JP3931506B2 - Method for producing aqueous resin emulsion - Google Patents

Method for producing aqueous resin emulsion Download PDF

Info

Publication number
JP3931506B2
JP3931506B2 JP32671799A JP32671799A JP3931506B2 JP 3931506 B2 JP3931506 B2 JP 3931506B2 JP 32671799 A JP32671799 A JP 32671799A JP 32671799 A JP32671799 A JP 32671799A JP 3931506 B2 JP3931506 B2 JP 3931506B2
Authority
JP
Japan
Prior art keywords
aqueous resin
stage
emulsion polymerization
weight
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32671799A
Other languages
Japanese (ja)
Other versions
JP2001139610A (en
Inventor
昌民 風呂
尉夫 大地
清 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP32671799A priority Critical patent/JP3931506B2/en
Publication of JP2001139610A publication Critical patent/JP2001139610A/en
Application granted granted Critical
Publication of JP3931506B2 publication Critical patent/JP3931506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粒径分布の広い水性樹脂エマルジョンの製造方法であって、該水性樹脂エマルジョンは塗料、粘着剤などの技術分野に使用され得る。
【0002】
【従来の技術】
近年、環境負荷の低減と安全衛生の向上の観点より、塗料、粘着剤等の水性化が進み、従来の有機溶剤系樹脂から水性樹脂エマルジョンに移行しつつある。この水性樹脂エマルジョンの性能とコストメリットを高める手段の1つとして高固形分化がある。高固形分にすることにより、初期乾燥を速め、塗膜物性を向上させることができると同時に、乾燥時の光熱費、輸送費のコストダウンをも図ることが可能となる。ただし、製造時および塗工時のハンドリングを考慮し、水性樹脂エマルジョンをある程度低粘度化させる必要がある。これを受けて、高固形分かつ低粘度の水性樹脂エマルジョンを得る方法が種々提案されているが、いずれも粘度がそれほど低くはなく、必ずしも満足できるものではなかった。
【0003】
例えば、特公平5−86402号公報においては、固形分70重量%で粘度450mPa・sの水性樹脂エマルジョンが得られる等の実施例があるが、すべて未中和エマルジョンの性状である。汎用、特に塗料用の水性樹脂エマルジョンはpHが中性付近で使用されることが多く、上記においては、アルカリ中和によってかなり増粘するものと容易に推察できる。また、特許第2509224号公報においても、固形分68.5重量%で粘度2400mPa・sの水性樹脂エマルジョンが得られる等の記載があるが、pH4.0時の性状であり、この場合もアルカリ増粘を容易に推察することができる。
【0004】
【発明が解決しようとする課題】
このように先に提案された方法によって得られる高固形分、低粘度水性樹脂エマルジョンは、実質いずれもpHが酸性側に限定されており、中性付近で使用されることが多い塗料、粘着剤用等には使用困難である。そこで、本発明の課題は、最終のpHに依存することなく、高固形分かつ低粘度を達成する、粒径分布の広い水性樹脂エマルジョンを得る製造方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者等は、鋭意研究を重ねた結果、水性媒体中で乳化剤の存在下にラジカル重合性単量体の第1段目の乳化重合を行って、重合体粒子の体積平均粒径が0.5μmを超え、1.0μm以下の水性樹脂エマルジョンを得た後、これに、乳化剤とラジカル重合性単量体を加えて第2段目の乳化重合を行い、第1段目の乳化重合により得られた重合体粒子よりも体積平均粒径の小さい水性樹脂エマルジョンを得る水性樹脂エマルジョンの製造方法であって、第1段目の乳化重合での乳化剤量が第1段目で用いるラジカル重合性単量体100重量部に対して0.3〜1.0重量部であり、第2段目の乳化重合での乳化剤量が第2段目で用いるラジカル重合性単量体100重量部に対して1.7〜3.0重量部であり、かつ、第2段目の乳化重合で、体積平均粒径が0.4〜0.7μmであり、体積平均粒径(D v )と数平均粒径(D n )の比(D v /D n )が1.1〜5.0の水性樹脂エマルジョンを得るという2段乳化重合法を行うことにより、粒径分布を広げることが可能となり、最終のpHに依存することなく、高固形分かつ低粘度を達成できることを見い出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、
1.水性媒体中で乳化剤の存在下にラジカル重合性単量体の第1段目の乳化重合を行って、重合体粒子の体積平均粒径が0.5μmを超え、1.0μm以下の水性樹脂エマルジョンを得た後、乳化剤とラジカル重合性単量体を加えて第2段目の乳化重合を行い、第1段目の乳化重合により得られた重合体粒子よりも体積平均粒径が小さい水性樹脂エマルジョンを得る水性樹脂エマルジョンの製造方法であって、第1段目の乳化重合での乳化剤量が第1段目で用いるラジカル重合性単量体100重量部に対して0.3〜1.0重量部であり、第2段目の乳化重合での乳化剤量が第2段目で用いるラジカル重合性単量体100重量部に対して1.7〜3.0重量部であり、かつ、第2段目の乳化重合で、体積平均粒径が0.4〜0.7μmであり、体積平均粒径(D v )と数平均粒径(D n )の比(D v /D n )が1.1〜5.0の水性樹脂エマルジョンを得ることを特徴とする、水性樹脂エマルジョンの製造方法、
【0007】
および、2.第1段目の乳化重合でのラジカル重合性単量体重量(W 1 )と第2段目の乳化重合でのラジカル重合性単量体重量(W 2 )の比(W 1 /W 2 )が、40/60〜90/10である、上記1に記載の水性樹脂エマルジョンの製造方法、を提供しようとするものである。
【0010】
【発明の実施の形態】
本発明において使用されるラジカル重合性単量体としては、一般的に乳化重合に用いられているものであれば特に制限はなく用いることができる。例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸シクロヘキシル、メタクリル酸2−エチルヘキシル等のメタクリル酸エステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸エステル類;
【0011】
アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、マレイン酸モノn−ブチル、フマル酸モノn−ブチル、イタコン酸モノn−ブチル、クロトン酸等のカルボキシル基含有単量体類;酢酸ビニル、プロピオン酸ビニル等、第3級カルボン酸ビニル等のビニルエステル類;スチレン、ビニルトルエン、α−メチルスチレン等の芳香族ビニル化合物;ビニルピロリドン等の複素環式ビニル化合物;塩化ビニル、塩化ビニリデン、フッ化ビニリデン等のハロゲン化オレフィン類;アクリロニトリル、メタクリロニトリル等のシアノ基含有単量体;エチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン等のビニルケトン類;
【0012】
エチレン、プロピレン等のα−オレフィン類;ブタジエン、イソプレン等のジエン類;アクリルアミド、メタクリルアミド、マレイン酸アミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、ジアセトンアクリルアミド等のアミド基含有単量体類;メタクリル酸グリシジル、アリルグリシジルエーテル等のグリシジル基含有単量体;アクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル等の水酸基含有単量体;メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のアミノ基含有単量体類;
【0013】
ビニル−メチルジメトキシシラン、ビニル−トリメトキシシラン、ビニル−トリス(β−メトキシエトキシ)シラン、3−(メタ)アクリロキシプロピル−トリメトキシシラン、3−(メタ)アクリロキシプロピル−メチルジメトキシシラン、3−(メタ)アクリロキシプロピル−トリエトキシシラン、3−(メタ)アクリロキシプロピル−メチルジエトキシシラン等のアルコキシシリル基含有単量体類;フタル酸ジアリル、ジビニルベンゼン、アクリル酸アリル、トリメチロールプロパントリメタクリレート等の1分子中に2個以上の不飽和結合を有する単量体類などが挙げられる。
【0014】
また、本発明において使用される乳化剤としては、一般的に乳化重合に用いられているものであれば、アニオン性、カチオン性およびノニオン性のいずれの乳化剤でも特に制限はなく用いることができるが、それらのうちでも特に代表的なもののみを例示するにとどめれば、まず、アニオン性乳化剤としては、高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、ポリオキシアルキレンアルキルフェニルエーテル硫酸エステル、ジアルキルサクシネートスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩等があるし、次いで、ノニオン性乳化剤としては、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル等があり、これらの1種または2種以上の混合物を使用することができる。
【0015】
本発明においては、ラジカル重合性単量体の乳化重合に際して、ラジカル重合開始剤を用いることができる。ここで用いるラジカル重合開始剤としては、特に限定されるものではないが、それらのうちでも特に代表的なもののみを例示するにとどめれば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、アゾビスイソブチロニトリルまたはその塩酸塩、過酸化水素、ターシャリーブチルハイドロパーオキサイド、クメンヒドロパーオキサイド、過酸化ベンゾイルなどがある。
【0016】
また、上掲したようなラジカル重合開始剤と共に、還元剤を併用することも可能である。この際に用い得る当該還元剤として特に代表的なもののみを例示するにとどめれば、ナトリウムスルホオキシレートホルムアルデヒド、ピロ亜硫酸ソーダ、L−アスコルビン酸等がある。
【0017】
本発明において、第1段目の乳化重合での乳化剤量としては、体積平均粒径が0.5μmを超える粒径の大きい重合体粒子が容易に得られることから、第1段目で用いるラジカル重合性単量体100重量部に対して0.3〜1.0重量部となる範囲内である。また、第2段目の乳化重合での乳化剤量としては、粒径分布の広い水性樹脂エマルジョンが得られ、耐久性に優れる塗膜が得られることから、第2段目で用いるラジカル重合性単量体100重量部に対して、1.7〜3.0重量部となる範囲内である。
【0018】
さらに、ラジカル重合性単量体の使用量としては、粒径分布の広い水性樹脂エマルジョンが得られることから、第1段目の乳化重合でのラジカル重合性単量体重量(W1)と第2段目の乳化重合でのラジカル重合性単量体重量(W2)の比(W1/W2)が、40/60〜90/10となる範囲内が好ましく、なかでも50/50〜90/10となる範囲内が特に好ましい。
【0019】
本発明に係る製造方法のうちでも特に代表的なもののみを例示するにとどめれば、次のような方法などであるが、それらは、特に望ましい方法として挙げられるものである。
【0020】
すなわち、第1段目の乳化重合に用いるラジカル重合性単量体を、この単量体100重量部に対して0.3〜1.0重量部の乳化剤を溶かし込んだイオン交換水に加え、第1段目の乳化重合に用いるプレエマルジョン(1)を得る。さらに、別途第2段目の乳化重合に用いるラジカル重合性単量体を、この単量体100重量部に対して1.7〜3.0重量部の乳化剤を溶かし込んだイオン交換水に加え、第2段目の乳化重合に用いるプレエマルジョン(2)を得る。
【0021】
しかるのち、反応容器にイオン交換水を仕込み、容器内温度を80℃に昇温する。昇温後、プレエマルジョン(1)の一部を仕込み、次いでラジカル重合開始剤の一部を添加し、20〜30分間攪拌する。その後、ラジカル重合開始剤の一部を加え、プレエマルジョン(1)の残りを2〜4時間で滴下する。滴下終了後も30分〜1時間攪拌する。この第一段目の乳化重合により、体積平均粒子径が0.5μmを超え、1.0μm以下、好ましくは0.55〜0.85μmの水性樹脂エマルジョンを得る。
【0022】
さらに、ラジカル重合開始剤の残りを添加し、プレエマルジョン(2)を2〜4時間で滴下することにより、第2段目の乳化重合を行う。その結果、第1段目の乳化重合により得られた重合体粒子よりも体積平均粒径が小さく、粒径分布の広い水性樹脂エマルジョン、例えば体積平均粒径が0.4〜0.7μm、好ましくは0.4〜0.6μmで、体積平均粒径(Dv)と数平均粒径(Dn)の比(Dv/Dn)が1.1〜5.0の水性樹脂エマルジョンを得る。
【0023】
本発明の製造方法で得られる粒径分布が広く、高濃度かつ低粘度の水性樹脂エマルジョンは、塗料、粘着剤等の速乾性、耐候性、耐水性、コストメリットに優れたバインダーとして有用である。
【0024】
【実施例】
以下に、実施例および比較例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、以下の部及び%はいずれも重量に基づく値である。
【0025】
実施例1
アクリル酸2−エチルへキシル(以下、2EHAと略記する。)125部と、メタクリル酸メチル(以下、MMAと略記する。)29.5部と、スチレン(以下、Stと略記する。)90部と、メタクリル酸(以下、MAAと略記する。)5部と、A−174(日本ユニカー製3−メタクリロキシプロピル−トリメトキシシラン、有効成分=100%)0.5部とからなる単量体混合液を、レベノールWZ(花王製ポリオキシエチレンノニルフェニルエーテル硫酸ソーダ、有効成分=26%)4部と、エアロゾルOT75(三井サイテック製ジオクチルスルホサクシネート硫酸ソーダ、有効成分=75%)0.5部と、ノイゲンEA130T(第一工業製薬製ポリオキシエチレンノニルフェニルエーテル、有効成分=100%)0.5部とを溶かし込んだイオン交換水の60部に加え、第1段目の乳化重合に用いるプレエマルジョン(1)を得た。
【0026】
さらに、2EHA95部と、MMA149.5部と、MAA5部と、A−174 0.5部とからなる単量体混合液を、レベノールWZ20部を溶かし込んだイオン交換水60部に加え、第2段目の乳化重合に用いるプレエマルジョン(2)を得た。
【0027】
しかるのち、攪拌機、温度計、冷却器および滴下漏斗を取り付けた1リットル反応容器にイオン交換水118部を仕込み、窒素ガスを送り込みつつ攪拌しながら釜内温度を80℃に昇温した。昇温後、プレエマルジョン(1)2%を仕込み、次いで過硫酸アンモニウム3部をイオン交換水50部に溶解した過硫酸アンモニウム水溶液のうちの20%を添加し、80℃で20分間攪拌した。その後、過硫酸アンモニウム水溶液の50%を加え、プレエマルジョン(1)の残り98%を2時間で滴下した。滴下終了後も80℃で30分間攪拌した。この第1段目の乳化重合により、体積平均粒径0.65μmの水性樹脂エマルジョンを得た。
【0028】
さらに、過硫酸アンモニウム水溶液の残り30%を加え、プレエマルジョン(2)を2時間で滴下することにより、第2段目の乳化重合を行った。滴下終了後さらに80℃で1時間攪拌を続けて反応を完結させた。その後、25℃まで冷却し、アンモニア水によって中和することにより、目的とする水性樹脂エマルジョンを得た。
【0029】
この水性樹脂エマルジョンは、下記の性状を示した。
固形分:62.0%、粘度:380mPa・s、pH:7.2、体積平均粒径:0.49μm、粒径分布〔体積平均粒径(Dv)と数平均粒径(Dn)の比(Dv/Dn)〕:3.3。なお、粒径の測定にはマイクロトラック社製「MODEL:9340−UPA」を用いた。
【0030】
実施例2〜3ならびに比較例1〜5
第1表(1)〜(2)、第2表(1)〜(2)および第3表(1)〜(2)に示すように、初期に仕込むイオン交換水、単量体ならびに乳化剤を変更させた以外は、実施例1と同様にして2段の乳化重合を行い、水性樹脂エマルジョンを得た。それぞれの水性樹脂エマルジョンの性状値、つまり体積平均粒径、粒径分布、固形分、粘度およびpHをそれぞれの表に併記した。
【0031】
【表1】

Figure 0003931506
【0032】
【表2】
Figure 0003931506
【0033】
【表3】
Figure 0003931506
【0034】
【表4】
Figure 0003931506
【0035】
【表5】
Figure 0003931506
【0036】
【表6】
Figure 0003931506
【0037】
【発明の効果】
本発明の製造方法によれば、最終のpHに依存することのない、より汎用性の高い高固形分、低粘度の粒径分布の広い水性樹脂エマルジョンを容易に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for producing an aqueous resin emulsion having a wide particle size distribution, and the aqueous resin emulsion can be used in technical fields such as paints and adhesives.
[0002]
[Prior art]
In recent years, from the viewpoint of reducing environmental burden and improving safety and hygiene, paints, pressure-sensitive adhesives, and the like are becoming more water-based, and a conventional organic solvent-based resin is shifting to an aqueous resin emulsion. One of the means for improving the performance and cost merit of this aqueous resin emulsion is high solid differentiation. By using a high solid content, it is possible to speed up the initial drying and improve the physical properties of the coating film, and at the same time, it is possible to reduce the cost of utility and transportation during drying. However, it is necessary to lower the viscosity of the aqueous resin emulsion to some extent in consideration of handling during production and coating. In response to this, various methods have been proposed for obtaining an aqueous resin emulsion having a high solid content and a low viscosity. However, none of these methods is satisfactory because the viscosity is not so low.
[0003]
For example, in Japanese Patent Publication No. 5-86402, there is an example in which an aqueous resin emulsion having a solid content of 70% by weight and a viscosity of 450 mPa · s is obtained, but all are properties of an unneutralized emulsion. In general, aqueous resin emulsions for paints, especially paints, are often used in the vicinity of neutral pH, and in the above, it can be easily assumed that the viscosity is considerably increased by alkali neutralization. Japanese Patent No. 2509224 also describes that an aqueous resin emulsion having a solid content of 68.5% by weight and a viscosity of 2400 mPa · s can be obtained. However, this is a property at a pH of 4.0. Viscosity can be easily inferred.
[0004]
[Problems to be solved by the invention]
As described above, the high solid content and low viscosity aqueous resin emulsion obtained by the previously proposed method is substantially limited in pH to the acidic side, and is often used near neutral. It is difficult to use for use. Accordingly, an object of the present invention is to provide a production method for obtaining an aqueous resin emulsion having a wide particle size distribution that achieves a high solid content and a low viscosity without depending on the final pH.
[0005]
[Means for Solving the Problems]
As a result of extensive research, the present inventors conducted the first stage emulsion polymerization of a radical polymerizable monomer in the presence of an emulsifier in an aqueous medium, and the volume average particle size of the polymer particles was 0. After obtaining an aqueous resin emulsion of more than 0.5 μm and not more than 1.0 μm, an emulsifier and a radical polymerizable monomer are added to this to perform the second stage emulsion polymerization, and by the first stage emulsion polymerization A method for producing an aqueous resin emulsion for obtaining an aqueous resin emulsion having a volume average particle size smaller than that of the obtained polymer particles , wherein the amount of emulsifier in the first stage emulsion polymerization is the radical polymerizability used in the first stage. 0.3 to 1.0 part by weight with respect to 100 parts by weight of the monomer, and the amount of the emulsifier in the second stage emulsion polymerization is based on 100 parts by weight of the radical polymerizable monomer used in the second stage. 1.7 to 3.0 parts by weight, and in the second stage emulsion polymerization, A volume average particle diameter of 0.4~0.7Myuemu, volume average particle diameter (D v) and number average particle diameter of (D n) ratio (D v / D n) is 1.1 to 5.0 By performing the two-stage emulsion polymerization method of obtaining an aqueous resin emulsion, it becomes possible to widen the particle size distribution, and it has been found that high solid content and low viscosity can be achieved without depending on the final pH, and the present invention is completed. It came to do.
[0006]
That is, the present invention
1. An aqueous resin emulsion in which the first stage emulsion polymerization of a radically polymerizable monomer is carried out in the presence of an emulsifier in an aqueous medium, and the volume average particle size of the polymer particles exceeds 0.5 μm and is 1.0 μm or less. After that, an emulsifier and a radical polymerizable monomer are added to perform the second stage emulsion polymerization, and an aqueous resin having a volume average particle size smaller than the polymer particles obtained by the first stage emulsion polymerization A method for producing an aqueous resin emulsion for obtaining an emulsion, wherein the amount of emulsifier in the first stage emulsion polymerization is 0.3 to 1.0 with respect to 100 parts by weight of the radical polymerizable monomer used in the first stage. Part by weight, the amount of the emulsifier in the second stage emulsion polymerization is 1.7 to 3.0 parts by weight with respect to 100 parts by weight of the radical polymerizable monomer used in the second stage, and In the second stage emulsion polymerization, the volume average particle size is 0.4 to 0.7 μm, and the volume Hitoshitsubu径(D v) and the ratio of the number average particle diameter (D n) (D v / D n) is equal to or to obtain an aqueous resin emulsion 1.1 to 5.0, production of the aqueous resin emulsion Method,
[0007]
And 2. Ratio (W 1 / W 2 ) of radical polymerizable monomer weight (W 1 ) in the first stage emulsion polymerization and radical polymerizable monomer weight (W 2 ) in the second stage emulsion polymerization Is intended to provide a method for producing an aqueous resin emulsion as described in 1 above, wherein the ratio is 40/60 to 90/10.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The radical polymerizable monomer used in the present invention is not particularly limited as long as it is generally used for emulsion polymerization. For example, acrylic esters such as methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate; methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, Methacrylic acid esters such as isobutyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate; crotonic acid esters such as methyl crotonate and ethyl crotonate;
[0011]
Carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, mono n-butyl maleate, mono n-butyl fumarate, mono n-butyl itaconic acid, crotonic acid; vinyl acetate Vinyl esters such as vinyl propionate, etc .; vinyl esters such as tertiary vinyl carboxylate; aromatic vinyl compounds such as styrene, vinyltoluene and α-methylstyrene; heterocyclic vinyl compounds such as vinylpyrrolidone; vinyl chloride, vinylidene chloride, Halogenated olefins such as vinylidene fluoride; cyano group-containing monomers such as acrylonitrile and methacrylonitrile; vinyl ethers such as ethyl vinyl ether and isobutyl vinyl ether; vinyl ketones such as methyl vinyl ketone;
[0012]
Α-olefins such as ethylene and propylene; dienes such as butadiene and isoprene; amide group-containing monomers such as acrylamide, methacrylamide, maleic acid amide, N-methylolacrylamide, N-methylolmethacrylamide, and diacetoneacrylamide Glycidyl group-containing monomers such as glycidyl methacrylate and allyl glycidyl ether; hydroxyl group-containing monomers such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate; dimethylaminoethyl methacrylate; Amino group-containing monomers such as diethylaminoethyl methacrylate;
[0013]
Vinyl-methyldimethoxysilane, vinyl-trimethoxysilane, vinyl-tris (β-methoxyethoxy) silane, 3- (meth) acryloxypropyl-trimethoxysilane, 3- (meth) acryloxypropyl-methyldimethoxysilane, 3 -Alkoxysilyl group-containing monomers such as (meth) acryloxypropyl-triethoxysilane, 3- (meth) acryloxypropyl-methyldiethoxysilane; diallyl phthalate, divinylbenzene, allyl acrylate, trimethylolpropane Examples thereof include monomers having two or more unsaturated bonds in one molecule such as trimethacrylate.
[0014]
As the emulsifier used in the present invention, any anionic, cationic and nonionic emulsifier can be used without particular limitation as long as it is generally used for emulsion polymerization. Of these, only typical ones are exemplified. First, as anionic emulsifiers, higher alcohol sulfates, alkylbenzene sulfonates, polyoxyalkylene alkylphenyl ether sulfates, dialkyl succinate sulfones are used. And nonionic emulsifiers include polyoxyalkylene alkyl ethers and polyoxyalkylene alkylphenyl ethers, and one or a mixture of two or more thereof is used. be able to
[0015]
In the present invention, a radical polymerization initiator can be used in the emulsion polymerization of the radical polymerizable monomer. The radical polymerization initiator used here is not particularly limited, but only typical ones among them are exemplified as potassium persulfate, sodium persulfate, ammonium persulfate, azobis. Examples include isobutyronitrile or its hydrochloride, hydrogen peroxide, tertiary butyl hydroperoxide, cumene hydroperoxide, and benzoyl peroxide.
[0016]
In addition, a reducing agent can be used in combination with the radical polymerization initiator as described above. Examples of the reducing agent that can be used in this case include sodium sulfooxylate formaldehyde, sodium pyrosulfite, L-ascorbic acid, and the like.
[0017]
In the present invention, the amount of the emulsifier in the first stage emulsion polymerization is used in the first stage because polymer particles having a volume average particle diameter exceeding 0.5 μm can be easily obtained. It exists in the range used as 0.3-1.0 weight part with respect to 100 weight part of radically polymerizable monomers . The amount of the emulsifier in the second stage emulsion polymerization is an aqueous resin emulsion having a wide particle size distribution , and a coating having excellent durability is obtained. It is within a range of 1.7 to 3.0 parts by weight with respect to 100 parts by weight of the monomer.
[0018]
Furthermore, the amount of the radical polymerizable monomer used is that an aqueous resin emulsion having a wide particle size distribution can be obtained, so that the radical polymerizable monomer weight (W1) in the first stage emulsion polymerization and the second The ratio (W1 / W2) of the radically polymerizable monomer weight (W2) in the emulsion polymerization at the stage is preferably in the range of 40/60 to 90/10, and in particular, 50/50 to 90/10. Within the range is particularly preferable.
[0019]
Of the production methods according to the present invention, only typical ones are exemplified, and the following methods are exemplified, and these are particularly desirable methods.
[0020]
That is, the radical polymerizable monomer used for the first stage emulsion polymerization is added to ion-exchanged water in which 0.3 to 1.0 parts by weight of an emulsifier is dissolved with respect to 100 parts by weight of the monomer, A pre-emulsion (1) used for the first stage emulsion polymerization is obtained. Furthermore, a radically polymerizable monomer separately used for the second stage emulsion polymerization is added to ion-exchanged water in which 1.7 to 3.0 parts by weight of an emulsifier is dissolved with respect to 100 parts by weight of the monomer. The pre-emulsion (2) used for the second stage emulsion polymerization is obtained.
[0021]
Thereafter, ion exchange water is charged into the reaction vessel, and the temperature in the vessel is raised to 80 ° C. After the temperature rise, a part of the pre-emulsion (1) is charged, and then a part of the radical polymerization initiator is added and stirred for 20 to 30 minutes. Then, a part of radical polymerization initiator is added and the remainder of pre-emulsion (1) is dripped in 2 to 4 hours. The mixture is stirred for 30 minutes to 1 hour after the completion of dropping. By this first stage emulsion polymerization, an aqueous resin emulsion having a volume average particle diameter of more than 0.5 μm and 1.0 μm or less, preferably 0.55 to 0.85 μm is obtained.
[0022]
Furthermore, the remainder of the radical polymerization initiator is added, and the pre-emulsion (2) is added dropwise in 2 to 4 hours to perform the second stage emulsion polymerization. As a result, an aqueous resin emulsion having a volume average particle size smaller than that of the polymer particles obtained by the first stage emulsion polymerization and having a wide particle size distribution, for example, a volume average particle size of 0.4 to 0.7 μm, preferably Is 0.4 to 0.6 μm, and an aqueous resin emulsion having a volume average particle size (Dv) to number average particle size (Dn) ratio (Dv / Dn) of 1.1 to 5.0 is obtained.
[0023]
The aqueous resin emulsion having a wide particle size distribution obtained by the production method of the present invention and having a high concentration and low viscosity is useful as a binder excellent in quick drying properties, weather resistance, water resistance, and cost merit for paints, adhesives, etc. .
[0024]
【Example】
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited only to the following examples. The following parts and% are values based on weight.
[0025]
Example 1
125 parts of 2-ethylhexyl acrylate (hereinafter abbreviated as 2EHA), 29.5 parts of methyl methacrylate (hereinafter abbreviated as MMA), and 90 parts of styrene (hereinafter abbreviated as St). And 5 parts of methacrylic acid (hereinafter abbreviated as MAA) and 0.5 part of A-174 (Nihon Unicar 3-methacryloxypropyl-trimethoxysilane, active ingredient = 100%). 4 parts of Lebenol WZ (Kao polyoxyethylene nonylphenyl ether sodium sulfate, active ingredient = 26%) and aerosol OT75 (Mitsui Cytec dioctyl sulfosuccinate sodium sulfate, active ingredient = 75%) 0.5 Part and 0.5 part of Neugen EA130T (Daiichi Kogyo Seiyaku Co., Ltd., polyoxyethylene nonylphenyl ether, active ingredient = 100%) In addition to 60 parts of elaborate However deionized water to obtain a pre-emulsion (1) used in the emulsion polymerization of the first stage.
[0026]
Further, a monomer mixture composed of 95 parts of 2EHA, 149.5 parts of MMA, 5 parts of MAA, and 0.5 part of A-174 is added to 60 parts of ion-exchanged water in which 20 parts of Lebenol WZ is dissolved. A pre-emulsion (2) used for the emulsion polymerization of the second stage was obtained.
[0027]
Thereafter, 118 parts of ion exchange water was charged into a 1 liter reaction vessel equipped with a stirrer, a thermometer, a cooler, and a dropping funnel, and the temperature in the kettle was raised to 80 ° C. while stirring while feeding nitrogen gas. After the temperature rise, 2% of pre-emulsion (1) was charged, and then 20% of an ammonium persulfate aqueous solution in which 3 parts of ammonium persulfate was dissolved in 50 parts of ion-exchanged water was added and stirred at 80 ° C. for 20 minutes. Thereafter, 50% of the aqueous ammonium persulfate solution was added, and the remaining 98% of the pre-emulsion (1) was added dropwise over 2 hours. After completion of dropping, the mixture was stirred at 80 ° C. for 30 minutes. By this first stage emulsion polymerization, an aqueous resin emulsion having a volume average particle size of 0.65 μm was obtained.
[0028]
Further, the remaining 30% of the ammonium persulfate aqueous solution was added, and the pre-emulsion (2) was added dropwise over 2 hours to perform the second stage emulsion polymerization. After completion of the dropwise addition, stirring was further continued at 80 ° C. for 1 hour to complete the reaction. Then, it cooled to 25 degreeC and neutralized with aqueous ammonia, and obtained the target aqueous resin emulsion.
[0029]
This aqueous resin emulsion exhibited the following properties.
Solid content: 62.0%, viscosity: 380 mPa · s, pH: 7.2, volume average particle size: 0.49 μm, particle size distribution [ratio of volume average particle size (Dv) to number average particle size (Dn) (Dv / Dn)]: 3.3. For measurement of the particle size, “MODEL: 9340-UPA” manufactured by Microtrack Co., Ltd. was used.
[0030]
Examples 2-3 and Comparative Examples 1-5
As shown in Tables (1) to (2), Tables (1) to (2) and Tables (1) to (2), ion-exchanged water, monomers and emulsifiers to be initially charged Except for the change, two-stage emulsion polymerization was carried out in the same manner as in Example 1 to obtain an aqueous resin emulsion. The properties of each aqueous resin emulsion, that is, the volume average particle size, particle size distribution, solid content, viscosity, and pH are shown in each table.
[0031]
[Table 1]
Figure 0003931506
[0032]
[Table 2]
Figure 0003931506
[0033]
[Table 3]
Figure 0003931506
[0034]
[Table 4]
Figure 0003931506
[0035]
[Table 5]
Figure 0003931506
[0036]
[Table 6]
Figure 0003931506
[0037]
【The invention's effect】
According to the production method of the present invention, it is possible to easily obtain an aqueous resin emulsion having a high solid content and a low viscosity and a wide particle size distribution, which does not depend on the final pH.

Claims (2)

水性媒体中で乳化剤の存在下にラジカル重合性単量体の第1段目の乳化重合を行って、重合体粒子の体積平均粒径が0.5μmを超え、1.0μm以下の水性樹脂エマルジョンを得た後、乳化剤とラジカル重合性単量体を加えて第2段目の乳化重合を行い、第1段目の乳化重合により得られた重合体粒子よりも体積平均粒径が小さい水性樹脂エマルジョンを得る水性樹脂エマルジョンの製造方法であって、第1段目の乳化重合での乳化剤量が第1段目で用いるラジカル重合性単量体100重量部に対して0.3〜1.0重量部であり、第2段目の乳化重合での乳化剤量が第2段目で用いるラジカル重合性単量体100重量部に対して1.7〜3.0重量部であり、かつ、第2段目の乳化重合で、体積平均粒径が0.4〜0.7μmであり、体積平均粒径(D v )と数平均粒径(D n )の比(D v /D n )が1.1〜5.0の水性樹脂エマルジョンを得ることを特徴とする、水性樹脂エマルジョンの製造方法。 An aqueous resin emulsion in which the first stage emulsion polymerization of a radically polymerizable monomer is carried out in the presence of an emulsifier in an aqueous medium, and the volume average particle size of the polymer particles exceeds 0.5 μm and is 1.0 μm or less. After that, an emulsifier and a radical polymerizable monomer are added to perform the second stage emulsion polymerization, and an aqueous resin having a volume average particle size smaller than the polymer particles obtained by the first stage emulsion polymerization A method for producing an aqueous resin emulsion for obtaining an emulsion, wherein the amount of emulsifier in the first stage emulsion polymerization is 0.3 to 1.0 with respect to 100 parts by weight of the radical polymerizable monomer used in the first stage. Part by weight, the amount of the emulsifier in the second stage emulsion polymerization is 1.7 to 3.0 parts by weight with respect to 100 parts by weight of the radical polymerizable monomer used in the second stage, and In the second stage emulsion polymerization, the volume average particle size is 0.4 to 0.7 μm, and the volume Hitoshitsubu径(D v) and the ratio of the number average particle diameter (D n) (D v / D n) is equal to or to obtain an aqueous resin emulsion 1.1 to 5.0, production of the aqueous resin emulsion Method. 第1段目の乳化重合でのラジカル重合性単量体重量(W1)と第2段目の乳化重合でのラジカル重合性単量体重量(W2)の比(W1/W2)が、40/60〜90/10である、請求項1記載の水性樹脂エマルジョンの製造方法。The ratio (W1 / W2) of the radical polymerizable monomer weight (W1) in the first stage emulsion polymerization to the radical polymerizable monomer weight (W2) in the second stage emulsion polymerization is 40 / The manufacturing method of the aqueous resin emulsion of Claim 1 which is 60-90 / 10.
JP32671799A 1999-11-17 1999-11-17 Method for producing aqueous resin emulsion Expired - Fee Related JP3931506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32671799A JP3931506B2 (en) 1999-11-17 1999-11-17 Method for producing aqueous resin emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32671799A JP3931506B2 (en) 1999-11-17 1999-11-17 Method for producing aqueous resin emulsion

Publications (2)

Publication Number Publication Date
JP2001139610A JP2001139610A (en) 2001-05-22
JP3931506B2 true JP3931506B2 (en) 2007-06-20

Family

ID=18190899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32671799A Expired - Fee Related JP3931506B2 (en) 1999-11-17 1999-11-17 Method for producing aqueous resin emulsion

Country Status (1)

Country Link
JP (1) JP3931506B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10654962B2 (en) 2012-09-07 2020-05-19 Mitsubishi Chemical Corporation Acrylic film, method for producing same, laminate film, laminated injection molded article, and method for producing rubber-containing polymer
CN110982029B (en) * 2019-11-21 2022-04-22 万华化学集团股份有限公司 Waterborne polyurethane resin emulsion for waterborne space leather base and preparation method thereof, waterborne space leather base and preparation method thereof

Also Published As

Publication number Publication date
JP2001139610A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
CA2825946C (en) Polymer encapsulated titanium dioxide particles
JPH01213371A (en) Aqueous coating composition having sweeping mechanism of anionic seed
JP3931506B2 (en) Method for producing aqueous resin emulsion
EP2935142B1 (en) Use of hybrid copolymers as protective colloids for polymers
JP4849753B2 (en) Method for producing acrylic emulsion
JP2004156025A (en) Aqueous resin dispersion, aqueous resin composition and method for producing aqueous resin composition
JP2001240633A (en) New copolymer
JP3630936B2 (en) Method for producing complex emulsion
JP4272305B2 (en) Aqueous resin dispersion
JP3992826B2 (en) Redispersible acrylic emulsion powder and method for producing the same
JP4070017B2 (en) Aqueous resin dispersion and method for producing the same
JP4026788B2 (en) Redispersible acrylic emulsion powder and method for producing the same
JP4049882B2 (en) Redispersible acrylic emulsion powder and method for producing the same
JPH06199917A (en) Water dispersion composition
JPH10120709A (en) Control over carboxyl group concentration of emulsion particle
JPH11116850A (en) Aqueous dispersion-type resin composition and its production
JPS6351478A (en) Coating film material for preventing blocking
JP4244733B2 (en) Aqueous resin composition for nonwoven fabric binder for vehicle carpet
JPH10245537A (en) Adhesive composition
CN118290648A (en) Preparation method and application of acrylate emulsion for water-based strippable coating
JPH06172408A (en) Production of emulsion having super water resistance
JP2554430B2 (en) Method for producing aqueous resin dispersion
JPWO2023276867A5 (en)
JP2011252174A (en) Production method for acrylic emulsion
JPS6011503A (en) Water-dispersed resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees