the potential of the sample surface by -1.

さらに、光伝搬体プローブ1を上記のように走査制御しながら、光伝搬体プローブ1の後端に、レーザー光源7のレーザー光が、レーザー光導入光学系8を用いて導入される。   Further, the laser beam of the laser light source 7 is introduced into the rear end of the light propagating probe 1 using the laser beam introducing optical system 8 while scanning the light propagating probe 1 as described above.

プローブ先端部の微小開口から試料に近視野光が照射され、試料を透過したレーザー光は、集光光学系9及び反射ミラー10を介して光検出器11で検出される。図2は、光伝搬体プローブ1の先端の微小開口から近視野光を照射するイルミネーションモードの構成を示しているが、微小開口で試料表面に局在した近視野光を検出する構成(コレクションモード)や、微小開口から近視野光を照射し、同一の微小開口を用いてサンプルからの信号光を検出するイルミネーション・コレクションモードの構成も可能である。   The near-field light is irradiated to the sample from the minute opening at the probe tip, and the laser light transmitted through the sample is detected by the photodetector 11 via the condensing optical system 9 and the reflection mirror 10. FIG. 2 shows an illumination mode configuration that irradiates near-field light from a minute aperture at the tip of the light propagator probe 1, but a configuration that detects near-field light localized on the sample surface through the minute aperture (collection mode). It is also possible to employ an illumination / collection mode configuration in which near-field light is irradiated from a minute aperture and signal light from a sample is detected using the same minute aperture.

上記のような走査型近視野顕微鏡の構成によれば、試料表面の形状、光学特性に加えて、試料の表面電位を同時に測定することが可能である。また、光照射による走査データ、光照射しない場合の走査データを比較することにより、試料表面電位の光照射(光刺激)による変化を測定することも可能である。   According to the configuration of the scanning near-field microscope as described above, it is possible to simultaneously measure the surface potential of the sample in addition to the shape and optical characteristics of the sample surface. It is also possible to measure changes in the sample surface potential due to light irradiation (photostimulation) by comparing scanning data with light irradiation and scanning data without light irradiation.

(実施の形態3)
図3は、実施の形態3に係る走査型近視野顕微鏡の概略構成を示すブロック図である。
(Embodiment 3)
FIG. 3 is a block diagram showing a schematic configuration of a scanning near-field microscope according to the third embodiment.

図3において、図1と同一の構成要素には同一の番号を付してある。実施の形態3に係る走査型近視野顕微鏡は、光伝搬体プローブ1と、光伝搬体プローブ1を加振させる圧電素子2と、圧電素子2に加振電圧を供給する交流電圧源21と、光伝搬体プローブ1の変位計測用レーザー光源5及びその光検出器6と、光検出器6で検出した信号を周波数分離する周波数分離回路24と、光伝搬体プローブ1にレーザー光を導入するためのレーザー光源7及びレーザー光導入光学系8と、レーザー光を振幅変調するための変調装置13と、変調装置13に変調信号を与える変調信号生成器15と、レーザーの変調信号を参照信号として表面電位信号を位相検波するための位相検波装置14と、試料3及び試料を載せる試料台4と、試料を3次元に移動させるXYZ移動機構12と、集光光学系9と、反射ミラー10と、試料からの信号光を検出する光検出器11と、試料に電圧を印加するための電位測定用交流電圧源22およびオフセット調整回路23と、全体の走査制御及び形状、光、表面電位などの信号を取得する制御装置20と、から構成される。図1に示した実施の形態1とは、レーザー光の変調を行うところと、レーザー光の変調に対応して表面電位信号を位相検波するところが異なる。   In FIG. 3, the same components as those in FIG. A scanning near-field microscope according to Embodiment 3 includes a light propagating probe 1, a piezoelectric element 2 that vibrates the light propagating probe 1, an AC voltage source 21 that supplies an excitation voltage to the piezoelectric element 2, In order to introduce laser light into the optical propagator probe 1, the laser light source 5 for measuring the displacement of the optical propagator probe 1 and its photodetector 6, the frequency separation circuit 24 that frequency-separates the signal detected by the photodetector 6. Laser light source 7 and laser light introducing optical system 8, a modulation device 13 for amplitude-modulating the laser light, a modulation signal generator 15 for giving a modulation signal to the modulation device 13, and a surface using the modulation signal of the laser as a reference signal A phase detector 14 for phase detection of a potential signal, a sample 3 and a sample stage 4 on which the sample is placed, an XYZ moving mechanism 12 for moving the sample in three dimensions, a condensing optical system 9, and a reflecting mirror 10 , A photodetector 11 for detecting signal light from the sample, an AC voltage source for potential measurement 22 for applying a voltage to the sample, and an offset adjustment circuit 23, and the overall scanning control and shape, light, surface potential, etc. And a control device 20 for acquiring a signal. 1 differs from the first embodiment shown in FIG. 1 in that the modulation of the laser beam is performed and the phase detection of the surface potential signal corresponding to the modulation of the laser beam.

圧電素子2には、交流電圧源21から、光伝搬体プローブ1の共振周波数に対応する加振電圧Vr・sinωrtが印加される。ここで、Vrは電圧振幅、ωrは光伝搬体プローブの共振周波数、tは時間である。光伝搬体プローブ1の振動は、光てこを構成する変位計測用レーザー光源5及びその光検出器6で検出され、周波数分離回路24で生成された周波数ωr成分の信号を用いて、ダイナミックモードのAFM制御により走査制御される。試料の走査はXYZ移動機構12で行われ、その制御は制御装置20によって行われる。   An excitation voltage Vr · sin ωrt corresponding to the resonance frequency of the light propagating probe 1 is applied to the piezoelectric element 2 from the AC voltage source 21. Here, Vr is a voltage amplitude, ωr is a resonance frequency of the light propagating probe, and t is time. The vibration of the light propagator probe 1 is detected by the displacement measurement laser light source 5 constituting the optical lever and its photodetector 6, and using the signal of the frequency ωr component generated by the frequency separation circuit 24, the dynamic mode probe 1. Scanning is controlled by AFM control. The scanning of the sample is performed by the XYZ moving mechanism 12, and the control is performed by the control device 20.

一方、光伝搬体プローブ1は圧電素子2とは電気的に絶縁され、かつ、電気的なグランドに接続されている。即ち、光伝搬体プローブはグランド電位とされている。試料台4と電気的に接続された試料3には、電位測定用交流電圧源22から電圧VACsinωtが印加される。このとき、試料表面の電位に応じて光伝搬体カンチレバーには周波数ωの振動が生じる。この周波数ωの振動は周波数分離回路24で表面電位信号として分離され、制御装置20へ伝送される。制御装置は、電圧VACsinωtによる光伝搬体プローブ1の振動がなくなるようにオフセット調整回路23のオフセット電圧を調整する。このオフセット電圧が、試料表面の電位に−1を掛けた値を示している。   On the other hand, the light propagating probe 1 is electrically insulated from the piezoelectric element 2 and connected to an electrical ground. That is, the light propagator probe is set to the ground potential. A voltage VACsinωt is applied from the potential measurement AC voltage source 22 to the sample 3 electrically connected to the sample stage 4. At this time, vibration of the frequency ω is generated in the light propagating cantilever according to the potential of the sample surface. The vibration of the frequency ω is separated as a surface potential signal by the frequency separation circuit 24 and transmitted to the control device 20. The control device adjusts the offset voltage of the offset adjustment circuit 23 so that the vibration of the light propagator probe 1 due to the voltage VACsinωt is eliminated. This offset voltage indicates a value obtained by multiplying the potential of the sample surface by -1.

さらに、光伝搬体プローブ1を上記のように、ダイナミックモードのAFM制御により走査制御しながら、光伝搬体プローブ1の後端に、レーザー光源7のレーザー光が、変調装置13及びレーザー光導入光学系8を用いて導入される。変調装置13は変調信号生成器15からの信号Vo・sinωotに基づいてレーザー光の振幅変調を行う。プローブ先端部の微小開口から試料に近視野光が照射され、試料を透過したレーザー光は、集光光学系9及び反射ミラー10を介して光検出器11で検出される。光検出器11で検出される信号は、変調装置13によって変調されているので、位相検波することにより信号のS/N比を大きくすることができる。図1は、光伝搬体プローブ1の先端の微小開口から近視野光を照射するイルミネーションモードの構成を示しているが、微小開口で試料表面に局在した近視野光を検出する構成(コレクションモード)や、微小開口から近視野光を照射し、同一の微小開口を用いてサンプルからの信号光を検出するイルミネーション・コレクションモードの構成も可能である。   Further, while the light propagating probe 1 is controlled to be scanned by dynamic mode AFM control as described above, the laser beam of the laser light source 7 is applied to the rear end of the light propagating probe 1 and the modulator 13 and the laser beam introducing optics. Introduced using system 8. The modulation device 13 performs amplitude modulation of the laser beam based on the signal Vo · sinωot from the modulation signal generator 15. The near-field light is irradiated to the sample from the minute opening at the probe tip, and the laser light transmitted through the sample is detected by the photodetector 11 via the condensing optical system 9 and the reflection mirror 10. Since the signal detected by the photodetector 11 is modulated by the modulator 13, the S / N ratio of the signal can be increased by phase detection. FIG. 1 shows a configuration of an illumination mode in which near-field light is irradiated from a minute opening at the tip of the light propagator probe 1, but a structure for detecting near-field light localized on the sample surface through the minute opening (collection mode). It is also possible to employ an illumination / collection mode configuration in which near-field light is irradiated from a minute aperture and signal light from a sample is detected using the same minute aperture.

一方、周波数分離回路24の表面電位信号は位相検波器14を用いて、光変調における光照射時の信号と光未照射時の信号に分けられる。これにより、一度の走査で光照射時、未照射時の表面電位測定を行うことが可能となる。   On the other hand, the surface potential signal of the frequency separation circuit 24 is divided by the phase detector 14 into a signal at the time of light irradiation and a signal at the time of no light irradiation in the light modulation. Thereby, it is possible to perform surface potential measurement at the time of light irradiation and non-irradiation by one scanning.

上記のような走査型近視野顕微鏡の構成によれば、試料表面の形状、光学特性に加えて、試料の表面電位を同時に測定することが可能である。また、光照射あるいは光検出を行うための光源に光変調を行うことにより、光照射、未照射による試料表面の電位像を同時に測定することが可能である。   According to the configuration of the scanning near-field microscope as described above, it is possible to simultaneously measure the surface potential of the sample in addition to the shape and optical characteristics of the sample surface. Further, by performing light modulation on a light source for performing light irradiation or light detection, it is possible to simultaneously measure a potential image on the sample surface by light irradiation and non-irradiation.

(実施の形態4)
図6は、実施の形態4に係る走査型近視野顕微鏡の光伝搬体プローブ保持機構の概略構成を示す図である。図6において、実施の形態4に係る走査型近視野顕微鏡の光伝搬体プローブ保持機構は、基材121と、圧電素子2と、絶縁膜122と、電気的に接地された電極板123とを積層した構造であり、光伝搬体プローブ1は、電極板123に接触するように搭載される。
(Embodiment 4)
FIG. 6 is a diagram showing a schematic configuration of a light propagator probe holding mechanism of the scanning near-field microscope according to the fourth embodiment. In FIG. 6, the light propagator probe holding mechanism of the scanning near-field microscope according to the fourth embodiment includes a substrate 121, a piezoelectric element 2, an insulating film 122, and an electrode plate 123 that is electrically grounded. The light propagation probe 1 is mounted so as to be in contact with the electrode plate 123.

圧電素子2としては通常バイモルフと呼ばれる圧電セラミクスを用いる。このバイモルフは圧電板をプラスとマイナスの電極ではさんだ構造であり、ここへ直接光伝搬体プローブ1を搭載すると、光伝搬体プローブ1の電位はバイモルフの電極電位となり、正確な表面電位計測を行うことができない。図6の構成では絶縁膜122を介して電気的に接地された電極板123を接地しているので、光伝搬体プローブは取り付けただけで確実にグランド電位とすることができる。   As the piezoelectric element 2, piezoelectric ceramics generally called bimorph is used. This bimorph has a structure in which a piezoelectric plate is sandwiched between positive and negative electrodes. When the light propagating probe 1 is directly mounted on the bimorph, the potential of the light propagating probe 1 becomes the electrode potential of the bimorph, and accurate surface potential measurement is performed. I can't. In the configuration of FIG. 6, the electrode plate 123 that is electrically grounded through the insulating film 122 is grounded, so that the ground potential can be reliably set just by attaching the light propagating probe.

上記のような走査型近視野顕微鏡の光伝搬体プローブ保持機構によれば、光伝搬体プローブを前記保持機構に搭載するのみで、電位測定上必要となる電気的な接地電位を確保できるので、表面電位測定が正確かつ容易な、走査型近視野顕微鏡を構成することができる。   According to the light propagator probe holding mechanism of the scanning near-field microscope as described above, it is possible to ensure an electrical ground potential necessary for potential measurement only by mounting the light propagator probe on the holding mechanism. It is possible to construct a scanning near-field microscope in which surface potential measurement is accurate and easy.

以上説明したように、第1思想に係る走査型近視野顕微鏡によれば、光伝搬体プローブを用いて、ダイナミックモードのAFMの手法により試料表面を走査制御しながら、光伝搬体プローブ先端と試料表面間にバイアス電圧を印加してその周波数成分から表面電位を測定すると共に、光伝搬体プローブ先端に形成された微小開口から近視野光を照射することにより、試料表面の形状、光学特性に加えて、試料の表面電位を同時に測定することが可能である。また、光照射による走査データ、光照射しない場合の走査データを比較することにより、試料表面電位の光照射(光刺激)による変化を測定することも可能である。   As described above, according to the scanning near-field microscope according to the first concept, the front surface of the light propagating probe and the sample are controlled using the light propagating probe while scanning the sample surface by the dynamic mode AFM technique. In addition to measuring the surface potential from the frequency component by applying a bias voltage between the surfaces, and irradiating near-field light from the minute aperture formed at the tip of the light propagator probe, in addition to the shape and optical characteristics of the sample surface Thus, the surface potential of the sample can be measured simultaneously. It is also possible to measure changes in the sample surface potential due to light irradiation (photostimulation) by comparing scanning data with light irradiation and scanning data without light irradiation.

また、第2思想に係る走査型近視野顕微鏡によれば、光伝搬体プローブ先端と試料表面間にバイアス電圧を印加して光伝搬体プローブを励振し、その振動の周波数成分から光伝搬体プローブ先端と試料表面の距離を制御して表面形状を得ると共に、別の周波数成分から表面電位を測定し、さらに、光伝搬体プローブ先端に形成された微小開口から近視野光を照射することにより、試料表面の形状、光学特性に加えて、試料の表面電位を同時に測定することが可能である。また、光照射による走査データ、光照射しない場合の走査データを比較することにより、試料表面電位の光照射(光刺激)による変化を測定することも可能である。   Further, according to the scanning near-field microscope according to the second idea, a bias voltage is applied between the tip of the light propagating probe and the sample surface to excite the light propagating probe, and the light propagating probe is calculated from the frequency component of the vibration. By controlling the distance between the tip and the sample surface to obtain the surface shape, measuring the surface potential from another frequency component, and further irradiating near-field light from the microscopic aperture formed at the tip of the light propagator probe, In addition to the shape and optical properties of the sample surface, the surface potential of the sample can be measured simultaneously. It is also possible to measure changes in the sample surface potential due to light irradiation (photostimulation) by comparing scanning data with light irradiation and scanning data without light irradiation.

また、第3思想に係る走査型近視野顕微鏡によれば、光伝搬体プローブを用いて、ダイナミックモードのAFMの手法により試料表面を走査制御しながら、光伝搬体プローブ先端と試料表面間にバイアス電圧を印加してその周波数成分から表面電位を測定すると共に、光伝搬体プローブ先端に形成された微小開口から近視野光を照射することにより、試料表面の形状、光学特性に加えて、試料の表面電位を同時に測定することが可能である。さらに、光照射あるいは光検出を行うための光源に光変調を行うことにより、光照射、未照射による試料表面の電位像を同時に測定することが可能である。   Further, according to the scanning near-field microscope according to the third concept, the bias between the tip of the light propagating probe and the sample surface is controlled using the light propagating probe while scanning the sample surface by the dynamic mode AFM technique. In addition to measuring the surface potential from the frequency component by applying a voltage and irradiating near-field light from the microscopic aperture formed at the tip of the light propagator probe, in addition to the shape and optical characteristics of the sample surface, It is possible to measure the surface potential simultaneously. Further, by performing light modulation on a light source for light irradiation or light detection, it is possible to simultaneously measure a potential image on the sample surface by light irradiation and non-irradiation.

また、第4思想に係る走査型近視野顕微鏡によれば、第1思想乃至第3思想の発明において、光伝搬体プローブは光導波層からなるカンチレバーとして構成することができ、従来のAFM用カンチレバーと同等のバネ定数を与えることが可能となる。従って、表面電位測定に十分な感度を有する走査型近視野顕微鏡を構成することが可能となる。   Further, according to the scanning near-field microscope according to the fourth idea, in the invention of the first idea to the third idea, the light propagating probe can be configured as a cantilever made of an optical waveguide layer, and a conventional AFM cantilever is provided. It is possible to give a spring constant equivalent to. Therefore, it is possible to configure a scanning near-field microscope having sufficient sensitivity for surface potential measurement.

また、第5思想に係る走査型近視野顕微鏡によれば、第1思想乃至第3思想の発明において、光伝搬体プローブは細化した光伝搬体で構成することができ、従来のAFM用カンチレバーと同等のバネ定数を与えることが可能となる。従って、表面電位測定に十分な感度を有する走査型近視野顕微鏡を構成することが可能となる。   Further, according to the scanning near-field microscope according to the fifth idea, in the inventions of the first idea to the third idea, the light propagating body probe can be composed of a thinned light propagating body, and a conventional AFM cantilever It is possible to give a spring constant equivalent to. Therefore, it is possible to configure a scanning near-field microscope having sufficient sensitivity for surface potential measurement.

また、第6思想に係る走査型近視野顕微鏡によれは、第4思想の発明において、光伝搬体を薄膜光導波路で構成することにより、微小開口への光伝送損失の少ない、または微小開口からの光伝送損失の少ない走査型近視野顕微鏡を構成することができ、高感度の光学特性の測定を行うことができる。   Further, according to the scanning near-field microscope according to the sixth idea, in the invention of the fourth idea, the light propagating body is constituted by a thin film optical waveguide, so that the optical transmission loss to the minute aperture is small or the minute aperture is reduced. Thus, a scanning near-field microscope with low optical transmission loss can be configured, and high-sensitivity optical characteristics can be measured.

また、第7思想に係る走査型近視野顕微鏡によれば、第5思想の発明において、光伝搬体を光ファイバーで構成することにより、微小開口への光伝送損失の少ない、または微小開口からの光伝送損失の少ない走査型近視野顕微鏡を構成することができ、光学特性の測定を行うことができる。   Further, according to the scanning near-field microscope according to the seventh idea, in the invention of the fifth idea, the light propagating body is made of an optical fiber, so that light transmission loss to the minute aperture is small or light from the minute aperture is obtained. A scanning near-field microscope with little transmission loss can be configured, and optical characteristics can be measured.

また、第8思想に係る走査型近視野顕微鏡によれば、第1思想乃至第3思想の発明において、光伝搬体プローブを前記保持機構に搭載するのみで、電位測定上必要となる電気的な接地電位を確保できるので、表面電位測定が正確かつ容易な、走査型近視野顕微鏡を構成することができる。   Also, according to the scanning near-field microscope according to the eighth idea, in the inventions of the first idea to the third idea, the electric propagator probe is simply mounted on the holding mechanism, and the electrical necessary for potential measurement is obtained. Since the ground potential can be ensured, a scanning near-field microscope can be configured with accurate and easy surface potential measurement.

また、第9思想に係わる走査型近視野顕微鏡によれば、第1思想乃至第3思想の発明において、光伝搬体プローブの先端部分は誘電体が配置されず、プローブ先端部は金属膜被覆のみとなるので、電気的な接地電位を安定させることができ、正確な表面電位測定が行える、走査型近視野顕微鏡を構成することができる。   Further, according to the scanning near-field microscope according to the ninth idea, in the inventions of the first idea to the third idea, the tip of the light propagating probe is not disposed with a dielectric, and the probe tip is only covered with a metal film. Therefore, it is possible to configure a scanning near-field microscope that can stabilize the electrical ground potential and perform accurate surface potential measurement.

本発明の実施の形態1に係る走査型近視野顕微鏡の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the scanning near-field microscope which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る走査型近視野顕微鏡の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the scanning near-field microscope which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る走査型近視野顕微鏡の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the scanning near-field microscope which concerns on Embodiment 3 of this invention. 本発明の実施の形態に係る光伝搬体プローブの構成図である。It is a block diagram of the light propagation body probe which concerns on embodiment of this invention. 本発明の実施の形態に係る光伝搬体プローブの構成図である。It is a block diagram of the light propagation body probe which concerns on embodiment of this invention. 本発明の実施の形態4に係る走査型近視野顕微鏡の光伝搬体プローブ保持機構の概略構成を示す図である。It is a figure which shows schematic structure of the light propagating body probe holding mechanism of the scanning near-field microscope which concerns on Embodiment 4 of this invention. 本発明の実施の形態に係る光伝搬体プローブの構成図である。It is a block diagram of the light propagation body probe which concerns on embodiment of this invention. 本発明の実施の形態に係る光伝搬体プローブの構成図である。It is a block diagram of the light propagation body probe which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 光伝搬体プローブ
2 圧電素子
3 試料
4 試料台
5 変位計測用レーザー光源
6 光検出器
7 レーザー光源
8 レーザー光導入光学系
9 集光光学系
10 反射ミラー
11 光検出器
12 XYZ移動機構
13 変調装置
14 位相検波器
15 変調信号生成器
20 制御装置
21 交流電圧源
22 電位測定用交流電圧源
23 オフセット調整回路
24 周波数分離回路
101 光導波路
102 金属被覆
103 微小開口
104 基部
111 光ファイバー
112 金属被覆
121 基材
122 絶縁膜
123 電極板
130 光伝搬体
DESCRIPTION OF SYMBOLS 1 Light propagator probe 2 Piezoelectric element 3 Sample 4 Sample stand 5 Displacement measurement laser light source 6 Photo detector 7 Laser light source 8 Laser light introducing optical system 9 Condensing optical system 10 Reflecting mirror 11 Photo detector 12 XYZ moving mechanism 13 Modulation Device 14 Phase detector 15 Modulation signal generator 20 Control device 21 AC voltage source 22 AC voltage source for potential measurement 23 Offset adjustment circuit 24 Frequency separation circuit 101 Optical waveguide 102 Metal coating 103 Micro aperture 104 Base 111 Optical fiber 112 Metal coating 121 Base Material 122 Insulating film 123 Electrode plate 130 Light propagating body

Claims (5)

誘電体から構成されカンチレバーを有する光伝搬体プローブを備え、前記光伝搬体プローブの先端部と測定すべき試料の表面あるいは媒体表面との間隔を、前記光伝搬体プローブの先端部を前記表面に対して垂直方向に振動させながら原子間力あるいはその他の相互作用に関わる力が作用する動作距離内に近づけた状態で、2次元的な走査手段によって前記表面を走査するとともに、制御手段によって前記表面の形状に沿って前記光伝搬体プローブを制御し、前記表面の微小領域に対して光照射あるいは光検出を行う走査型近視野顕微鏡において、
前記カンチレバーの変位を検出する変位検出手段と、
前記変位検出手段に接続された周波数分離回路と、
(1)前記光伝搬体プローブを前記表面に対して垂直方向に振動させる圧電素子からなる加振器、及び前記加振器を前記光伝搬体プローブの共振周波数と略同等の周波数の交流電圧により駆動する前記加振器の電圧印加手段と、
前記光伝搬体プローブを前記表面に対して垂直方向に前記プローブ先端と前記表面間に交流電圧を印加してそのとき両者に働く静電気力を利用して振動させる静電振動手段、及び前記静電振動手段を所定の周波数の交流電圧により駆動する静電振動手段の電圧印加手段、又は、
(2)前記光伝搬体プローブを前記表面に対して垂直方向に前記プローブ先端と前記表面間に交流電圧を印加してそのとき両者に働く静電気力を利用して振動させる静電振動手段、及び前記静電振動手段を所定の周波数の交流電圧により駆動する静電振動手段の電圧印加手段、を備え、
前記変位検出手段における前記光伝搬体プローブの変位検出信号の前記周波数分離回路により分離・出力される、
(1)の場合の前記加振器の駆動交流電圧の周波数の成分検出信号、又は、
(2)の場合の前記静電振動手段の駆動交流電圧の周波数の2倍波の成分の検出信号、
に基づいて前記光伝搬体プローブの先端部と前記表面との間隔を一定に保つための制御手段と、
前記周波数分離回路により分離されて出力される前記静電振動手段の駆動交流電圧の周波数の成分検出信号に基づき、前記静電振動手段の電圧印加手段によって印加された交流電圧に起因する前記カンチレバーの振動を除去するように電圧を帰還する電圧帰還手段と、を備え、
前記光伝搬体プローブが前記カンチレバーに対して下向きに曲がっており、該光伝搬体プローブの先端部に透過口と、該透過口を除く先端部に導電性金属膜被覆とを有し、前記金属膜が前記透過口部を囲むと共に該光伝搬体が前記金属膜の端面より陥没する形状であって、
前記光伝搬体プローブ先端部と、測定すべき試料あるいは媒体表面のいずれか一方が接地電位に、また、他方が前記電圧印加手段に接続され、光照射あるいは光検出を行いながら、前記電圧帰還手段で帰還される電圧をもとに試料の表面電位の測定を同時に行うことを特徴とする走査型近視野顕微鏡。
Comprising a light propagating body probe having a cantilever formed of a dielectric, the distance between the surface or medium surface of the sample to be measured and the tip portion of the optical propagating body probe, the distal end portion of the light propagating body probe to the surface In contrast, the surface is scanned by a two-dimensional scanning means while being vibrated in the vertical direction and brought close to an operating distance where an interatomic force or other interaction force acts, and the surface is scanned by a control means. In the scanning near-field microscope which controls the light propagating body probe along the shape of the surface and performs light irradiation or light detection on the minute region of the surface,
Displacement detecting means for detecting the displacement of the cantilever;
A frequency separation circuit connected to the displacement detection means;
(1) A vibrator composed of a piezoelectric element that vibrates the light propagator probe in a direction perpendicular to the surface, and the vibrator using an AC voltage having a frequency substantially equal to the resonance frequency of the light propagator probe. Voltage application means of the vibrator to be driven;
Electrostatic vibrating means for applying an alternating voltage between the probe tip and the surface in a direction perpendicular to the surface and vibrating the light propagating body probe using an electrostatic force acting on the probe, and the electrostatic Voltage application means of electrostatic vibration means for driving the vibration means with an alternating voltage of a predetermined frequency, or
(2) electrostatic vibrating means for applying an alternating voltage between the probe tip and the surface in a direction perpendicular to the surface and vibrating the light propagating probe by utilizing electrostatic force acting on the probe, and Voltage applying means for electrostatic vibration means for driving the electrostatic vibration means with an alternating voltage of a predetermined frequency,
The displacement detection means separates and outputs the displacement detection signal of the light propagator probe by the frequency separation circuit.
The component detection signal of the frequency of the drive AC voltage of the vibrator in the case of (1), or
A detection signal of a component of a second harmonic of the frequency of the drive AC voltage of the electrostatic vibration means in the case of (2),
Control means for keeping the distance between the tip of the light propagator probe and the surface constant based on:
Based on the frequency component detection signal of the drive AC voltage of the electrostatic vibration means that is separated and output by the frequency separation circuit, the cantilever of the cantilever caused by the AC voltage applied by the voltage application means of the electrostatic vibration means Voltage feedback means for feeding back the voltage so as to eliminate vibration, and
The light propagating probe is bent downward with respect to the cantilever, has a transmission port at a tip portion of the light propagation probe, and a conductive metal film coating at a tip portion excluding the transmission port, The film surrounds the transmission opening and the light propagating body is recessed from the end surface of the metal film,
The light feedback probe tip and either the sample to be measured or the surface of the medium are connected to the ground potential, and the other is connected to the voltage application means, and the voltage feedback means while performing light irradiation or light detection. A scanning near-field microscope, which simultaneously measures the surface potential of a sample based on the voltage fed back in step 1 .
請求項に記載の走査型近視野顕微鏡において、
前記表面の微小領域に対して光照射あるいは光検出を行うための光源に光変調を行う変調手段と、
前記(1)の場合の前記加振器の電圧印加手段、又は(2)の場合の前記静電振動手段の電圧印加手段によって印加された交流電圧に起因する前記カンチレバーの振動検出信号を、前記変調手段の変調信号に対応して位相検波する位相検波手段と、を備えた走査型近視野顕微鏡。
The scanning near-field microscope according to claim 1 ,
Modulation means for performing light modulation on a light source for performing light irradiation or light detection on a minute region of the surface;
The vibration detection signal of the cantilever caused by the AC voltage applied by the voltage application means of the vibrator in the case of (1) or the voltage application means of the electrostatic vibration means in the case of (2) , A scanning near-field microscope comprising: phase detection means for detecting a phase corresponding to a modulation signal of the modulation means.
請求項1又は2のいずれかに記載の走査型近視野顕微鏡において、
前記光伝搬体プローブは、前記金属膜を成膜後に、当該光伝搬体プローブの先端部の誘電体を除去することにより、該光伝搬体が前記金属膜の端面より陥没している走査型近視野顕微鏡。
The scanning near-field microscope according to claim 1 or 2 ,
After the metal film is formed, the light propagator probe removes the dielectric at the tip of the light propagator probe so that the light propagator is depressed from the end surface of the metal film. Field microscope.
請求項に記載の走査型近視野顕微鏡において、
前記光伝搬体プローブは、前記透過口を除いて金属膜被覆形成し、前記金属膜被覆をマスクとし、前記透過口を通して、前記光伝搬体が等方性エッチングされたことにより該光伝搬体が前記金属膜の端面より陥没している走査型近視野顕微鏡。
The scanning near-field microscope according to claim 3 ,
The light propagator probe is formed by coating a metal film except for the transmission port, the metal film coating is used as a mask, and the light propagator is isotropically etched through the transmission port. A scanning near-field microscope recessed from an end face of the metal film.
請求項1〜のいずれか1項に記載の走査型近視野顕微鏡において、
前記光伝搬体プローブは、弾性機能を有する部分と、この弾性機能を有する部分を支持する基部とを有し、
前記弾性機能を有する部分がこれを支持する柱状の前記基部と一体形成であると共に少なくとも柱状部を有し、この柱状部の外形が前記柱状の基部の外形よりも細い走査型近視野顕微鏡。
In the scanning near-field microscope according to any one of claims 1 to 4 ,
The light propagator probe has a portion having an elastic function and a base portion supporting the portion having the elastic function,
A scanning near-field microscope in which the portion having the elastic function is integrally formed with the columnar base portion that supports the portion and has at least a columnar portion, and the outer shape of the columnar portion is narrower than the outer shape of the columnar base portion.
JP2007021909A 1998-11-06 2007-01-31 Scanning near-field microscope Expired - Fee Related JP4388559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021909A JP4388559B2 (en) 1998-11-06 2007-01-31 Scanning near-field microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31558298 1998-11-06
JP2007021909A JP4388559B2 (en) 1998-11-06 2007-01-31 Scanning near-field microscope

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11054609A Division JP2000199736A (en) 1998-11-06 1999-03-02 Scanning near-field microscope

Publications (2)

Publication Number Publication Date
JP2007121316A JP2007121316A (en) 2007-05-17
JP4388559B2 true JP4388559B2 (en) 2009-12-24

Family

ID=38145268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021909A Expired - Fee Related JP4388559B2 (en) 1998-11-06 2007-01-31 Scanning near-field microscope

Country Status (1)

Country Link
JP (1) JP4388559B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177234A1 (en) * 2016-04-08 2017-10-12 Trek Inc. Electrostatic force detector with improved shielding and method of using an electrostatic force detector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434621A (en) * 2011-08-31 2012-05-02 北京大学 Vibration reduction structure of low-temperature scanning near-field optical microscope
CN112816739A (en) * 2019-11-18 2021-05-18 中国科学院大连化学物理研究所 Scanning chemical reaction microscopic imaging method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177234A1 (en) * 2016-04-08 2017-10-12 Trek Inc. Electrostatic force detector with improved shielding and method of using an electrostatic force detector
GB2560856A (en) * 2016-04-08 2018-09-26 Trek Inc Electrostatic force detector with improved shielding and method of using an electrostatic force detector

Also Published As

Publication number Publication date
JP2007121316A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
US7441447B2 (en) Methods of imaging in probe microscopy
US7461543B2 (en) Overlay measurement methods with firat based probe microscope
US7552625B2 (en) Force sensing integrated readout and active tip based probe microscope systems
JP3608009B2 (en) Atomic force microscope
US8220318B2 (en) Fast microscale actuators for probe microscopy
US7707873B2 (en) Three-dimensional nanoscale metrology using FIRAT probe
EP0871166B1 (en) Apparatus for machining, recording, or reproducing, using scanning probe microscope
KR19980081247A (en) Scanning probe microscope
JP4446929B2 (en) Cantilever holder for scanning probe microscope and scanning probe microscope using the same
JPH09257814A (en) Optical waveguide probe and optical system
JP2017521655A (en) Scanning probe microscope and method for inspecting surfaces with high aspect ratio
JP4388559B2 (en) Scanning near-field microscope
JP2002228573A (en) High-frequency oscillation probe for high-speed scanning probe microscope
JP2000199736A (en) Scanning near-field microscope
JP3047030B2 (en) Scanning near-field atomic force microscope
JP3539867B2 (en) Scanning probe microscope
JP4751190B2 (en) Probe for temperature measurement
JP2005147979A (en) Scanning probe microscope
JP4785537B2 (en) Probe, scanning probe microscope, and probe manufacturing method
JP4931708B2 (en) Microscope probe and scanning probe microscope
JP3450460B2 (en) Scanning probe microscope
JPH09329606A (en) Scanning near field microscope with in-liquid observation function
KR100526217B1 (en) Processing apparatus using a scanning probe microscope, and recording and reproducing apparatus using a scanning probe microscope
JPH10170523A (en) Scanning probe microscope, and cantilever for scanning probe microscope
WO2004012201A2 (en) Method of and apparatus for calibrating cantilevers

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees