JP3931938B2 - Reluctance motor - Google Patents

Reluctance motor Download PDF

Info

Publication number
JP3931938B2
JP3931938B2 JP31416598A JP31416598A JP3931938B2 JP 3931938 B2 JP3931938 B2 JP 3931938B2 JP 31416598 A JP31416598 A JP 31416598A JP 31416598 A JP31416598 A JP 31416598A JP 3931938 B2 JP3931938 B2 JP 3931938B2
Authority
JP
Japan
Prior art keywords
steel plate
magnetic steel
magnetic
rotor
reluctance motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31416598A
Other languages
Japanese (ja)
Other versions
JP2000152576A (en
Inventor
憲治 成田
好史 福田
聡 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP31416598A priority Critical patent/JP3931938B2/en
Publication of JP2000152576A publication Critical patent/JP2000152576A/en
Application granted granted Critical
Publication of JP3931938B2 publication Critical patent/JP3931938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和機や自動車等に用いる電動機のリラクタンスモータに係り、特に詳しくは、回転子の機構に特徴を有するリラクタンスモータに関するものである。
【0002】
【従来の技術】
このリラクタンスモータは、例えば図9および図10に示す構成のものがある。
【0003】
図9および図10において、回転磁界を発生する固定子1の内側には、リラクタンストルクを発生するために、断面バスタブ曲線状に折り曲げた磁性鋼板を複数枚積層した磁性鋼板部2を当該極数分だけ多角形柱のボス部3にネジ4で固定してなる回転子5が配置される。この磁性鋼板2は、バスタブ断面形状の底部を中心孔(シャフト用)6に向けて形成されており、固定子1の回転磁界による磁気を回転子5内で変えることにより、リラクタンスを不均一化として突極部を形成する。
【0004】
具体的には、d軸とq軸リラクタンスXd,Xqの比(Xd/Xq;突極比)に応じてリラクタンストルクが発生し、いわゆる回転子5に回転力が発生する。
この場合、固定子1によって発生する回転磁界による一方(q軸)の磁気の通路に磁性鋼板部2がほぼ直角に介在し、他方(d軸)の磁気の通路に磁性鋼板部2が沿って介在する。このd軸の磁気が磁性鋼板部2を通って突極部を形成し、リラクタンスの比(Xd/Xq)が大きくなる。
【0005】
ところで、リラクタンスモータとしてはリラクタンスの比(突極比)が大きく、つまり発生トルクが大きい方がよい。そのために、種々構成の回転子が提案されているが、図9および図10に示すアキシャルラミネート形が突極比を大きくとれるということが知られており、現状においては、アキシャルラミネート形の回転子が極めて現実的であるということができる。
【0006】
なお、図9および図10において、回転子5に4層構造の磁性鋼板部2を形成した場合について説明しているが、2層以上の多層構造の場合であっても同様である。
【0007】
【発明が解決しようとする課題】
しかしながら、前記リラクタンスモータにおいては、磁性鋼板を折り曲げて積層し、この積層した磁性鋼板部2を多角形柱のボス部3にネジ4で止めるが、そのボス部3の加工には手間がかかるため、加工コストが高価になってしまうという欠点がある。
【0008】
また、磁性鋼板を重ねた磁性鋼板部2の外径寸法にバラツキが生じ、特に突極部となる磁性鋼板部2の両端部が不揃いとなることにより、モータ性能にバラツクが生じてしまい、モータ製造の歩留まりが悪くし、結果、製造コストが高くなってしまうという欠点がある。
【0009】
さらに、磁性鋼板部2を構成する各磁性鋼板は1枚板であることから、固定子1からの磁束に対して発生する渦電流損が大きく、これにより突極比が低下するという問題点もある。
【0010】
この発明は前記課題に鑑みなされたものであり、その目的は、回転子の加工コストの低減を図るとともに、モータの性能向上を図り、しかも、渦電流損を抑えて突極比の低下を抑えることにより、リラクタンストルクの向上を図ることができるようにしたリラクタンスモータを提供することにある。
【0011】
【課題を解決するための手段】
前記目的を達成するために、この発明は、回転磁界を発生する固定子の内側に回転子を有するリラクタンスモータにおいて、前記回転子は、前記固定子からの磁路となる部分と同部分を当該極数分埋め込む機構部とを有し、該機構部は、鋼板を複数枚積層し、前記磁路となる部分は、所定断面形状とした磁性鋼板を複数枚重ねた磁性鋼板部とし、かつ、該磁性鋼板部を当該中心孔の軸方向に複数に分割してなり、該複数の磁性鋼板部を所定間隔に前記機構部に埋め込んでなることを特徴としている。
【0012】
前記回転子の機構部は、鋼板を自動プレスによって打ち抜く際、前記固定子からの磁路となる部分に対応する孔を打ち抜くともとに、前記機構部の外周を凹凸状に打ち抜いて金型内で自動積層して形成し、磁性鋼板を所定断面形状に自動プレスした後、複数枚重ねた複数の磁性鋼板部を所定間隔で前記孔に埋め込むと好ましい。
【0013】
この発明は回転磁界を発生する固定子の内側に回転子を有するリラクタンスモータにおいて、前記回転子は、前記固定子からの磁路となる部分と同部分を当該極数分埋め込む機構部とを有し、該機構部は、鋼板を複数枚積層し、前記磁路となる部分は所定断面形状とした磁性鋼板を複数枚重ねた磁性鋼板部とし、かつ、該磁性鋼板部を当該中心孔の軸方向に複数に分割してなり、該複数の磁性鋼板部と同磁性鋼板部の断面形状に合わせた形状の絶縁体板とを前記機構部に交互に埋め込んでなることを特徴としている。
【0014】
前記回転子の機構部は、鋼板を自動プレスによって打ち抜く際、前記固定子からの磁路となる部分に対応する孔を打ち抜くともとに、前記機構部の外周を凹凸状に打ち抜いて金型内で自動積層して形成し、磁性鋼板を所定断面形状に自動プレスした後、複数枚重ねた複数の磁性鋼板部と前記絶縁体とを前記孔に交互に埋め込むと好ましい。
【0015】
この場合、前記磁性鋼板部は、断面円弧状の磁性鋼板を複数枚重ねて断面扇状として同断面円弧状の頂点を当該中心孔に向け、かつ当該極数分だけ円周方向に等間隔の位置とし、前記回転子の外周は前記断面扇状の内側に対応する部分を凹部にし、前記断面扇状の端部側に対応する部分を凸部にするとよい。
【0016】
前記磁性鋼板部と当該中心孔との間の領域でd軸部にはインナーフラックスバリアを形成し、前記回転子の外周の凹部(q軸近傍)をアウターフラックスバリアにするとよい。
【0017】
前記磁性鋼板部を構成する鋼板あるいは磁性鋼板は、方向性電磁鋼板あるいは無方向性電磁鋼板もしくは冷間圧延鋼板であり、前記機構部は無方向性電磁鋼板あるいは冷間圧延鋼板であるとよい。
【0018】
前記磁性鋼板部を、前記機構部に埋め込んでなる回転子を組み込んでリラクタンスモータにするとよい。
【0019】
【発明の実施の形態】
以下、この発明の実施の形態を図1ないし図8を参照して詳しく説明する。 なお、図中、図9と同一部分には同一符号を付して重複説明を省略する。
【0020】
この発明のリラクタンスモータは、外周に凹凸状にした鋼板を自動プレスで打ち抜き、同時に、磁性鋼板を重ねた磁性鋼板部の形の孔を極数分打ち抜いて自動積層し、これら孔にその磁性鋼板部を埋め込みむとともに、この埋め込む磁性鋼板部を当該中心孔の軸方向(シャフトの軸方向)に複数に分割し、かつ、この複数の磁性鋼板部を所定間隔に配置すれば、磁性鋼板部を固定するボス部の加工コストが安価に済む一方、磁性鋼板部の寸法のバラツキが解消され、モータの性能にバラツキが生じることがないだけでなく、渦電流損を抑えて突極比の低下が抑えられることに着目したものである。
【0021】
そのため、図1および図2に示すように、このリラクタンスモータの回転子10は、断面円孤状の磁性鋼板11aを複数枚重ねてなる断面扇状の磁性鋼板部11を当該極数分だけ円周方向に、かつ扇の頂点を中心孔6に向けて固定子1からの磁路となる部分に等間隔に埋め込んでなる。
【0022】
この回転子10の外周は、断面扇状の磁性鋼板部11の内側に沿った形状(つまり円弧の内側面凹部およびその両端面凸部の形状)とし、磁性鋼板部11の両端部に突極部を形成してなる。
なお、断面円弧状の磁性鋼板部11の両端部は回転子10の外周に沿って円弧状である。
【0023】
また、各磁性鋼板部11は、中心孔6の軸方向(シャフトの軸方向)に複数に分割し、つまり同じ形状のものをその軸方向に所定間隔に配置し、かつ、磁性鋼板部11の間に空気層aが介在するようになっている。
【0024】
さらに、中心孔6と各扇状の磁性鋼板部11との間の領域で、極間のd軸部には磁束の短絡、漏洩を防止するためのインナーフラックスバリア12を形成し、このインナーフラックスバリア12の端部側(回転子10の外周側端部)で、かつd軸上には後述する自動積層時に形成するかしめ部13を設けている。
【0025】
なお、このリラクタンスモータは、24スロットの固定子1に三相(U相、V相およびW相)の電機子巻線を有し、例えば外径側の巻線をU相、内径側の巻線をW相、その中間の巻線をV相としているが、スロット数や電機子巻線数が異なっていてもよい。
【0026】
図3ないし図5を参照して具体的に説明すると、回転子10の製造においては、金型を用いて自動プレスで鋼板を打ち抜き、金型内でかしめてロータのスケルトンを一体的に形成する自動積層方式を採用する。
【0027】
このプレス加工工程において、図3に示すように、中心孔6、扇状の磁性鋼板部11の孔10bおよびインナーフラックスバリア12を打ち抜くとともに、回転子10の外周を凹凸状に打ち抜き(自動的にプレスし)、積層して断面扇状の磁性鋼板部11を埋設するための機構部(スケルトン;従来のボス部に相当)10aを形成する。
なお、その凹部分はq軸近傍のアウターフラックスバリア14となり、凸部分は突極部に対応することになる。
また、その積層時にはかしめ部13を形成し、打ち抜いた各鋼板をかしめる。
【0028】
一方、断面扇状の磁性鋼板部11は、図4および図5に示すように、断面円弧状の磁性鋼板11aを所定寸法に加工して積み重ねて形成する。
この磁性鋼板部11を機構部であるスケルトンの所定孔10bに複数個埋め込み、かつ、この埋め込み時には各磁性鋼板11を所定間隔(空気層a)として当該回転子10を完成する。
【0029】
このように、磁性鋼板部11を固定するボス部を従来の自動積層方式で製造することができ、つまりプレスワークのため、ボス部の加工コストが安価に済む。
【0030】
また、磁性鋼板部11を機構部10aの所定孔10bに埋め込むことから、その磁性鋼鉄板部11の外形寸法が孔10bの範囲内に納まることによって外形寸法のバラツキが解消され、特に両端部の面が揃うことから(つまり突極部となる端部の精度が向上し)、モータの性能にバラツキが生じることがない。
【0031】
さらに、d軸部のインナーフラックスバリア12およびq軸近傍のアウターフラックスバリア14により、d軸とq軸のリラクタンス比(突極比)を大きくすることができる。
【0032】
ところで、磁性鋼板部11に磁束が通ると、渦電流が生じ、いわゆる渦電流損が発生するが、図2および図5から明かなように、埋設する磁性鋼板部11が磁束の流れを妨げない方向に分割され(シャフトの軸方向に分割され)、つまり複数個で構成されており、しかもその間には空気層aが介在している。したがって、固定子1から磁束に対し、磁性鋼板部11に発生する渦電流損を低減することができる。
【0033】
また、図6ないし図8に示すように、各磁性鋼板部11の間に絶縁体20を介在させるようにしてもよい。
なお、図中、図2および図5と同一部分には同一符号を付して重複説明を省略する。
【0034】
この場合、絶縁体20は、磁性鋼板部11の断面形状(扇形状)に合わせた板状のものとする(図7参照)。そして、図3に示す機構部10aの所定孔10bには、磁性鋼板11と絶縁体20とを交互に埋め込めばよい。したがって、磁性鋼板部11を容易に、しかも正確に機構部10aの所定孔10bに埋め込むことができる。
【0035】
なお、磁性鋼板部11は5層(5枚)になっているが、これに限らず2層(2枚)以上であればよく、好ましくは5層以上にするとよい。
【0036】
また、前述した磁性鋼板部11の磁性鋼板11aとしては、方向性磁性鋼板あるいは無方向性電磁鋼板もしくは冷間圧延鋼板等を用いるとよく、この磁性鋼板部11を埋め込むためのロータのスケルトンの機構部10aとしては無方向性電磁鋼板あるいは冷間圧延鋼板等を用いるとよい。
これにより、リラクタンストルクの大きさやコストを踏まえ、それぞれの用途に適した材料を選択することができ、つまり適応的なモータを実現することができる。
【0037】
さらに、前述した回転子10を電動機に組み込み、例えば、空気調和機のモータ等として利用すれば、コストをアップすることなく、空気調和機の性能アップ(運転効率の上昇、振動や騒音の低下)を図ることができる。
【0038】
【発明の効果】
以上説明したように、このリラクタンスモータの請求項1記載の発明によると、回転磁界を発生する固定子の内側に回転子を有するリラクタンスモータにおいて、前記回転子は、前記固定子からの磁路となる部分と同部分を当該極数分埋め込む機構部とを有し、この機構部は、鋼板を複数枚積層し、前記磁路となる部分は、所定断面形状とした磁性鋼板を複数枚重ねた磁性鋼板部とし、かつ、この磁性鋼板部を当該中心孔の軸方向に複数に分割してなり、この複数の磁性鋼板部を所定間隔に前記機構部に埋め込んでなるので、突極部を形成する磁性鋼板部を構造部に埋め込むことから、磁性鋼板部の外形寸法にバラツキが生じることがなく、つまり、モータの性能にバラツキが生じることもない。したがって、モータの性能向上を図ることができるとともに、磁性鋼板部をシャフトの軸方向に分割し、かつ、その間に空気層が存在することから、突極比が大きくなってリラクタンストルクがより大きなものとなり、モータの効率向上を図ることができるという効果がある。
【0039】
請求項2記載の発明によると、請求項1における回転子の機構部は、鋼板を自動プレスによって打ち抜く際、前記固定子からの磁路となる部分に対応する孔を打ち抜くともとに、前記機構部の外周を凹凸状に打ち抜いて金型内で自動積層して形成し、磁性鋼板を所定断面形状に自動プレスした後、複数枚重ねた複数の磁性鋼板部を所定間隔で前記孔に埋め込んでなるので、請求項1の効果に加え、自動プレスは従来の方式で済むことにより、回転子の低加工コスト化が実現され、モータのコストアップにならずに済むという効果がある。
【0040】
請求項3記載の発明によると、回転磁界を発生する固定子の内側に回転子を有するリラクタンスモータにおいて、前記回転子は、前記固定子からの磁路となる部分と同部分を当該極数分埋め込む機構部とを有し、この機構部は、鋼板を複数枚積層し、前記磁路となる部分は所定断面形状とした磁性鋼板を複数枚重ねた磁性鋼板部とし、かつ、この磁性鋼板部を当該中心孔の軸方向に複数に分割してなり、この複数の磁性鋼板部と同磁性鋼板部の断面形状に合わせた形状の絶縁体板とを前記機構部に交互に埋め込んでなるので、突極部を形成する磁性鋼板部を構造部に埋め込むことから、磁性鋼板部の外形寸法にバラツキが生じることがなく、つまり、モータの性能にバラツキが生じることもない。したがって、モータ性能の向上を図ることができるとともに、磁性鋼板部をシャフトの軸方向に分割し、かつ、その間に絶縁体を介在させていることから、突極比が大きくなってりリラクタンストルクをより大きなものとし、モータの効率向上を図ることができる。
【0041】
請求項4記載の発明によると、請求項3における回転子の機構部は、鋼板を自動プレスによって打ち抜く際、前記固定子からの磁路となる部分に対応する孔を打ち抜くともとに、前記機構部の外周を凹凸状に打ち抜いて金型内で自動積層して形成し、磁性鋼板を所定断面形状に自動プレスした後、複数枚重ねた複数の磁性鋼板部と前記絶縁体とを前記孔に交互に埋め込んでなるので、請求項3の効果に加え、自動プレスが従来の方式で済むことにより、回転子の低加工コスト化を実現し、モータのコストアップにならずに済むという効果がある。
【0042】
請求項5記載の発明によると、請求項1,2,3または4における磁性鋼板部は断面円弧状の磁性鋼板を、複数枚重ねて断面扇状として同断面円弧状の頂点を当該中心孔に向け、かつ、当該極数分だけ円周方向に等間隔の位置とし、前記回転子の外周は前記断面扇状の内側に対応する部分を凹部にし、前記断面扇状の端部側に対応する部分を凸部にしてなるので、請求項1,2,3または4の効果に加え、磁性鋼板部は固定子からの磁路に沿った形状となり、また、その凹部はアウターフラックスバリアとなることから、d軸とq軸のリラクタンスXd,Xqの比が大きく、つまり突極比を大きくすることができるという効果がある。
【0043】
請求項6記載の発明によると、請求項5において、前記磁性鋼板部と当該中心孔との間の領域でd軸部にはインナーフラックスバリアを形成し、前記回転子の外周の凹部(q軸近傍)をアウターフラックスバリアとしてなるので、請求項5の効果に加え、d軸とq軸のリラクタンスXd,Xqの比がより大きく、つまり突極比をより大きくすることができるという効果がある。
【0044】
請求項7記載の発明によると、請求項1,2,3,4,5または6おける磁性鋼板部を構成する鋼板あるいは磁性鋼板は、方向性電磁鋼板あるいは無方向性電磁鋼板もしくは冷間圧延鋼板であり、前記機構部は無方向性電磁鋼板あるいは冷間圧延鋼板であるので、請求項1,2,3,4,5または6の効果に加え、回転子を構成する機構部と磁性鋼板部の材質を選択し、例えば、磁性鋼板部に方向性電磁鋼板を選択すればモータ性能のよいものを得ることができ、また、機構部に冷間圧延鋼板を選択すればモータのコストダウンが図れ、つまり用途やコストを勘案して適応的に選択することができるという効果がある。
【0045】
請求項8記載の発明によると、請求項1,2,3,4,5,6または7前記磁性鋼板部を、前記機構部に埋め込んでなる回転子を組み込んだので、請求項1,2,3,4,5,6または7の効果に加え、例えば、空気調和機のモータ等として利用すれば、コストをアップすることなく、空気調和機の性能アップ(運転効率の上昇、振動や騒音の低下)を図ることができる。
【図面の簡単な説明】
【図1】この発明の一実施の形態を示すリラクタンスモータの概略的平面図。
【図2】図1に示すリラクタンスモータの回転子を説明するための概略的側断面図。
【図3】図1に示すリラクタンスモータの回転子のスケルトン(機構部)を説明するための概略的平面図。
【図4】図1に示すリラクタンスモータの回転子に埋め込む磁性鋼板部を説明するための概略的平面図。
【図5】図1に示すリラクタンスモータの回転子に埋め込む磁性鋼板部を説明するための概略的斜視図。
【図6】この発明の他の実施の形態を示すリラクタンスモータの回転子を説明するための概略的側断面図。
【図7】図6に示す回転子に用いる絶縁体を説明するための概略的平面図。
【図8】図6に示す回転子に埋め込む磁性鋼板部および絶縁体を説明するための概略的斜視図。
【図9】従来のリラクタンスモータの概略的平面図。
【図10】図9に示すリラクタンスモータの回転子を説明する概略的側面図。
【符号の説明】
1 固定子
6 中心孔(シャフト用)
10 回転子
10a 機構部(スケルトン)
10b 孔(磁性鋼板部11の埋め込み用)
11 磁性鋼板部(断面扇状)
11a 磁性鋼板
12 インナーフラックスバリア
13 かしめ部
14 アウターフラックスバリア
20 絶縁体
a 空気層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reluctance motor for an electric motor used in an air conditioner, an automobile, and the like, and particularly relates to a reluctance motor characterized by a rotor mechanism.
[0002]
[Prior art]
This reluctance motor has a structure shown in FIGS. 9 and 10, for example.
[0003]
9 and 10, a magnetic steel plate portion 2 in which a plurality of magnetic steel plates bent in a bathtub-shaped cross section are laminated in order to generate reluctance torque is provided inside the stator 1 that generates a rotating magnetic field. A rotor 5 that is fixed to the boss portion 3 of the polygonal column by a screw 4 is arranged. This magnetic steel plate 2 is formed with the bottom of the bathtub cross-sectional shape facing the center hole (for shaft) 6, and the reluctance is made non-uniform by changing the magnetism caused by the rotating magnetic field of the stator 1 in the rotor 5. As a result, a salient pole part is formed.
[0004]
Specifically, a reluctance torque is generated according to a ratio (Xd / Xq; salient pole ratio) between the d-axis and the q-axis reluctance Xd, Xq, and a so-called rotor 5 is generated.
In this case, the magnetic steel plate part 2 is interposed substantially perpendicularly in one (q-axis) magnetic path by the rotating magnetic field generated by the stator 1, and the magnetic steel plate part 2 is along the other (d-axis) magnetic path. Intervene. This d-axis magnetism forms a salient pole portion through the magnetic steel plate portion 2, and the reluctance ratio (Xd / Xq) increases.
[0005]
By the way, it is better for the reluctance motor to have a larger reluctance ratio (saliency ratio), that is, a larger generated torque. For this purpose, rotors having various configurations have been proposed. However, it is known that the axial laminate type shown in FIGS. 9 and 10 can increase the salient pole ratio, and in the present situation, the axial laminate type rotor is used. Can be said to be extremely realistic.
[0006]
9 and 10, the case where the magnetic steel plate portion 2 having a four-layer structure is formed on the rotor 5 has been described, but the same applies to the case of a multilayer structure having two or more layers.
[0007]
[Problems to be solved by the invention]
However, in the reluctance motor, the magnetic steel plates are bent and laminated, and the laminated magnetic steel plate portion 2 is fastened to the boss portion 3 of the polygonal column with the screw 4, but it takes time to process the boss portion 3. There is a disadvantage that the processing cost becomes expensive.
[0008]
In addition, the outer diameter of the magnetic steel plate portion 2 on which the magnetic steel plates are stacked varies, and particularly, the both ends of the magnetic steel plate portion 2 serving as salient pole portions are not uniform, resulting in variations in motor performance. There is a drawback in that the manufacturing yield is poor and as a result, the manufacturing cost is increased.
[0009]
Furthermore, since each magnetic steel plate constituting the magnetic steel plate portion 2 is a single plate, there is a problem that the eddy current loss generated with respect to the magnetic flux from the stator 1 is large, thereby reducing the salient pole ratio. is there.
[0010]
The present invention has been made in view of the above-mentioned problems, and its object is to reduce the machining cost of the rotor, improve the performance of the motor, and suppress the decrease in the salient pole ratio by suppressing the eddy current loss. Accordingly, an object of the present invention is to provide a reluctance motor capable of improving the reluctance torque.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a reluctance motor having a rotor inside a stator that generates a rotating magnetic field, the rotor has the same portion as a magnetic path from the stator. A mechanism portion embedded by the number of poles, the mechanism portion is a laminate of a plurality of steel plates, and the magnetic path portion is a magnetic steel plate portion in which a plurality of magnetic steel plates having a predetermined cross-sectional shape are stacked, and The magnetic steel plate portion is divided into a plurality of portions in the axial direction of the center hole, and the plurality of magnetic steel plate portions are embedded in the mechanism portion at a predetermined interval.
[0012]
When the steel plate is punched out by automatic pressing, the rotor mechanical portion is punched out of the hole corresponding to the magnetic path from the stator, and the outer periphery of the mechanical portion is punched into an uneven shape in the mold. Preferably, the magnetic steel plates are automatically laminated to form a predetermined cross-sectional shape, and then a plurality of magnetic steel plate portions that are stacked are embedded in the holes at predetermined intervals.
[0013]
According to the present invention, in a reluctance motor having a rotor inside a stator that generates a rotating magnetic field, the rotor includes a portion that becomes a magnetic path from the stator and a mechanism portion that embeds the same portion as the number of poles. The mechanism portion is formed by laminating a plurality of steel plates, the magnetic path portion is a magnetic steel plate portion in which a plurality of magnetic steel plates having a predetermined cross-sectional shape are stacked, and the magnetic steel plate portion is an axis of the center hole. A plurality of magnetic steel plate portions and insulator plates having a shape matching the cross-sectional shape of the magnetic steel plate portions are alternately embedded in the mechanism portion.
[0014]
When the steel plate is punched out by automatic pressing, the rotor mechanical portion is punched out of the hole corresponding to the magnetic path from the stator, and the outer periphery of the mechanical portion is punched into an uneven shape in the mold. Preferably, the magnetic steel plates are automatically laminated to form a predetermined cross-sectional shape, and then a plurality of stacked magnetic steel plate portions and the insulator are alternately embedded in the holes.
[0015]
In this case, the magnetic steel plate portion is formed by stacking a plurality of magnetic steel plates having an arc-shaped cross section so that the cross-section is fan-shaped, and the apex of the arc-shaped cross-section is directed to the center hole and is equally spaced in the circumferential direction by the number of poles In the outer periphery of the rotor, a portion corresponding to the inside of the cross-sectional fan shape may be a concave portion, and a portion corresponding to the end portion side of the cross-sectional fan shape may be a convex portion.
[0016]
An inner flux barrier may be formed in the d-axis portion in a region between the magnetic steel plate portion and the central hole, and a concave portion (near the q-axis) on the outer periphery of the rotor may be used as an outer flux barrier.
[0017]
The steel plate or magnetic steel plate constituting the magnetic steel plate portion may be a directional electromagnetic steel plate, a non-oriented electromagnetic steel plate or a cold rolled steel plate, and the mechanism portion may be a non-oriented electromagnetic steel plate or a cold rolled steel plate.
[0018]
The magnetic steel plate portion may be a reluctance motor by incorporating a rotor embedded in the mechanism portion.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. In the figure, the same parts as those in FIG.
[0020]
The reluctance motor according to the present invention is an automatic press punching of a steel plate having an irregular shape on the outer periphery, and at the same time, punching holes in the shape of a magnetic steel plate portion on which magnetic steel plates are stacked for the number of poles, and automatically laminating the magnetic steel plates in these holes. The magnetic steel plate portion is fixed by dividing the embedded magnetic steel plate portion into a plurality of portions in the axial direction of the central hole (axial direction of the shaft) and arranging the plurality of magnetic steel plate portions at predetermined intervals. While the processing cost of the boss part to be reduced is reduced, not only is the dimensional variation of the magnetic steel plate part eliminated, the motor performance does not vary, but also the eddy current loss is suppressed and the reduction of the salient pole ratio is suppressed. It is focused on what is done.
[0021]
Therefore, as shown in FIG. 1 and FIG. 2, the rotor 10 of this reluctance motor has a circular cross-section fan-shaped magnetic steel plate portion 11 formed by stacking a plurality of circular cross-section magnetic steel plates 11a by the number of poles. In the direction and with the apex of the fan directed toward the central hole 6, the magnetic path from the stator 1 is embedded at equal intervals.
[0022]
The outer periphery of the rotor 10 has a shape along the inside of the magnetic steel plate portion 11 having a fan-shaped cross section (that is, the shape of the concave portion on the inner side surface of the arc and the convex portions on both end surfaces thereof). Formed.
Note that both end portions of the magnetic steel plate portion 11 having an arcuate cross section are arcuate along the outer periphery of the rotor 10.
[0023]
Each magnetic steel plate part 11 is divided into a plurality of parts in the axial direction of the center hole 6 (axial direction of the shaft), that is, the same shape is arranged at a predetermined interval in the axial direction, and the magnetic steel plate part 11 An air layer a is interposed therebetween.
[0024]
Further, an inner flux barrier 12 for preventing short circuit and leakage of magnetic flux is formed in the d-axis portion between the poles in the region between the center hole 6 and each of the fan-shaped magnetic steel plate portions 11, and this inner flux barrier is formed. On the d-axis, there are provided caulking portions 13 formed at the time of automatic lamination, which will be described later, on the end side of 12 (the outer peripheral side end portion of the rotor 10).
[0025]
This reluctance motor has three-phase (U-phase, V-phase and W-phase) armature windings on a 24-slot stator 1, for example, an outer-side winding is a U-phase and an inner-side winding. Although the wire is the W phase and the intermediate winding is the V phase, the number of slots and the number of armature windings may be different.
[0026]
More specifically, referring to FIG. 3 to FIG. 5, in the manufacture of the rotor 10, a steel plate is punched out by an automatic press using a mold, and the rotor skeleton is integrally formed by caulking in the mold. Adopt automatic lamination method.
[0027]
In this pressing process, as shown in FIG. 3, the center hole 6, the hole 10b of the fan-shaped magnetic steel plate portion 11 and the inner flux barrier 12 are punched, and the outer periphery of the rotor 10 is punched into an uneven shape (automatically pressed). And a mechanism portion (skeleton; corresponding to a conventional boss portion) 10a for embedding the magnetic steel plate portion 11 having a fan-shaped cross section is formed by stacking.
The concave portion becomes the outer flux barrier 14 near the q axis, and the convex portion corresponds to the salient pole portion.
Moreover, the caulking part 13 is formed at the time of the lamination, and each punched steel sheet is caulked.
[0028]
On the other hand, as shown in FIGS. 4 and 5, the magnetic steel plate portion 11 having a fan-shaped cross section is formed by processing and stacking magnetic steel plates 11 a having a circular arc shape in a predetermined dimension.
A plurality of magnetic steel plate portions 11 are embedded in predetermined holes 10b of the skeleton as a mechanism portion, and at the time of this embedding, the rotor 10 is completed with each magnetic steel plate 11 being set at a predetermined interval (air layer a).
[0029]
Thus, the boss part which fixes the magnetic steel plate part 11 can be manufactured by the conventional automatic lamination system, that is, the processing cost of the boss part is low because of the press work.
[0030]
Further, since the magnetic steel plate part 11 is embedded in the predetermined hole 10b of the mechanism part 10a, the outer dimension of the magnetic steel plate part 11 falls within the range of the hole 10b. Since the surfaces are aligned (that is, the accuracy of the end portion serving as the salient pole portion is improved), the motor performance does not vary.
[0031]
Furthermore, the reluctance ratio (saliency ratio) between the d axis and the q axis can be increased by the inner flux barrier 12 in the d axis portion and the outer flux barrier 14 in the vicinity of the q axis.
[0032]
By the way, when a magnetic flux passes through the magnetic steel plate portion 11, an eddy current is generated, and so-called eddy current loss occurs. However, as is apparent from FIGS. 2 and 5, the embedded magnetic steel plate portion 11 does not hinder the flow of magnetic flux. It is divided in the direction (divided in the axial direction of the shaft), that is, it is composed of a plurality, and an air layer a is interposed between them. Therefore, the eddy current loss which generate | occur | produces in the magnetic steel plate part 11 with respect to the magnetic flux from the stator 1 can be reduced.
[0033]
Further, as shown in FIGS. 6 to 8, an insulator 20 may be interposed between the magnetic steel plate portions 11.
In the figure, the same parts as those in FIG. 2 and FIG.
[0034]
In this case, the insulator 20 has a plate shape that matches the cross-sectional shape (fan shape) of the magnetic steel plate portion 11 (see FIG. 7). And what is necessary is just to embed the magnetic steel plate 11 and the insulator 20 by turns in the predetermined hole 10b of the mechanism part 10a shown in FIG. Therefore, the magnetic steel plate portion 11 can be easily and accurately embedded in the predetermined hole 10b of the mechanism portion 10a.
[0035]
In addition, although the magnetic steel plate part 11 has five layers (five sheets), it is not restricted to this, What is necessary is just two layers (two sheets) or more, Preferably it is good to use five layers or more.
[0036]
Further, as the magnetic steel plate 11a of the magnetic steel plate portion 11 described above, a directional magnetic steel plate, a non-oriented electromagnetic steel plate, a cold-rolled steel plate or the like may be used, and a rotor skeleton mechanism for embedding the magnetic steel plate portion 11 is used. As the part 10a, a non-oriented electrical steel sheet or a cold-rolled steel sheet may be used.
Thereby, based on the magnitude and cost of the reluctance torque, a material suitable for each application can be selected, that is, an adaptive motor can be realized.
[0037]
Furthermore, if the above-described rotor 10 is incorporated into an electric motor and used as, for example, a motor of an air conditioner, the performance of the air conditioner is improved without increasing costs (increasing operating efficiency, reducing vibration and noise). Can be achieved.
[0038]
【The invention's effect】
As described above, according to the reluctance motor according to the first aspect of the present invention, in the reluctance motor having the rotor inside the stator that generates the rotating magnetic field, the rotor has a magnetic path from the stator. And a mechanism portion that embeds the same portion as the number of poles. This mechanism portion is formed by laminating a plurality of steel plates, and the magnetic path portion is composed of a plurality of magnetic steel plates having a predetermined cross-sectional shape. The magnetic steel plate portion is divided into a plurality of portions in the axial direction of the central hole, and the magnetic steel plate portions are embedded in the mechanism portion at predetermined intervals, so that salient pole portions are formed. Since the magnetic steel plate portion to be embedded is embedded in the structure portion, the outer dimensions of the magnetic steel plate portion do not vary, that is, the motor performance does not vary. Therefore, the motor performance can be improved, and the magnetic steel plate part is divided in the axial direction of the shaft and an air layer exists between them, so that the salient pole ratio is increased and the reluctance torque is larger. Thus, there is an effect that the efficiency of the motor can be improved.
[0039]
According to a second aspect of the present invention, the rotor mechanical portion according to the first aspect is formed by punching out a hole corresponding to a magnetic path from the stator when the steel plate is punched out by automatic pressing. After punching the outer periphery of the part into an uneven shape and automatically laminating it in a mold, the magnetic steel sheet is automatically pressed into a predetermined cross-sectional shape, and then a plurality of stacked magnetic steel sheet parts are embedded in the holes at predetermined intervals. Therefore, in addition to the effect of the first aspect, since the automatic press can be performed by the conventional method, it is possible to realize a reduction in the processing cost of the rotor and not to increase the cost of the motor.
[0040]
According to a third aspect of the present invention, in the reluctance motor having the rotor inside the stator that generates the rotating magnetic field, the rotor has the same part as the magnetic path from the stator for the number of poles. The mechanism portion is a magnetic steel plate portion in which a plurality of steel plates are stacked, the magnetic path portion is a magnetic steel plate portion in which a plurality of magnetic steel plates having a predetermined cross-sectional shape are stacked, and the magnetic steel plate portion. Is divided into a plurality in the axial direction of the central hole, and the insulator plate having a shape matched to the cross-sectional shape of the magnetic steel plate portion and the magnetic steel plate portion are alternately embedded in the mechanism portion. Since the magnetic steel plate portion forming the salient pole portion is embedded in the structure portion, the outer dimensions of the magnetic steel plate portion do not vary, that is, the motor performance does not vary. Therefore, the motor performance can be improved, and the magnetic steel plate portion is divided in the axial direction of the shaft, and the insulator is interposed therebetween, so that the salient pole ratio is increased and the reluctance torque is increased. It is possible to increase the efficiency of the motor by making it larger.
[0041]
According to a fourth aspect of the present invention, the mechanism portion of the rotor according to the third aspect is formed by punching a hole corresponding to a magnetic path portion from the stator when the steel plate is punched out by automatic pressing. After punching the outer periphery of the part into a concavo-convex shape and automatically laminating it in a mold and automatically pressing the magnetic steel sheet into a predetermined cross-sectional shape, a plurality of stacked magnetic steel sheet parts and the insulator are put in the holes In addition to the effect of claim 3, since the automatic press is completed by the conventional method, the rotor can be processed at a low cost, and the motor cost is not increased. .
[0042]
According to the invention of claim 5, the magnetic steel plate portion according to claim 1, 2, 3, or 4 is formed by stacking a plurality of magnetic steel plates having a circular arc cross section and forming a cross sectional fan shape with the apex of the circular arc cross section facing the central hole And the positions of the rotor are equally spaced in the circumferential direction by the number of poles, and the outer periphery of the rotor has a concave portion corresponding to the inner side of the cross-sectional fan shape, and a convex portion corresponding to the end side of the cross-sectional fan shape. In addition to the effect of claim 1, 2, 3 or 4, the magnetic steel plate has a shape along the magnetic path from the stator, and the concave portion serves as an outer flux barrier. The ratio of the reluctances Xd and Xq between the axis and the q axis is large, that is, the salient pole ratio can be increased.
[0043]
According to a sixth aspect of the present invention, in the fifth aspect, an inner flux barrier is formed on the d-axis portion in a region between the magnetic steel plate portion and the central hole, and a concave portion (q-axis) on the outer periphery of the rotor. In addition to the effect of the fifth aspect, there is an effect that the ratio of the reluctances Xd and Xq of the d axis and the q axis is larger, that is, the salient pole ratio can be further increased.
[0044]
According to invention of Claim 7, the steel plate or magnetic steel plate which comprises the magnetic steel plate part in Claim 1, 2, 3, 4, 5 or 6 is a directional electrical steel plate, a non-oriented electrical steel plate, or a cold-rolled steel plate. Since the mechanism is a non-oriented electrical steel sheet or cold rolled steel sheet, in addition to the effect of claim 1, 2, 3, 4, 5 or 6, the mechanism part constituting the rotor and the magnetic steel sheet part For example, if a directional electromagnetic steel plate is selected for the magnetic steel plate portion, a motor with good motor performance can be obtained, and if a cold rolled steel plate is selected for the mechanism portion, the cost of the motor can be reduced. In other words, there is an effect that it can be selected adaptively in consideration of usage and cost.
[0045]
According to the invention described in claim 8, since the rotor formed by embedding the magnetic steel plate part in the mechanism part is incorporated in claim 1, 2, 3, 4, 5, 6 or 7, In addition to the effects of 3, 4, 5, 6 or 7, for example, if used as an air conditioner motor or the like, the performance of the air conditioner can be improved without increasing the cost (increased operating efficiency, vibration and noise). Reduction).
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a reluctance motor showing one embodiment of the present invention.
2 is a schematic cross-sectional side view for explaining a rotor of the reluctance motor shown in FIG. 1;
3 is a schematic plan view for explaining a skeleton (mechanism) of the rotor of the reluctance motor shown in FIG. 1; FIG.
4 is a schematic plan view for explaining a magnetic steel plate portion embedded in a rotor of the reluctance motor shown in FIG. 1. FIG.
FIG. 5 is a schematic perspective view for explaining a magnetic steel plate portion embedded in the rotor of the reluctance motor shown in FIG. 1;
FIG. 6 is a schematic cross-sectional side view for explaining a rotor of a reluctance motor showing another embodiment of the present invention.
7 is a schematic plan view for explaining an insulator used in the rotor shown in FIG. 6;
8 is a schematic perspective view for explaining a magnetic steel plate portion and an insulator embedded in the rotor shown in FIG. 6. FIG.
FIG. 9 is a schematic plan view of a conventional reluctance motor.
10 is a schematic side view for explaining a rotor of the reluctance motor shown in FIG. 9. FIG.
[Explanation of symbols]
1 Stator 6 Center hole (for shaft)
10 Rotor 10a Mechanism (skeleton)
10b hole (for embedding magnetic steel plate 11)
11 Magnetic steel plate part (section fan shape)
11a Magnetic steel plate 12 Inner flux barrier 13 Caulking portion 14 Outer flux barrier 20 Insulator a Air layer

Claims (8)

回転磁界を発生する固定子の内側に回転子を有するリラクタンスモータにおいて、前記回転子は、前記固定子からの磁路となる部分と同部分を当該極数分埋め込む機構部とを有し、該機構部は、鋼板を複数枚積層し、前記磁路となる部分は、所定断面形状とした磁性鋼板を複数枚重ねた磁性鋼板部とし、かつ、該磁性鋼板部を当該中心孔の軸方向に複数に分割してなり、該複数の磁性鋼板部を所定間隔に前記機構部に埋め込んでなることを特徴とするリラクタンスモータ。In a reluctance motor having a rotor inside a stator that generates a rotating magnetic field, the rotor has a portion that becomes a magnetic path from the stator and a mechanism portion that embeds the same portion as the number of poles, The mechanism portion is a laminate of a plurality of steel plates, and the magnetic path portion is a magnetic steel plate portion in which a plurality of magnetic steel plates having a predetermined cross-sectional shape are stacked, and the magnetic steel plate portion is arranged in the axial direction of the central hole. A reluctance motor, wherein the reluctance motor is divided into a plurality of parts, and the magnetic steel plate parts are embedded in the mechanism part at predetermined intervals. 前記回転子の機構部は、鋼板を自動プレスによって打ち抜く際、前記固定子からの磁路となる部分に対応する孔を打ち抜くともとに、前記機構部の外周を凹凸状に打ち抜いて金型内で自動積層して形成し、磁性鋼板を所定断面形状に自動プレスした後、複数枚重ねた複数の磁性鋼板部を所定間隔で前記孔に埋め込んでなる請求項1記載のリラクタンスモータ。When the steel plate is punched out by automatic pressing, the rotor mechanical portion is punched out of the hole corresponding to the magnetic path from the stator, and the outer periphery of the mechanical portion is punched into an uneven shape in the mold. The reluctance motor according to claim 1, wherein the magnetic steel sheet is automatically laminated to form a predetermined cross-sectional shape, and a plurality of magnetic steel sheet portions stacked are embedded in the holes at predetermined intervals. 回転磁界を発生する固定子の内側に回転子を有するリラクタンスモータにおいて、前記回転子は、前記固定子からの磁路となる部分と同部分を当該極数分埋め込む機構部とを有し、該機構部は、鋼板を複数枚積層し、前記磁路となる部分は所定断面形状とした磁性鋼板を複数枚重ねた磁性鋼板部とし、かつ、該磁性鋼板部を当該中心孔の軸方向に複数に分割してなり、該複数の磁性鋼板部と同磁性鋼板部の断面形状に合わせた形状の絶縁体板とを前記機構部に交互に埋め込んでなることを特徴とするリラクタンスモータ。In a reluctance motor having a rotor inside a stator that generates a rotating magnetic field, the rotor has a portion that becomes a magnetic path from the stator and a mechanism portion that embeds the same portion as the number of poles, The mechanism portion is a magnetic steel plate portion in which a plurality of steel plates are laminated, the magnetic path portion is a magnetic steel plate portion in which a plurality of magnetic steel plates having a predetermined cross-sectional shape are stacked, and the magnetic steel plate portions are arranged in the axial direction of the central hole. A reluctance motor comprising: a plurality of magnetic steel plate portions and an insulating plate having a shape matching the cross-sectional shape of the magnetic steel plate portion, which are alternately embedded in the mechanism portion. 前記回転子の機構部は、鋼板を自動プレスによって打ち抜く際、前記固定子からの磁路となる部分に対応する孔を打ち抜くともとに、前記機構部の外周を凹凸状に打ち抜いて金型内で自動積層して形成し、磁性鋼板を所定断面形状に自動プレスした後、複数枚重ねた複数の磁性鋼板部と前記絶縁体とを前記孔に交互に埋め込んでなる請求項3記載のリラクタンスモータ。When the steel plate is punched out by automatic pressing, the rotor mechanical portion is punched out of the hole corresponding to the magnetic path from the stator, and the outer periphery of the mechanical portion is punched into an uneven shape in the mold. 4. A reluctance motor according to claim 3, wherein the magnetic steel plates are automatically laminated to form a predetermined cross-sectional shape, and a plurality of magnetic steel plate portions and the insulators are alternately embedded in the holes. . 前記磁性鋼板部は、断面円弧状の磁性鋼板を複数枚重ねて断面扇状として同断面円弧状の頂点を当該中心孔に向け、かつ、当該極数分だけ円周方向に等間隔の位置とし、前記回転子の外周は、前記断面扇状の内側に対応する部分を凹部にし、前記断面扇状の端部側に対応する部分を凸部にしてなる請求項1,2,3または4記載のリラクタンスモータ。The magnetic steel sheet portion is formed by stacking a plurality of magnetic steel sheets having an arc-shaped cross section so as to form a cross-sectional fan with the apex of the arc of the same cross section directed to the central hole, and at equal intervals in the circumferential direction by the number of poles, 5. The reluctance motor according to claim 1, wherein the outer periphery of the rotor has a concave portion corresponding to the inside of the fan in the cross section and a convex portion corresponding to the end side of the fan in the cross section. . 前記磁性鋼板部と当該中心孔との間の領域で、d軸部にはインナーフラックスバリアを形成し、前記回転子の外周の凹部(q軸近傍)をアウターフラックスバリアとしてなる請求項5記載のリラクタンスモータ。The inner flux barrier is formed in the d-axis portion in the region between the magnetic steel plate portion and the central hole, and the concave portion (near the q-axis) of the rotor is used as the outer flux barrier. Reluctance motor. 前記磁性鋼板部を、構成する鋼板あるいは磁性鋼板は方向性電磁鋼板あるいは無方向性電磁鋼板もしくは冷間圧延鋼板であり、前記機構部は無方向性電磁鋼板あるいは冷間圧延鋼板である請求項1,2,3,4,5または6記載のリラクタンスモータ。The steel plate or magnetic steel plate constituting the magnetic steel plate portion is a directional electromagnetic steel plate, a non-oriented electromagnetic steel plate or a cold-rolled steel plate, and the mechanism portion is a non-oriented electromagnetic steel plate or a cold-rolled steel plate. , 2, 3, 4, 5 or 6. Reluctance motor. 前記磁性鋼板部を前記機構部に埋め込んでなる回転子を組み込んだ請求項1,2,3,4,5,6または7記載のリラクタンスモータ。The reluctance motor according to claim 1, 2, 3, 4, 5, 6 or 7, wherein a rotor formed by embedding the magnetic steel plate portion in the mechanism portion is incorporated.
JP31416598A 1998-11-05 1998-11-05 Reluctance motor Expired - Fee Related JP3931938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31416598A JP3931938B2 (en) 1998-11-05 1998-11-05 Reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31416598A JP3931938B2 (en) 1998-11-05 1998-11-05 Reluctance motor

Publications (2)

Publication Number Publication Date
JP2000152576A JP2000152576A (en) 2000-05-30
JP3931938B2 true JP3931938B2 (en) 2007-06-20

Family

ID=18050037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31416598A Expired - Fee Related JP3931938B2 (en) 1998-11-05 1998-11-05 Reluctance motor

Country Status (1)

Country Link
JP (1) JP3931938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679052B2 (en) * 2003-12-18 2011-04-27 株式会社東芝 Permanent magnet type reluctance type rotating electrical machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155347A (en) * 1989-11-10 1991-07-03 Mitsubishi Heavy Ind Ltd Rotor of reluctance motor
JP3051340B2 (en) * 1996-06-18 2000-06-12 オークマ株式会社 Synchronous motor
JP3282521B2 (en) * 1996-07-08 2002-05-13 トヨタ自動車株式会社 Reluctance motor

Also Published As

Publication number Publication date
JP2000152576A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
JP3906883B2 (en) Permanent magnet motor
JP2000270503A (en) Permanent magnet motor
JP2875497B2 (en) Motor stator
JP3821183B2 (en) Permanent magnet motor
JP2001095182A (en) Permanent magent electric motor
JP4058576B2 (en) Reluctance motor
JP2000102198A (en) Permanent magnet motor
JP2001086673A (en) Permanent magnet motor
JPH1189134A (en) Permanent magnet type motor
JP3821185B2 (en) Permanent magnet motor
JP3832540B2 (en) Permanent magnet motor
JP4038633B2 (en) Reluctance motor
JPH11136892A (en) Permanent magnet motor
JPH11285186A (en) Permanent-magnet motor
JP4348982B2 (en) Axial gap type induction motor
JP3931938B2 (en) Reluctance motor
JP3968542B2 (en) Permanent magnet motor
JP2000245124A (en) Smooth core armature wound motor
JP4006555B2 (en) Reluctance motor
JP3871006B2 (en) Permanent magnet motor
JP3944664B2 (en) Reluctance motor
JP3906879B2 (en) Reluctance motor
JP2000078784A (en) Permanent magnet electric motor
JP2004254354A (en) Reluctance motor
JP3849737B2 (en) Method of manufacturing rotor for reluctance motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees