JP3849737B2 - Method of manufacturing rotor for reluctance motor - Google Patents

Method of manufacturing rotor for reluctance motor Download PDF

Info

Publication number
JP3849737B2
JP3849737B2 JP17082098A JP17082098A JP3849737B2 JP 3849737 B2 JP3849737 B2 JP 3849737B2 JP 17082098 A JP17082098 A JP 17082098A JP 17082098 A JP17082098 A JP 17082098A JP 3849737 B2 JP3849737 B2 JP 3849737B2
Authority
JP
Japan
Prior art keywords
steel plate
rotor
magnetic steel
magnetic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17082098A
Other languages
Japanese (ja)
Other versions
JP2000014109A (en
Inventor
憲治 成田
正憲 村上
好史 福田
孝史 鈴木
浩之 奥寺
宏治 河西
裕司 河合
裕治 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP17082098A priority Critical patent/JP3849737B2/en
Publication of JP2000014109A publication Critical patent/JP2000014109A/en
Application granted granted Critical
Publication of JP3849737B2 publication Critical patent/JP3849737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は空気調和機や自動車等に用いる電動機のリラクタンスモータに係り、特に詳しくは回転子の製造に特徴を有するリラクタンスモータの回転子の製造方法に関するものである。
【0002】
【従来の技術】
このリラクタンスモータは、例えば図7および図8に示す構成のものがある。図7および図8において、回転磁界を発生する固定子1内には、リラクタンストルクを発生するために断面バスタブ曲線状の磁性鋼板を複数枚重ねて磁性鋼板部2を当該極数分だけ多角形柱のボス部3にネジ4で固定してなる回転子5が配置される。この磁性鋼板2はバスタブ形状の底部を中心孔(シャフト用)6に向けて形成されており、固定子1の回転磁界による磁気を回転子5内で変え、つまりリラクタンスを不均一化とし、突極部を形成する。
【0003】
具体的には、d軸とq軸リラクタンスXd,Xqの比(Xd/Xq;突極比)に応じてリラクタンストルクが発生し、いわゆる回転子5に回転力が発生する。この場合、固定子1によって発生する回転磁界による一方(q軸)の磁気の通路に磁性鋼板部2がほぼ直角に介在し、他方(d軸)の磁気の通路に磁性鋼板部2が沿って介在する。このd軸の磁気が磁性鋼板部2を通って突極部を形成し、リラクタンスの比(Xd/Xq)が大きくなる。
【0004】
ところで、リラクタンスモータとしてはリラクタンスの比(突極比)が大きく、つまり発生トルクが大きい方がよい。そのために、種々構成の回転子が提案されているが、図6に示すアキシャルラミネート形が突極比を大きくとれる。したがって、現状においては、アキシャルラミネート形の回転子が極めて現実的であるということができる。
【0005】
なお、図7および図8においては、回転子5に4層構造の磁性鋼板部2を形成した場合について説明しているが、2層以上の多層構造の場合であっても同様である。
【0006】
【発明が解決しようとする課題】
しかしながら、前記リラクタンスモータにおいては、磁性鋼板を折り曲げて重ね、この重ねた磁性鋼板部2を多角形柱のボス部3にネジ4で止めているが、ボス部3の加工に手間がかかるため、コスト高になるばかりでなく、特に、突極部を形成するための磁性鋼板部2の外径寸法にバラツキが大きくなることから、モータの性能にバラツキが生じるため、品質の低下を招くことになる。
【0007】
この発明は、前記課題に鑑みなされたものであり、その目的は、回転子の製造を容易なものとして製造コストの低減を図ることができるとともに、モータの性能のバラツキを抑えて高効率のモータを得ることができるようにしたリラクタンスモータの回転子製造方法を提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、この発明は、回転磁界を発生する固定子内に回転子を有するリラクタンスモータのアキシャルラミネート形回転子の製造方法において、磁性鋼板を渦巻状に巻いて所定内外径の円筒状の磁性鋼板部を作成し、該磁性鋼板部を複数個同一平面上に所定に並べるとともに、これら磁性鋼板部を覆うようしてボス部となる部分を非磁性体の軽金属で一体化し、該一体化した本体の所定箇所に前記回転子の中心孔を形成し、かつ該中心孔を基準として前記回転子の形状に外形を加工、切削するようにしたことを特徴としている。
【0009】
前記磁性鋼板部は磁性鋼板を用いて所定内径の円筒を作成し、磁性鋼板を前記円筒に巻いて円筒を重ねるとともに、これを繰り返して所定内外径の円筒形にしてもよい。
【0010】
前記リラクタンスモータは四極モータであり、前記磁性鋼板部を同一平面上に並べる際、前記磁性鋼板部の中心が正方形の頂点にくるように、かつ隣接する磁性鋼板部を密着させて配置するとよい。
【0011】
前記磁性鋼板部の外径Dに対してその内径dは(1−1/(2の平方根))×Dより大きく、Dより小さい値にするとよい。
【0012】
前記磁性鋼板部は方向性電磁鋼板、あるいは無方向性電磁鋼板、もしくはそれらの絶縁皮膜のないもの、ならびに冷間圧延鋼板を材料にするとよい。
【0013】
前記ボス部となる非磁性体の軽金属としてはアルミニウム、亜鉛、マグネシウムあるいはそれらの合金であり、前記磁性鋼板部とボス部をダイカスト、鋳造によって一体化するとよい。
【0014】
前記一体化した本体を加工、切削して前記回転子を得る際、ワイヤ放電加工、あるいはレーザ加工を行った後、旋盤による切削、研削盤による研削の後加工を行うとよい。
【0015】
【発明の実施の形態】
以下、この発明の実施の形態を図1ないし図6を参照して詳しく説明する。 なお、図中、図7と同一部分には同一符号を付して重複説明を省略する。
【0016】
この発明のリラクタンスモータの回転子製造方法は、突極部を形成する磁路が円弧状に近いことから、例えば、鋼板を渦巻状に巻いて円筒状の磁性鋼板部を形成し、この磁性鋼板部を平面上に並べて全体を非磁性体の軽金属で所定形状に鋳造してボス部となる部分を加えた後、回転子の形状に加工、切削すれば、突極部を形成する磁性鋼板部の外径寸法にバラツキが生じることもなく、また、磁性鋼板部を固定するボス部の加工の必要もなくなることに着目したものである。
【0017】
そのため、図1および図2に示すように、このリラクタンスモータの回転子製造方法にあっては、電磁鋼板または鋼板を円柱(径d)に渦巻状に巻き付けて外径Dの円筒状の磁性鋼板部10を当該極数分作成し、これを同一平面上に正方形状に並べ、これらを全て覆うようにボス部となる本体11を非磁性体の軽金属でダイカスト法によりインサート鋳造する。
【0018】
この場合、磁性鋼板部10の内径dは外径をDとすると、(1−1/(2平方根))×D<d<Dを満足するように決定する。
すなわち、後述する回転子の径D0は、Dより小さくする必要があり、q軸近傍にフラックスバリアを形成する必要があるからである。
【0019】
また、図1および図3に示すように、各磁性鋼板部10を正方形に並べ、かつ隣接する磁性鋼板部10を密着させた状態として正四角柱形状の金型内でインサート鋳造する。
【0020】
なお、図3に示すように、磁性鋼板部10としては、鋼板を内径dの円筒形とし、同じ鋼板をその内径dの円筒に重ねるとともに、これを外径Dの円筒形になるまで繰り返して得てもよい。
【0021】
続いて、本体11を図1の実線に示すように切削して回転子12を得る。この場合、4つの磁性鋼板部10の中心に回転子12のシャフト用の中心孔6を形成した後、この中心孔6を基準として回転子12の外径D0(<D)となるようにワイヤ放電加工機で加工、切削する。なお、他の加工方法としては、例えばレーザ加工方法を用いてもよい。
【0022】
また、後処理として、回転子12の外形を旋盤による切削、研削盤による研削の後加工を行う。
すると、図4および図5に示すように、回転子12は、積層した円弧状磁性鋼板部10aが当該極数(4極)分だけ円周方向に等間隔に配置した形、つまりアキシャルラミネート形となる。しかも、q軸近傍には非磁性体の軽金属が残り、d軸近傍には円弧状磁性鋼板部10aの断面が現れ、また全体がボス部13となる。
【0023】
図6に示すように、この回転子12を固定子1に適応すると、各円弧状磁性鋼板部10aの両端部(d軸近傍)が突極部aとなり、q軸近傍はフラックスバリアbとなる。したがって、突極比(Xd/Xq)が大きく、発生トルクが大きいリラクタンストルクを得ることができる。
【0024】
なお、このリラクタンスモータは24スロットの固定子1に三相(U相、V相およびW相)の電機子巻線を有し、例えば外径側の巻線をU相、内径側の巻線をW相、その中間の巻線をV相としているが、スロット数や電機子巻線数が異なっていてもよい。
【0025】
このように、回転子12の製造において、鋼板をコイル状に巻き、これをボス部となる非磁性金属で鋳造し、ワイヤ放電加工機等で回転子の形状に外形を加工、切削して仕上げるようにしたので、ボス部13の加工コストを安価にすることができるとともに、磁極を形成する円弧状磁性鋼板部10aの外形寸法のバラツキを抑えることができ、しかも、円弧状磁性鋼板部10aの外形寸法の高精度化が図れることから、リラクタンスモータの品質向上を図ることができる。
【0026】
前述した製造方法によると、四極モータの場合に最も効率よく、(2+m)×(2+n)個の磁性鋼板部10から回転子12を(1+m)×(1+n)個得ることができる。
なお、n,mは正の整数であり、n,mを大きくすれば、回転子12の製造効率を上げることができる。
【0027】
磁性鋼板部10の鋼板としては、方向性電磁鋼板または無方向性電磁鋼板もしくはそれらの絶縁皮膜のないもの、ならびに冷間圧延鋼板を用いることができる。例えば、リラクタンスモータのトルク特性に重点を置くならば方向性電磁鋼板を用い、またリラクタンスモータのコストに重点を置くならば冷間圧延鋼板を用いる。したがって、リラクタンスモータの使用目的に合わせて回転子12を製造することができる。
【0028】
また、各円弧状磁性鋼板部10aを固定するボス部13の材料(非磁性体)としては、アルミウム、亜鉛およびマグネシウム等の軽金属、またはそれらの合金を使用する。
【0029】
さらに、前述により形成される回転子12を組み込んでDCブラシレスモータとし、例えば空気調和機の圧縮機モータ等として利用すれば、コストをアップすることなく、空気調和機の性能アップ(運転効率の上昇、振動や騒音の低下)を図ることができる。
【0030】
【発明の効果】
以上説明したように、リラクタンスモータの回転子製造方法の請求項1記載の発明によると、回転磁界を発生する固定子内に回転子を有するリラクタンスモータのアキシャルラミネート形回転子の製造方法において、磁性鋼板を渦巻状に巻いて所定内外径の円筒状の磁性鋼板部を作成し、この磁性鋼板部を複数個同一平面上に所定に並べるとともに、これら磁性鋼板部を覆うようしてボス部となる部分を非磁性体の軽金属で一体化し、該一体化した本体の所定箇所に前記回転子の中心孔を形成し、かつ該中心孔を基準として前記回転子の形状に外形を加工、切削するようにしたので、分割磁路となる磁性鋼板の製造が容易になるとともに、製造コストの低減を図ることができる。また、突極部を形成する磁性鋼板部の外形寸法にバラツキがなくなることから、外形寸法の精度が高くなり、モータ性能のバラツキの小さい高効率のモータを得ることができるという効果がある。
【0031】
請求項2記載に発明によると、請求項1における磁性鋼板部は磁性鋼板を用いて所定内径の円筒を作成し、磁性鋼板を前記円筒に巻いて円筒を重ねるとともに、これを繰り返して所定内外径の円筒形にしてなるので、請求項1の効果に加え、突極部を形成する分割磁路の精度を上げることができ、より高効率のモータを得ることができる。
【0032】
請求項3記載の発明によると、請求項1または2におけるリラクタンスモータは四極モータであり、前記磁性鋼板部を同一平面上に並べる際、前記磁性鋼板部の中心が正方形の頂点にくるように、かつ隣接する磁性鋼板部を密着させて配置するようにしたので、請求項1または2記載の効果に加え、回転子の製造し易さが向上し、しかも正確に確実に高効率のモータを得ることができる。
【0033】
請求項4記載の発明によると、請求項3において前記磁性鋼板部の外径Dに対して内径dは(1−1/(2の平方根))×Dより大きく、Dより小さい値であるので、請求項3の効果に加え、回転子の径D0をDより小さくすると、q軸近傍にフラックスバリアを形成することができ、つまり突極比が大きくなり、高効率のモータを得ることができるという効果がある。
【0034】
請求項5記載の発明によると、請求項1,2,3または4における磁性鋼板部は、方向性電磁鋼板、あるいは無方向性電磁鋼板、もしくはそれらの絶縁皮膜のないもの、ならびに冷間圧延鋼板を材料としているので、請求項1,2,3または4の効果に加え、例えば、方向性電磁鋼板を用いると、リラクタンスモータのトルク特性を上げることができ、また、冷間圧延鋼板を用いると、リラクタンスモータのコストを安価に済ませることができる。したがって、リラクタンスモータの使用目的に合わせて回転子12を製造することができるという効果がある。
【0035】
請求項6記載の発明によると、請求項1または2において前記ボス部となる非磁性体の軽金属としては、アルミニウム、亜鉛、マグネシウムあるいはそれらの合金であり、前記磁性鋼板部とボス部をダイカスト、鋳造によって一体化するようにしたので、請求項1または2の効果に加え、入手の容易な非磁性体で実現が可能になるばかりか、従来のインサート鋳造および加工で容易に回転子を製造することができるため、製造コストの低減を図ることができる。
【0036】
請求項7記載の発明によると、前記一体化した本体を加工、切削して前記回転子を得る際、ワイヤ放電加工、あるいはレーザ加工を行った後、旋盤による切削、研削盤による研削の後加工を行うようにしたので、請求項1または2の効果に加え、回転子の外形を高精度に仕上げることができ、ひいてはモータの高性能化を図ることができる。
【図面の簡単な説明】
【図1】この発明の一実施の形態を示すリラクタンスモータの回転子製造方法を説明するための本体の概略的平面図。
【図2】図1に示す本体の概略的側面図。
【図3】この発明の変形実施の形態を説明するための概略的模式図。
【図4】この発明のリラクタンスモータの回転子製造方法による回転子を説明するための概略的平面図。
【図5】図3に示す回転子の概略的側面図。
【図6】図3および図4に示す回転子を有するリラクタンスモータを説明するための概略的平面図。
【図7】従来のリラクタンスモータを示す概略的平面図。
【図8】図6に示すリラクタンスモータの回転子を説明するための概略的側面図。
【符号の説明】
1 固定子
6 中心孔(シャフト用)
10 磁性鋼板部
10a 円弧状磁性鋼板部
11 本体
12 回転子
13 ボス部
a 突極部
b フラックスバリア
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reluctance motor for an electric motor used in an air conditioner, an automobile, or the like, and more particularly to a method for manufacturing a rotor of a reluctance motor characterized by the manufacture of the rotor.
[0002]
[Prior art]
This reluctance motor has a structure shown in FIGS. 7 and 8, for example. 7 and 8, in the stator 1 that generates a rotating magnetic field, in order to generate reluctance torque, a plurality of magnetic steel plates having a bathtub-shaped cross section are stacked to form a magnetic steel plate portion 2 having a polygonal shape corresponding to the number of poles. A rotor 5 formed by fixing with a screw 4 is disposed on the boss portion 3 of the column. This magnetic steel plate 2 is formed with the bottom of the bathtub shape facing the center hole (for shaft) 6, and the magnetism due to the rotating magnetic field of the stator 1 is changed in the rotor 5, that is, the reluctance is made non-uniform. Form the pole.
[0003]
Specifically, a reluctance torque is generated according to a ratio (Xd / Xq; salient pole ratio) between the d-axis and the q-axis reluctance Xd, Xq, and a so-called rotor 5 is generated. In this case, the magnetic steel plate part 2 is interposed substantially perpendicularly in one (q-axis) magnetic path by the rotating magnetic field generated by the stator 1, and the magnetic steel plate part 2 is along the other (d-axis) magnetic path. Intervene. This d-axis magnetism forms a salient pole portion through the magnetic steel plate portion 2, and the reluctance ratio (Xd / Xq) increases.
[0004]
By the way, it is better for the reluctance motor to have a larger reluctance ratio (saliency ratio), that is, a larger generated torque. For this purpose, rotors of various configurations have been proposed, but the axial laminate type shown in FIG. 6 can increase the salient pole ratio. Therefore, in the present situation, it can be said that an axial laminate type rotor is very realistic.
[0005]
7 and 8, the case where the magnetic steel plate portion 2 having a four-layer structure is formed on the rotor 5 has been described, but the same applies to the case of a multilayer structure having two or more layers.
[0006]
[Problems to be solved by the invention]
However, in the reluctance motor, the magnetic steel plate is folded and overlapped, and the stacked magnetic steel plate portion 2 is fixed to the boss portion 3 of the polygonal column with the screw 4, but it takes time to process the boss portion 3, Not only is the cost high, but also the variation in the outer diameter of the magnetic steel plate part 2 for forming the salient pole part increases, resulting in a variation in the performance of the motor, leading to a reduction in quality. Become.
[0007]
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to reduce the manufacturing cost by making the rotor easy to manufacture and to suppress a variation in the performance of the motor. It is an object of the present invention to provide a method of manufacturing a rotor of a reluctance motor that can obtain the above.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for manufacturing an axially laminated rotor of a reluctance motor having a rotor in a stator that generates a rotating magnetic field. A cylindrical magnetic steel plate part is created, and a plurality of the magnetic steel plate parts are arranged on the same plane, and the boss part is integrated with a non-magnetic light metal so as to cover these magnetic steel plate parts, A central hole of the rotor is formed at a predetermined position of the integrated main body, and an outer shape is processed and cut into the shape of the rotor with reference to the central hole.
[0009]
The magnetic steel plate portion may be a cylinder having a predetermined inner diameter formed by using a magnetic steel plate, and the magnetic steel plate is wound around the cylinder to overlap the cylinder, and this may be repeated to form a cylinder having a predetermined inner and outer diameter.
[0010]
The reluctance motor is a quadrupole motor, and when the magnetic steel plate portions are arranged on the same plane, the magnetic steel plate portions may be arranged so that the center of the magnetic steel plate portion is at the apex of the square and the adjacent magnetic steel plate portions are in close contact with each other.
[0011]
The inner diameter d of the magnetic steel plate portion is preferably larger than (1-1 / (square root of 2)) × D and smaller than D.
[0012]
The magnetic steel plate portion is preferably made of a grain-oriented electrical steel plate, a non-oriented electrical steel plate, or those without an insulating film, and a cold-rolled steel plate.
[0013]
The non-magnetic light metal used as the boss is aluminum, zinc, magnesium or an alloy thereof, and the magnetic steel plate and the boss may be integrated by die casting or casting.
[0014]
When the integrated main body is processed and cut to obtain the rotor, wire electric discharge machining or laser machining may be performed, followed by cutting with a lathe and post-grinding with a grinder.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. In the figure, the same parts as those in FIG.
[0016]
The rotor manufacturing method of the reluctance motor according to the present invention has a magnetic path forming the salient pole portion close to an arc shape. For example, the magnetic steel plate is formed by winding a steel plate in a spiral shape. Magnetic steel plate part that forms salient pole parts by arranging the parts on a flat surface and casting the whole into a predetermined shape with a non-magnetic light metal and adding a part that becomes a boss part, then machining and cutting into the rotor shape It is noted that there is no variation in the outer diameter of the boss, and there is no need to process the boss portion for fixing the magnetic steel plate portion.
[0017]
Therefore, as shown in FIGS. 1 and 2, in the method of manufacturing a rotor of the reluctance motor, a cylindrical magnetic steel plate having an outer diameter D by winding a magnetic steel plate or a steel plate in a spiral shape around a column (diameter d). The parts 10 are created for the number of poles, arranged in a square shape on the same plane, and the main body 11 serving as the boss part is insert-casted by a die-casting method with a non-magnetic light metal so as to cover all of them.
[0018]
In this case, the inner diameter d of the magnetic steel plate portion 10 is determined so as to satisfy (1-1 / (2 square root)) × D <d <D, where D is the outer diameter.
In other words, the rotor diameter D0 described later needs to be smaller than D, and a flux barrier needs to be formed in the vicinity of the q axis.
[0019]
As shown in FIGS. 1 and 3, the magnetic steel plate portions 10 are arranged in a square shape, and the adjacent magnetic steel plate portions 10 are brought into close contact with each other, and insert casting is performed in a regular quadrangular prism mold.
[0020]
As shown in FIG. 3, as the magnetic steel plate portion 10, the steel plate is formed into a cylindrical shape with an inner diameter d, and the same steel plate is overlaid on the cylinder with the inner diameter d, and this is repeated until it becomes a cylindrical shape with an outer diameter D. May be obtained.
[0021]
Subsequently, the main body 11 is cut as shown by a solid line in FIG. In this case, after the center hole 6 for the shaft of the rotor 12 is formed at the center of the four magnetic steel plate portions 10, the wire is set so that the outer diameter D 0 (<D) of the rotor 12 becomes the reference with the center hole 6. Machining and cutting with an electric discharge machine. As another processing method, for example, a laser processing method may be used.
[0022]
As post-processing, the outer shape of the rotor 12 is cut by a lathe and post-grinding by a grinder.
Then, as shown in FIGS. 4 and 5, the rotor 12 has a laminated arcuate magnetic steel plate portion 10a arranged at equal intervals in the circumferential direction by the number of poles (four poles), that is, an axial laminate type. It becomes. Moreover, a non-magnetic light metal remains in the vicinity of the q-axis, a cross section of the arc-shaped magnetic steel plate portion 10a appears in the vicinity of the d-axis, and the whole becomes the boss portion 13.
[0023]
As shown in FIG. 6, when this rotor 12 is applied to the stator 1, both end portions (near the d-axis) of each arc-shaped magnetic steel plate portion 10 a become salient pole portions a, and near the q-axis becomes a flux barrier b. . Therefore, a reluctance torque having a large salient pole ratio (Xd / Xq) and a large generated torque can be obtained.
[0024]
This reluctance motor has three-phase (U-phase, V-phase, and W-phase) armature windings in a 24-slot stator 1, for example, an outer-side winding is a U-phase and an inner-side winding. Is the W phase and the intermediate winding is the V phase, but the number of slots and the number of armature windings may be different.
[0025]
Thus, in the manufacture of the rotor 12, a steel plate is wound in a coil shape, this is cast with a non-magnetic metal serving as a boss portion, and the outer shape is processed and cut into a rotor shape with a wire electric discharge machine or the like to finish. As a result, the machining cost of the boss portion 13 can be reduced, the variation in the outer dimension of the arc-shaped magnetic steel plate portion 10a forming the magnetic pole can be suppressed, and the arc-shaped magnetic steel plate portion 10a can be reduced. Since the accuracy of the outer dimensions can be improved, the quality of the reluctance motor can be improved.
[0026]
According to the manufacturing method described above, (1 + m) × (1 + n) rotors 12 can be obtained from (2 + m) × (2 + n) magnetic steel plate portions 10 most efficiently in the case of a four-pole motor.
Note that n and m are positive integers. If n and m are increased, the manufacturing efficiency of the rotor 12 can be increased.
[0027]
As the steel sheet of the magnetic steel sheet portion 10, a grain-oriented electrical steel sheet, a non-oriented electrical steel sheet, those without an insulating film thereof, and a cold-rolled steel sheet can be used. For example, if emphasis is placed on the torque characteristics of the reluctance motor, a grain-oriented electrical steel sheet is used, and if emphasis is placed on the cost of the reluctance motor, cold-rolled steel sheet is used. Therefore, the rotor 12 can be manufactured in accordance with the intended use of the reluctance motor.
[0028]
Moreover, as a material (nonmagnetic body) of the boss | hub part 13 which fixes each arc-shaped magnetic steel plate part 10a, light metals, such as aluminum, zinc, and magnesium, or those alloys are used.
[0029]
Furthermore, if the rotor 12 formed as described above is incorporated into a DC brushless motor, for example, as a compressor motor of an air conditioner, the performance of the air conditioner can be improved without increasing costs (increasing operating efficiency). , Vibration and noise reduction).
[0030]
【The invention's effect】
As described above, according to the first aspect of the method of manufacturing a rotor of a reluctance motor, in the method of manufacturing an axial laminate type rotor of a reluctance motor having a rotor in a stator that generates a rotating magnetic field, A steel plate is wound in a spiral shape to form a cylindrical magnetic steel plate portion having a predetermined inner and outer diameter, and a plurality of the magnetic steel plate portions are arranged on the same plane, and a boss portion is formed so as to cover these magnetic steel plate portions. The part is integrated with a non-magnetic light metal, the central hole of the rotor is formed at a predetermined position of the integrated main body, and the outer shape is processed and cut into the shape of the rotor based on the central hole Therefore, it is easy to manufacture the magnetic steel sheet that becomes the divided magnetic path, and the manufacturing cost can be reduced. Further, since there is no variation in the outer dimension of the magnetic steel plate part that forms the salient pole part, there is an effect that the precision of the outer dimension is increased and a highly efficient motor with less variation in motor performance can be obtained.
[0031]
According to the second aspect of the present invention, the magnetic steel plate portion according to the first aspect uses a magnetic steel plate to form a cylinder having a predetermined inner diameter, and the magnetic steel plate is wound around the cylinder to overlap the cylinder. In addition to the effect of the first aspect, the accuracy of the divided magnetic path forming the salient pole portion can be increased, and a motor with higher efficiency can be obtained.
[0032]
According to the invention of claim 3, the reluctance motor according to claim 1 or 2 is a four-pole motor, and when the magnetic steel plate portions are arranged on the same plane, the center of the magnetic steel plate portion is at the apex of the square. Since the adjacent magnetic steel plate portions are arranged in close contact with each other, in addition to the effect of claim 1 or 2, the ease of manufacturing the rotor is improved, and a highly efficient motor is obtained accurately and reliably. be able to.
[0033]
According to the invention of claim 4, in claim 3, the inner diameter d is larger than (1-1 / (square root of 2)) × D and smaller than D with respect to the outer diameter D of the magnetic steel plate portion. In addition to the effect of claim 3, when the rotor diameter D0 is smaller than D, a flux barrier can be formed in the vicinity of the q axis, that is, the salient pole ratio is increased, and a highly efficient motor can be obtained. There is an effect.
[0034]
According to the invention of claim 5, the magnetic steel plate portion according to claim 1, 2, 3 or 4 is a grain-oriented electrical steel sheet, a non-oriented electrical steel sheet, or those without an insulating film, and a cold-rolled steel sheet. In addition to the effect of claim 1, 2, 3 or 4, for example, if a directional electromagnetic steel sheet is used, the torque characteristics of the reluctance motor can be improved, and if a cold rolled steel sheet is used, The cost of the reluctance motor can be reduced. Therefore, there is an effect that the rotor 12 can be manufactured according to the purpose of use of the reluctance motor.
[0035]
According to the invention of claim 6, the light metal of the non-magnetic material that becomes the boss part in claim 1 or 2 is aluminum, zinc, magnesium or an alloy thereof, and the magnetic steel plate part and the boss part are die-cast, Since it is integrated by casting, in addition to the effect of claim 1 or 2, it can be realized by an easily available non-magnetic material, and a rotor can be easily manufactured by conventional insert casting and processing. Therefore, the manufacturing cost can be reduced.
[0036]
According to the seventh aspect of the present invention, when the integrated main body is processed and cut to obtain the rotor, wire electric discharge machining or laser machining is performed, then cutting with a lathe, post-grinding with a grinder Therefore, in addition to the effect of the first or second aspect, the outer shape of the rotor can be finished with high accuracy, and the performance of the motor can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a main body for explaining a method of manufacturing a rotor for a reluctance motor according to an embodiment of the present invention.
FIG. 2 is a schematic side view of the main body shown in FIG.
FIG. 3 is a schematic diagram for explaining a modified embodiment of the present invention.
FIG. 4 is a schematic plan view for explaining a rotor according to a method of manufacturing a rotor of a reluctance motor according to the present invention.
FIG. 5 is a schematic side view of the rotor shown in FIG. 3;
6 is a schematic plan view for explaining a reluctance motor having the rotor shown in FIGS. 3 and 4. FIG.
FIG. 7 is a schematic plan view showing a conventional reluctance motor.
8 is a schematic side view for explaining a rotor of the reluctance motor shown in FIG. 6;
[Explanation of symbols]
1 Stator 6 Center hole (for shaft)
DESCRIPTION OF SYMBOLS 10 Magnetic steel plate part 10a Arc-shaped magnetic steel plate part 11 Main body 12 Rotor 13 Boss part a Salient pole part b Flux barrier

Claims (7)

回転磁界を発生する固定子内に回転子を有するリラクタンスモータのアキシャルラミネート形回転子の製造方法において、磁性鋼板を渦巻状に巻いて所定内外径の円筒状の磁性鋼板部を作成し、該磁性鋼板部を複数個同一平面上に所定に並べるとともに、これら磁性鋼板部を覆うようしてボス部となる部分を非磁性体の軽金属で一体化し、該一体化した本体の所定箇所に前記回転子の中心孔を形成し、かつ該中心孔を基準として前記回転子の形状に外形を加工、切削するようにしたことを特徴とするリラクタンスモータの回転子の製造方法。In a method for manufacturing an axial laminate type rotor of a reluctance motor having a rotor in a stator that generates a rotating magnetic field, a magnetic steel plate is wound in a spiral shape to form a cylindrical magnetic steel plate portion having a predetermined inner and outer diameter, and the magnetic A plurality of steel plate portions are arranged in a predetermined plane on the same plane, and a portion that becomes a boss portion is covered with a non-magnetic light metal so as to cover these magnetic steel plate portions, and the rotor is placed at a predetermined position of the integrated main body. And forming an outer shape into the shape of the rotor on the basis of the center hole, and manufacturing the rotor of the reluctance motor. 前記磁性鋼板部は磁性鋼板を用いて所定内径の円筒を作成し、磁性鋼板を前記円筒に巻いて円筒を重ねるとともに、これを繰り返して所定内外径の円筒形にしてなる請求項1記載のリラクタンスモータの回転子の製造方法。2. The reluctance according to claim 1, wherein the magnetic steel plate part is made of a magnetic steel plate to form a cylinder having a predetermined inner diameter, the magnetic steel plate is wound around the cylinder, the cylinders are stacked, and this is repeated to form a cylinder with a predetermined inner and outer diameter. A method for manufacturing a rotor of a motor. 前記リラクタンスモータは四極モータであり、前記磁性鋼板部を同一平面上に並べる際、前記磁性鋼板部の中心が正方形の頂点にくるように、かつ隣接する磁性鋼板部を密着させて配置するようにした請求項1または2記載のリラクタンスモータの回転子の製造方法。The reluctance motor is a quadrupole motor, and when the magnetic steel plate portions are arranged on the same plane, the magnetic steel plate portions are arranged so that the center of the magnetic steel plate portion is at the apex of the square and the adjacent magnetic steel plate portions are closely attached to each other. A method of manufacturing a rotor of a reluctance motor according to claim 1 or 2. 前記磁性鋼板部の外径Dに対してその内径dは(1−1/(2の平方根))×Dより大きく、Dより小さい値である請求項3記載のリラクタンスモータの回転子の製造方法。4. The method of manufacturing a rotor for a reluctance motor according to claim 3, wherein the inner diameter d of the magnetic steel plate portion is larger than (1-1 / (square root of 2)) × D and smaller than D. . 前記磁性鋼板部は方向性電磁鋼板、あるいは無方向性電磁鋼板、もしくはそれらの絶縁皮膜のないもの、ならびに冷間圧延鋼板を材料としている請求項1,2,3または4記載のリラクタンスモータの回転子の製造方法。5. The rotation of a reluctance motor according to claim 1, 2, 3 or 4, wherein the magnetic steel plate portion is made of a directional electromagnetic steel plate, a non-oriented electromagnetic steel plate, or those without an insulating film thereof, and a cold rolled steel plate. Child manufacturing method. 前記ボス部となる非磁性体の軽金属としてはアルミニウム、亜鉛、マグネシウムあるいはそれらの合金であり、前記磁性鋼板部とボス部をダイカスト、鋳造によって一体化するようにした請求項1または2記載のリラクタンスモータの回転子の製造方法。The reluctance according to claim 1 or 2, wherein the non-magnetic light metal to be the boss portion is aluminum, zinc, magnesium or an alloy thereof, and the magnetic steel plate portion and the boss portion are integrated by die casting or casting. A method for manufacturing a rotor of a motor. 前記一体化した本体を加工、切削して前記回転子を得る際、ワイヤ放電加工、あるいはレーザ加工を行った後、旋盤による切削、研削盤による研削の後加工を行うようにした請求項1または2記載のリラクタンスモータの回転子の製造方法。2. When the integrated main body is processed and cut to obtain the rotor, wire electric discharge machining or laser machining is performed, and then cutting by a lathe and post-grinding by a grinding machine are performed. A method for manufacturing a rotor of a reluctance motor according to 2.
JP17082098A 1998-06-18 1998-06-18 Method of manufacturing rotor for reluctance motor Expired - Fee Related JP3849737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17082098A JP3849737B2 (en) 1998-06-18 1998-06-18 Method of manufacturing rotor for reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17082098A JP3849737B2 (en) 1998-06-18 1998-06-18 Method of manufacturing rotor for reluctance motor

Publications (2)

Publication Number Publication Date
JP2000014109A JP2000014109A (en) 2000-01-14
JP3849737B2 true JP3849737B2 (en) 2006-11-22

Family

ID=15911947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17082098A Expired - Fee Related JP3849737B2 (en) 1998-06-18 1998-06-18 Method of manufacturing rotor for reluctance motor

Country Status (1)

Country Link
JP (1) JP3849737B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015316B2 (en) * 2010-12-28 2012-08-29 株式会社安川電機 Reluctance motor
FR3002704B1 (en) * 2013-02-25 2015-03-27 Renault Sa ROTATING ELECTRIC MACHINE ROTOR, ROTATING ELECTRIC MACHINE COMPRISING SUCH A ROTOR, AND METHOD OF MANUFACTURING SUCH A ROTOR

Also Published As

Publication number Publication date
JP2000014109A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
US9800103B2 (en) Mechanically stabilized rotor for a reluctance motor
JP4558008B2 (en) Rotating electric machine
JP6411833B2 (en) Brushless motor
JP6402257B2 (en) Stator coil, stator provided with the same, and rotating electric machine provided with the same
US20080174199A1 (en) Rotating Machinery
WO2015019948A1 (en) Brushless motor
JP2008113531A (en) Rotary electric machine
US20090218906A1 (en) Rotating electric machine and method of manufacturing the same
JP3928297B2 (en) Electric motor and manufacturing method thereof
WO2019064923A1 (en) Rotor core, rotor, rotating electrical machine, and electric auxiliary system for automobiles
WO2007123057A1 (en) Motor
JP4058576B2 (en) Reluctance motor
JP2003259615A (en) Reluctance motor
JP3849737B2 (en) Method of manufacturing rotor for reluctance motor
JP4415176B2 (en) Induction motor having a ring-shaped stator coil
JP4038633B2 (en) Reluctance motor
JP4348982B2 (en) Axial gap type induction motor
JPH11285186A (en) Permanent-magnet motor
JPH10117467A (en) Rotor of motor
JP2001258225A (en) Motor
JP2003333811A (en) Induction motor having a plurality of axially divided stator windings
JP2000014107A (en) Reluctance motor
JP2010263714A (en) Core for motor and method of manufacturing the same
JP3931938B2 (en) Reluctance motor
JP3944664B2 (en) Reluctance motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees