JP3929711B2 - Installation method of solar cell module for roof - Google Patents

Installation method of solar cell module for roof Download PDF

Info

Publication number
JP3929711B2
JP3929711B2 JP2001052877A JP2001052877A JP3929711B2 JP 3929711 B2 JP3929711 B2 JP 3929711B2 JP 2001052877 A JP2001052877 A JP 2001052877A JP 2001052877 A JP2001052877 A JP 2001052877A JP 3929711 B2 JP3929711 B2 JP 3929711B2
Authority
JP
Japan
Prior art keywords
solar cell
cell module
backing plate
metal backing
roof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001052877A
Other languages
Japanese (ja)
Other versions
JP2002256664A (en
Inventor
健治 邑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001052877A priority Critical patent/JP3929711B2/en
Publication of JP2002256664A publication Critical patent/JP2002256664A/en
Application granted granted Critical
Publication of JP3929711B2 publication Critical patent/JP3929711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/40Arrangement of stationary mountings or supports for solar heat collector modules using plate-like mounting elements, e.g. profiled or corrugated plates; Plate-like module frames 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/13Overlaying arrangements similar to roof tiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、屋根上葺き材として用いられる屋根用太陽電池モジュールの設置方法に関する。
【0002】
【従来の技術】
太陽光エネルギーを利用する典型例である太陽光発電が一般の住居にも採用されるほどに発展、普及しつつある今日、用地の問題を解消するために、屋根を太陽電池で上葺きする方法が採用されている。太陽電池で屋根を上葺きする方法としては、所定の外形形状及び外形寸法を備える建材一体型の太陽電池モジュールを上葺き材として屋根を葺く方法が提案されている(特開平2000−54879号公報参照)。
【0003】
図5の断面図に示すように、従来の太陽電池モジュール10は、ガラスからなる表面基板に直接形成、或いは面一状に表面基板に配設された多数の太陽電池素子を有する太陽電池11と、この太陽電池11の裏面側に貼り付けられる金属裏当て板12とを備える。これら太陽電池11と金属裏当て板12との間には、例えばエチレンビニルアセテート(EVA)などの接着剤が充填されて一体化され、太陽電池11の周縁部と金属裏当て板12との間にシリコーン樹脂やブチルゴムなどのシール材13を挟み、両者の間に水や塵埃が侵入しないようにしてある。
【0004】
図6の斜視図に示すように、金属裏当て板12の棟側端部12aは太陽電池11の棟側端面11aよりも棟側に延出され、この棟側端部12aを予め設計された形状に折り曲げて屋根の棟や棟側の太陽電池モジュール10などに係合するための棟側係合部12bが形成される。
【0005】
又、金属裏当て板12の軒側端部12cは該太陽電池モジュール10の表面側に逆溝型に折上げられ、この軒側端部12cに太陽電池11の軒側端面11bがシール材13を挟んで受止められるようにしている。そして、この金属裏当て板12の軒側端部12cの下端縁を棟側に倒レ字形に折り曲げて軒側の太陽電池モジュール10に係合するための軒側係合部12dが形成される。
【0006】
前記金属裏当て板12の軒側端部12cの表面12eと太陽電池11の表面11cとは、当該太陽電池モジュール10の上側に雨水などの水分が溜まらないようにするために、ほぼ面一に位置させてあり、又、前記金属裏当て板12の軒側端部12cを所定の高さ(水下外側高さ)h1に形成して、棟側と軒側とに並ぶ太陽電池モジュール10の軒側係合部12dと棟側係合部12bとを係合させると、棟側と軒側の太陽電池モジュール10の表面間に所定の高さの段差H1が形成されるようにしている。
【0007】
なお、前記太陽電池11の出力を取出すための端子ボックス14は例えば金属裏当て板12の棟側端部12aに搭載される。
【0008】
前記太陽電池モジュール10の太陽電池11は、結晶系シリコン、非晶質シリコンなどからなる多数の太陽電池素子(光電気変換素子)とこれらを接続するリード線とを樹脂層の内部に封止したものであり、この樹脂層の表面を覆うガラス、合成樹脂などからなる表面側透明板を備えるものも含まれる。
【0009】
又、前記金属裏当て板12を構成する金属は、特に限定されず、例えば鉄、鋼、アルミニウム合金、銅、真鍮など従来から屋根の下葺きや上葺きに使用されている金属を用いればよく、これらの金属の中では、耐久性という観点からは、ステンレス鋼などの不銹性金属や、例えばめっき、塗装、アルマイト処理などの防錆処理を施した不銹性金属を含む金属が用いられ、耐熱性という観点からは鉄やステンレス鋼を含む鋼が多用され、軽量化という観点からはアルミニウム合金が多用されている。
【0010】
又、前記シール材13としては、太陽電池11と金属裏当て板12との間への水分や塵埃の侵入を防止できるものであれば特に限定されない。しかしながら、シール材13としては耐久性に優れていることが好ましく、このような観点から、例えばシリコーン樹脂、ブチルゴムなどの耐熱性、耐候性、耐薬品性、耐酸性などに優れ、かつ、長期間にわたって適当な弾性を備える素材からなるシール材13が多用されている。
【0011】
なお、このシール材13は必要に応じて太陽電池11と金属裏当て板12との一方または両方に接着される。
【0012】
このシール材13とともに、又は、このシール材13に代えて太陽電池11と金属裏当て板12との間に接着剤を充填する場合、この接着剤としては、太陽熱により太陽電池モジュール10が加熱される温度、例えば140℃以下で所定の接着力を発揮する接着剤であれば特に限定されず、熱可塑性樹脂を主成分とする接着剤を用いても、熱硬化性樹脂を主成分とする接着剤を用いてもよい。
【0013】
又、この接着剤としては、液状のものを用いてもよいが、取扱が容易なシート状に形成された接着剤、例えば熱硬化性樹脂を主成分とする半硬化状態の接着剤をシート状に形成したプリプレグを用いることが好ましい。
【0014】
ところで、上述したように、従来の太陽電池モジュール10では、当該太陽電池モジュール10の上側に雨水などの水分が溜まらないようにするため、前記金属裏当て板12の軒側端部12cの表面12eと太陽電池11の表面11cとは、ほぼ面一に位置させてあるので、降雪時に各太陽電池モジュール10の上に降った雪がある程度その表面に積もると、雪が自重で屋根の表面を滑り落ちる。そして、屋根の流れが長く、屋根を滑り落ちる雪の量がかなり多くなると、軒下の物が破壊されたり、軒下に居合わせた人が負傷したり、生き埋めになったりするという重大な結果を招くことになる。
【0015】
この問題を解決するために、従来では太陽電池モジュール10とは別に雪止め金具を作り、太陽電池モジュール10の表側にこの雪止め金具の一部分が突出するように、この雪止め金具を例えば金属裏当て板12の軒側端部12cに小ネジ、リベット、接着、溶接などにより固定し、太陽電池モジュール10の表面から突き出た雪止め金具の一部分で積雪の屋根流れ方向の重量を受止めることにより、積雪の滑落を防止する方法が採用されている。
【0016】
又、太陽電池モジュール10を屋根の一部分に設置し、屋根の他の部分に雪止めを設けて屋根から積雪が滑落することを防止する方法も試みられている。
【0017】
【発明が解決しようとする課題】
しかし、別途に製造した雪止め金具を太陽電池モジュール10に取りつける従来方法では、太陽電池モジュール10の他に雪止め金具を製造し、太陽電池モジュール10に固定する必要があるので、製造工程ないし施工方法が複雑になり、コストダウンを図る上で不利になる上、太陽電池モジュール10から突出する雪止め金具の部分が太陽電池モジュール10に影を落し、発電量を減少させるという問題があることが分った。
【0018】
また、太陽電池モジュール10を屋根の一部分に設置し、その他の部分に雪止めを設置する従来方法によれば、太陽電池モジュール10の上に影を落さないように雪止めを設置することができる反面、雪止めが影を落す領域以上に広い領域にわたって太陽電池モジュール10が設置されないので、発電量が一層大幅に減少する。
【0019】
本発明は、かかる従来技術の課題を解消し、雪止め機能を有する太陽電池モジュールを提供し、この太陽電池モジュールの好適な設置方法を提供することとを目的とする。
【0020】
【課題を解決するための手段】
本発明に係る屋根用太陽電池モジュールの設置方法は、太陽電池と、この太陽電池の裏面に配置される金属裏当て板とを備える第1の屋根用太陽電池モジュールと、太陽電池と、この太陽電池の裏面に配置される金属裏当て板と、前記金属裏当て板の一部と連接し、前記太陽電池の表面よりも表側に突出した雪止め用突出部とを備える第2の屋根用太陽電池モジュールと、を備え、前記第1、第2の太陽電池モジュールの前記金属裏当て板の軒側端部は同じ高さに形成され、前記第2の太陽電池モジュールの金属裏当て板の軒側端部は、太陽電池の軒側端部が前記金属裏当て板の軒側端部表面より裏面側に控えて配置できるように形成され、前記太陽電池の軒側端部をこの金属裏当て板の表面より軒側端部裏面側に控えて配置されてなり、前記第1の太陽電池モジュールと前記第2の太陽電池モジュールを混用して屋根流れ方向に並べて葺き、前記第2の太陽電池モジュールの表面とこれの軒側に係合される前記第1の太陽電池モジュールの表面との間に形成される段差が、前記第2の太陽電池モジュールの表面とこれの棟側に係合される前記第1の太陽電池モジュールの表面と間に形成される段差と同じ高さになるように設置されることを特徴とする
【0021】
このように構成された本発明の太陽電池モジュールを葺き上げた屋根に雪が降って積もると、屋根の流れ方向に作用する積雪の荷重が突出部に受止められて、積雪の滑落が防止される。
【0022】
ここで、本発明の太陽電池モジュールにおいて、突出部を設ける位置は特に限定されず、例えば太陽電池の表面に突出部を配置しても、金属裏当て板の棟側端部に突出部を配置しても、金属裏当て板の軒側端部に突出部を配置してもよい。
【0025】
前記突出部として金属裏当て板の一部分を折り曲げて突出部を形成することができ、この場合には、金属裏当て板の板取寸法を若干大きくし、必要に応じて折り曲げ位置を増加させたり、折り曲げ位置を変更したりするだけで材料コストや加工コストをほとんど増加させずに、簡単に突出部を形成することができる。
【0026】
特に、太陽電池よりも軒側に延出された金属裏当て板の軒側部分の折曲げ位置を変更して突出部を形成する場合には、金属裏当て板の折り曲げ工数を増加させずに済むので有利である。
【0027】
又、この場合に、金属裏当て板の軒側端部の高さを従来の太陽電池モジュールの軒側端部の高さよりも高く形成してもよいが、太陽電池モジュールの影が従来のものよりも大きくならず、又、材料コストの増加を少なくするために、前記金属裏当て板の軒側端部の高さ(水下外側高さ)を従来の屋根用太陽電池モジュールのそれと同じ高さにし、太陽電池の軒側端部をこの金属裏当て板の表面より裏面側に控えて配置できるように折り曲げて、太陽電池の軒側端部をこの金属裏当て板の表面より裏面側に控えて配置することにより、前記金属裏当て板の軒側端部を太陽電池の表面に対して表側に突出させ、この太陽電池の表面より表側に突出する金属裏当て板の軒側端部の部分で前記突出部を構成することが推奨される。
【0028】
ところで、この突出部の突出高さを具体的にどの程度の高さにするかということは本発明を実施する上で重要であると思われる。そこで、突出部の高さ(水下内側高さ)h3が5mm〜30mmの間で5mmごとに異なる複数種類の本発明の太陽電池モジュールを試作し、更に、各種類ごとに太陽電池モジュールが屋根の流れ方向に1メートル間隔で設置され、屋根勾配を異ならせた複数種類の屋根上葺き構造を試作し、試作された各屋根上葺き構造の上に雪を載せ、突出部の高さごとに各積雪深度に対して積雪が滑落しない屋根勾配を求め、表1に示す結果を得た。
【0029】
【表1】

Figure 0003929711
【0030】
表1に示す結果より、突出部のない従来の太陽電池モジュール(従来例)については、積雪深度50cm、80cm、100cm、150cmにおいて屋根勾配2寸でも積雪の滑落が生じるのに対して、本発明の太陽電池モジュール(実施例)によれば、積雪量50cmでは、突出部の高さ(水下内側高さ)h3が5mm以上であれば屋根勾配2寸以上の屋根に対して雪止め効果が得られることが分った。なお、ここで、2寸勾配とは、水平方向10に対して垂直方向2の勾配を意味する。
【0031】
また、1メートル間隔で5mmということは、突出部のピッチ間隔との関係から考えると、ピッチ間隔に対して0.5%の高さになる。即ち、雪止めの効果は屋根の流れ方向に対する雪止め用突出部の面積であるので、突出部のピッチ間隔に対して0.5%以上の長さであれば効果がある。従って、2メートル間隔の場合は、h3が10mm以上であれば屋根勾配2寸以上の屋根に対して雪止め効果が得られる。
【0032】
又、積雪深度80cmでは、突出部の高さh3が5mmの実施例では屋根勾配2寸未満でも積雪の滑落が生じるが、突出部の高さh3が10mm以上(10以上)の実施例では屋根勾配2.5寸以上の屋根でも雪止め効果が得られることも分った。
【0033】
更に、積雪深度100cmでは、突出部の高さh3が5mmでは屋根勾配2寸未満でも積雪の滑落が生じるが、10mm以上になれば屋根勾配2寸以上の屋根でも雪止め効果が得られることが分った。
【0034】
積雪深度150cmでは、突出部の高さh3が10mmでも屋根勾配2寸未満で積雪の滑落が生じるが、15mm以上(15%以上)になれば屋根勾配2.5寸以上の屋根でも雪止め効果が得られることが分った。
【0035】
そして、何れの積雪深度においても、突出部の高さが高くなるほど急勾配の屋根に対しても雪止め効果が得られることが分った。
【0036】
なお、突出部による雪止め効果は、各突出部が受止める屋根流れ方向の積雪荷重が一定値(積雪層がせん断破壊される値)以下であれば発揮されると推断されるので、本発明の太陽電池モジュールの屋根流れ方向の設置間隔を狭くすると雪止め効果がより顕著になる。
【0037】
即ち、本発明の太陽電池モジュールの屋根流れ方向の設置間隔を狭くすると、同じ積雪深度においては、同じ高さの突出部でより急勾配の屋根の雪止めができ、又は、高さの低い突出部で同じ屋根勾配の雪止めができる。
【0038】
観点を変えると、本発明の太陽電池モジュールの屋根流れ方向の設置間隔を狭くすると、同じ屋根勾配に対しては、同じ高さの突出部でより深い積雪に対する雪止めができ、又は、同じ積雪深度の積雪を高さの低い突出部で雪止めできるようになる。
【0039】
更に観点を変えると、本発明の太陽電池モジュールの屋根流れ方向の設置間隔を狭くすると、同じ積雪深度と同じ屋根勾配に対して高さが低い突出部で雪止めができるようになる。
【0040】
ところで、本発明の太陽電池モジュールにおいては、前記太陽電池の表面に降った雨水、融雪水、融霜水、結露水などの水分や塵埃が屋根の流れに沿って自然に落下したり、箒などを用いて掃き出されたりする時には前記突出部が妨げになるという問題がある。
【0041】
それ故に、本発明の太陽電池モジュールにおいては、この問題を解決するために、前記突出部に、該突出部を屋根流れ方向に貫通する排出溝又は排出孔を形成することが推奨される。
【0042】
この排出溝の断面形状は、突出部の表面に開放された溝形であれば、とくに限定されず、たとえば角溝形、V字溝形、U字溝形、蟻溝形、T字溝形などの任意の溝形状を選択すればよく、又、その溝底は、水や塵埃の排出効率を高めるために、太陽電池の表面、或いは太陽電池の表面よりも裏面側に位置させることが好ましい。
【0043】
前記排出孔の断面形状は、突出部の表面側に開放されていない形状であれば、特に限定されず、円形、楕円形、三角形、菱形や台形を含む四角形、五角形などの多角形など任意の断面形状を選択することができる。又、この排出孔は、水や塵埃の排出効率を高めるために、下縁が太陽電池の表面、あるいは太陽電池の表面よりも裏面側に位置するように開口させることが好ましい。
【0045】
【発明の実施の形態】
本発明の一実施例に係る太陽電池モジュールを図面に基づいて具体的に説明すれば、以下の通りである。
【0046】
図1は本発明の一実施例に係る太陽電池モジュールを用いた屋根上葺き構造の断面図であり、この屋根上葺き構造は、例えば2寸勾配の野地板の上に設置される。
【0047】
この屋根上葺き構造は、棟側から軒側に従来の太陽電池モジュール10と本発明の一実施例に係る太陽電池モジュールMとを交互に並べ、順次係合したものであり、各太陽電池モジュール10、Mの屋根流れ方向の呼び寸法Lを500mmとして、屋根流れ方向に約1m間隔で本発明の一実施例に係る太陽電池モジュールMが配置されるようにしている。
【0048】
ところで、本発明の一実施例に係る太陽電池モジュールMは、大部分において従来の太陽電池モジュール10と同様に構成されている。
【0049】
即ち、太陽電池1とこれの裏面を覆う金属裏当て板2とを備え、これらの間に例えばシリコーン樹脂からなるシール材3を挟んで太陽電池1と金属裏当て板2との間に水分や塵埃が侵入しないようにしている。
【0050】
この太陽電池1は結晶系シリコン、非晶質シリコンなどからなる多数の太陽電池素子(光電気変換素子)とこれらを接続するリード線とを樹脂層の内部に封止したものであり、更にこの樹脂層の表面を覆うガラス、合成樹脂などからなる透明板(表面材とも言う。)を備え、例えばシリコーン樹脂からなるシール材3を挟んでこの太陽電池1の周縁部が金属裏当て板2に接着される。
【0051】
なお、太陽電池素子がアモルファス−シリコン(a−Si)、CdTeなどの薄膜系太陽電池素子の場合には太陽電池素子が透明板の裏面に直接形成され、その裏面側に樹脂製の保護層が形成される。
【0052】
前記金属裏当て板2は、亜鉛メッキ、ガルバリウムメッキなどの防錆塗装を施した鋼板からなり、その棟側端部2aを太陽電池1の棟側端面1aよりも棟側に延出して予め設計された形状に折り曲げることにより棟側係合部2bが形成され、又、その軒側端部2cは逆角溝形に折上げて、シール材3を介して太陽電池1の軒側端面1bを受止めるようにしている。
【0053】
更に、この金属裏当て板2の軒側端部2cの外側下縁部を棟側に倒レ字形に折り曲げて軒側の太陽電池モジュール10と係合するための軒側係合部2dが形成されている。
【0054】
加えて、太陽電池1が発電した直流電流を取出すための端子ボックス4は前記金属裏当て板2の棟側端部2aに搭載してある。
【0055】
本発明の一実施例に係る太陽電池モジュールMの軒側端部2cの高さ(水下外側高さ)h2は、従来の太陽電池モジュール10の軒側端部12cの高さ(水下外側高さ)h1と同じ高さにしてあり、本発明の太陽電池モジュールMの表面とこれの軒側に係合される従来の太陽電池モジュール10の表面との間に形成される段差H2が、本発明の太陽電池モジュールMの表面とこれの棟側に係合される従来の太陽電池モジュール10の表面と間に形成される段差H1と同じ高さになるようにしている。
【0056】
さて、本発明の一実施例に係る太陽電池モジュールMと従来の太陽電池モジュール10との異なる点は、従来の太陽電池モジュール10では太陽電池11の表面11cが金属裏当て板12の軒側端部12cの表面12eと面一状に配置されるのに対して、図1及び図2の斜視図に示すように、本発明の一実施例に係る太陽電池モジュールMでは、太陽電池1を軒側で下がるように設けられ、軒側端部で太陽電池1の表面1cが金属裏当て板2の軒側端部2cの表面2eよりも水下内側高さh3だけ裏面側に控えて配置されるようにした点にある。
【0057】
この水下内側高さh3は例えば5mm〜30mmとされ、太陽電池1の表面1cよりこの水下内側高さh3だけ表側に突出する軒側端部2cの部分(図2においてハッチングで示す部分)で雪止め機能を有する突出部5が構成される。
【0058】
そして、この雪止め機能を有する高さ5mm〜30mmの突出部5を備えた本発明の一実施例に係る太陽電池モジュールMと、従来の太陽電池モジュール10とを上述したように混用したこの2寸勾配の屋根上葺き構造によれば、前掲の表1に示すように、積雪深度50cm〜150cmの積雪の滑落が防止できるのである。
【0059】
しかも、雪止め機能を備える突出部5が太陽電池モジュールMの一部分で構成されているので、別途に雪止め金具を作成する必要がない上、現地あるいは工場でこの雪止め金具を取りつける作業が不要になり、製造工程が簡単になるとともに、設置現場で本発明の一実施例に係る太陽電池モジュールMと、従来の太陽電池モジュール10とを従来と全く同じ方法で葺き上げればよいので、現地施工が非降雪地帯と同様に簡単になる。
【0060】
又、金属裏当て板2の板取寸法を水下内側寸法だけ大きくし、軒側端部2cの折り曲げ位置を1箇所だけ変更すればよいので、加工費用は全く増加せず、材料費もほとんど増加させずに済む。
【0061】
加えて、金属裏当て板2の軒側端部2cの高さ(水下外側高さ)h2が従来の太陽電池モジュール10の軒側端部12cの高さ(水下外側高さ)h1と同じ高さであるので、金属裏当て板2の軒側端部2cが作る影の大きさが従来の金属裏当て板12の軒側端部12cが作る影の大きさと同じになり、雪止め機能のない屋根と同じ発電量をえることができる。
【0062】
なお、このように太陽電池1の軒側端部を金属裏当て板2の軒側端部2cの表面2eよりも水下内側高さh3だけ裏面側に控えて配置することにより、太陽電池1の傾斜角度は従来の太陽電池モジュール10のそれに比べて0.6°〜3.4°大きく傾斜することになるが、入射する太陽光強度に換算すると0.2%未満となり、出力にはほとんど影響はないといえる。
【0063】
更に、各太陽電池モジュールM、10の出力電圧を高電圧化し、インバータの入力電圧に合わせることで各太陽電池モジュールM、10間の電機接続を全並列とすれば、各太陽電池モジュールM、10に入射する太陽光強度の差による各太陽電池モジュールM、10間の出力にバラツキがあっても、全アレイの出力は各太陽電池モジュールM、10の出力の合計値となるので、システム全体としての出力の低下を防止できる。
【0064】
図3の斜視図に示す本発明の他の実施例に係る太陽電池モジュールMでは、前記突出部5の一部分を角溝形に切欠いた排出溝6が形成され、この排出溝6から太陽電池1上の水分や塵埃を排除できるようにしている。なお、排出溝6の端面はシール材3でシールしている。
【0065】
この排出溝6の溝底は、太陽電池1上の水分や塵埃を残らず排出できるようにするために、太陽電池1の表面よりも裏面側に位置させてある。
【0066】
この実施例のその他の構成、作用ないし効果の詳細な説明は前例のそれらと同様であるので、重複を避けるために省略する。
【0067】
図4の斜視図に示す本発明の又他の実施例に係る太陽電池モジュールMは、図3に示す排出溝6の代りに突出部5を貫通する排出孔7が形成される。この排出孔7の端面も排出溝6と同様にシール材3でシールしている。
【0068】
この排出孔7の作用ないし効果の詳細な説明は前例の排出溝6のそれらと同様であり、又、この実施例のその他の構成、作用ないし効果の詳細な説明は前二例のそれらと同様であるので、重複を避けるために省略する。
【0069】
【発明の効果】
以上に説明したように、本発明の太陽電池モジュールは、太陽電池の表面よりも表側に突出する突出部が設けられるので、この突出部に屋根流れ方向の積雪の重量を受けて積雪の滑落を防止できる作用が得られ、いわゆる、雪止め機能を有する太陽電池モジュールを得ることができる。
【0070】
特に本発明において、前記突出部が、太陽電池の軒側端部を受止める金属裏当て板の一部分を折り曲げることにより形成される場合には、金属裏当て板の板取寸法を若干長くして、必要に応じて軒側端部の折り曲げ位置を増加させたり、変更したりするだけで突出部を形成することができるので材料費をほとんど増加させずに済むという効果を得ることができる。
【0071】
また、この場合に、前記金属裏当て板の軒側端部が従来の屋根用太陽電池モジュールのそれと同じ高さを備え、かつ、太陽電池の軒側端部をこの金属裏当て板の表面より裏面側に控えて配置できるように折り曲げて、太陽電池の軒側端部をこの金属裏当て板の表面より裏面側に控えて配置することにより、軒側端部で前記太陽電池の表面より表側に突出する金属裏当て板の軒側端部で前記突出部が構成されると、折り曲げ加工数を増加させずに済むので加工コストが増加しないという効果が得られる上、金属裏当て板の軒側端部が作る影の大きさが雪止め機能のない従来の太陽電池モジュールのそれと同じ大きさになるので、雪止め機能のない従来の太陽電池モジュールを用いる屋根上葺き構造と同じ発電量を得ることができるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係る屋根上葺き構造の断面図である。
【図2】 本発明に係る屋根上葺き構造の要部の斜視図である。
【図3】 本発明に係る屋根上葺き構造の要部の斜視図である。
【図4】 本発明に係る屋根上葺き構造の要部の斜視図である。
【図5】 従来の屋根上葺き構造の断面図である。
【図6】 従来の屋根上葺き構造の要部の斜視図である。
【符合の説明】
1 太陽電池
1c 太陽電池の表面
2 金属裏当て板
2c 金属裏当て板の軒側端部
2e 軒側端部の表面
5 突出部
6 排出溝
7 排出孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of installing roofing solar cell modules to be used as a roof on a roofing material.
[0002]
[Prior art]
Today, solar power generation, which is a typical example of using solar energy, has been developed and spread so that it can be used in ordinary houses. Is adopted. As a method of roofing a roof with a solar cell, a method has been proposed in which a roof is built using a building material integrated solar cell module having a predetermined outer shape and dimensions (Japanese Patent Laid-Open No. 2000-54879). See the official gazette).
[0003]
As shown in the cross-sectional view of FIG. 5, the conventional solar cell module 10 includes a solar cell 11 having a large number of solar cell elements formed directly on a surface substrate made of glass or arranged on the surface substrate in a flush manner. The metal backing plate 12 is attached to the back side of the solar cell 11. Between these solar cells 11 and the metal backing plate 12, for example, an adhesive such as ethylene vinyl acetate (EVA) is filled and integrated, and between the peripheral portion of the solar cell 11 and the metal backing plate 12. A sealing material 13 such as silicone resin or butyl rubber is sandwiched between them so that water and dust do not enter between them.
[0004]
As shown in the perspective view of FIG. 6, the ridge side end portion 12a of the metal backing plate 12 extends to the ridge side from the ridge side end surface 11a of the solar cell 11, and this ridge side end portion 12a is designed in advance. A ridge side engaging portion 12b is formed to be bent into a shape and engage with the roof ridge, the ridge side solar cell module 10, or the like.
[0005]
Further, the eaves side end 12c of the metal backing plate 12 is folded up in a reverse groove shape on the surface side of the solar cell module 10, and the eaves side end surface 11b of the solar cell 11 is formed on the eaves side end 12c. It is designed to be received with a pinch in between. And the eaves side engaging part 12d for bending the lower end edge of the eaves side edge part 12c of this metal backing plate 12 to the ridge side in an inverted letter shape, and engaging with the eaves side solar cell module 10 is formed. .
[0006]
The surface 12e of the eaves side end portion 12c of the metal backing plate 12 and the surface 11c of the solar cell 11 are substantially flush with each other so that moisture such as rainwater does not collect on the upper side of the solar cell module 10. The eaves side end portion 12c of the metal backing plate 12 is formed at a predetermined height (underwater height) h1 so that the solar cell modules 10 aligned on the ridge side and the eave side are arranged. When the eaves side engaging portion 12d and the ridge side engaging portion 12b are engaged, a step H1 having a predetermined height is formed between the surfaces of the ridge side and the eaves side solar cell module 10.
[0007]
In addition, the terminal box 14 for taking out the output of the said solar cell 11 is mounted in the ridge side edge part 12a of the metal backing plate 12, for example.
[0008]
In the solar cell 11 of the solar cell module 10, a large number of solar cell elements (photoelectric conversion elements) made of crystalline silicon, amorphous silicon, and the like and lead wires connecting them are sealed inside a resin layer. In other words, those including a surface side transparent plate made of glass, synthetic resin or the like covering the surface of the resin layer are also included.
[0009]
Moreover, the metal which comprises the said metal backing plate 12 is not specifically limited, For example, what is necessary is just to use the metal conventionally used for the underlay and the top of a roof, such as iron, steel, aluminum alloy, copper, and brass. Among these metals, from the viewpoint of durability, metals including stainless steel and other metals that are rust-proofed such as plated, painted, and anodized are used. From the viewpoint of heat resistance, steels including iron and stainless steel are frequently used, and from the viewpoint of weight reduction, aluminum alloys are frequently used.
[0010]
The sealing material 13 is not particularly limited as long as it can prevent moisture and dust from entering between the solar cell 11 and the metal backing plate 12. However, it is preferable that the sealing material 13 is excellent in durability. From such a viewpoint, for example, it is excellent in heat resistance, weather resistance, chemical resistance, acid resistance and the like such as silicone resin and butyl rubber, and for a long time. A sealing material 13 made of a material having appropriate elasticity is widely used.
[0011]
The sealing material 13 is bonded to one or both of the solar cell 11 and the metal backing plate 12 as necessary.
[0012]
When the adhesive is filled with the sealing material 13 or between the solar cell 11 and the metal backing plate 12 in place of the sealing material 13, the solar cell module 10 is heated by solar heat as the adhesive. The adhesive is not particularly limited as long as the adhesive exhibits a predetermined adhesive force at a temperature of, for example, 140 ° C. or less. Even if an adhesive mainly composed of a thermoplastic resin is used, the adhesive mainly composed of a thermosetting resin is used. An agent may be used.
[0013]
In addition, a liquid adhesive may be used as this adhesive, but an adhesive formed in a sheet shape that is easy to handle, for example, a semi-cured adhesive mainly composed of a thermosetting resin is used as a sheet. It is preferable to use the prepreg formed in the above.
[0014]
Incidentally, as described above, in the conventional solar cell module 10, the surface 12 e of the eaves-side end portion 12 c of the metal backing plate 12 is used so that moisture such as rainwater does not accumulate on the upper side of the solar cell module 10. Since the surface 11c of the solar cell 11 is positioned substantially flush with the surface of the solar cell module 11 when snow falls on the surface of the solar cell module 10 during snowfall, the snow slides down on the surface of the roof by its own weight. And if the flow of the roof is long and the amount of snow sliding down the roof becomes quite large, it will cause serious consequences that things under the eaves will be destroyed, people who live under the eaves will be injured, and will be buried alive. Become.
[0015]
In order to solve this problem, conventionally, a snow stopper is made separately from the solar cell module 10, and the snow stopper is attached to, for example, a metal back so that a part of the snow stopper protrudes from the front side of the solar cell module 10. By fixing to the eaves side end portion 12c of the backing plate 12 with a small screw, rivet, adhesion, welding or the like, and by receiving the weight of the snow in the roof flow direction with a part of the snow stopper metal protruding from the surface of the solar cell module 10 A method is used to prevent snow from falling.
[0016]
In addition, a method has been attempted in which the solar cell module 10 is installed on a part of the roof and a snow stopper is provided on the other part of the roof to prevent snow from sliding off the roof.
[0017]
[Problems to be solved by the invention]
However, in the conventional method of attaching a separately manufactured snow stop fitting to the solar cell module 10, it is necessary to manufacture the snow stop fitting in addition to the solar cell module 10 and fix it to the solar cell module 10. The method becomes complicated and disadvantageous in reducing costs, and there is a problem in that the portion of the snow stop fitting protruding from the solar cell module 10 casts a shadow on the solar cell module 10 to reduce the amount of power generation. I understand.
[0018]
Further, according to the conventional method in which the solar cell module 10 is installed on a part of the roof and the snow stopper is installed on the other part, the snow stopper can be installed on the solar cell module 10 so as not to cast a shadow. On the other hand, since the solar cell module 10 is not installed over an area larger than the area where the snow stopper casts a shadow, the power generation amount is further greatly reduced.
[0019]
The present invention, such a conventional solve the technical problems, and provide a solar cell module having a snow stop function, an object of providing a suitable installation how this solar cell module.
[0020]
[Means for Solving the Problems]
The roof solar cell module installation method according to the present invention includes a solar cell, a first roof solar cell module including a metal backing plate disposed on the back surface of the solar cell, the solar cell, and the solar cell. A second roofing sun comprising: a metal backing plate disposed on the back surface of the battery; and a snow stopper projection connected to a part of the metal backing plate and projecting to the front side of the surface of the solar cell. An eaves side end of the metal backing plate of the first and second solar cell modules is formed at the same height, and the eaves of the metal backing plate of the second solar cell module The side end portion is formed so that the eave side end portion of the solar cell can be arranged on the back side from the eave side end surface of the metal backing plate, and the eave side end portion of the solar cell is backed by this metal backing. It is arranged in front of the front side of the board and on the back side of the edge of the eave side. The first solar cell is used by mixing the first solar cell module and the second solar cell module, arranging them in the roof flow direction, and engaging the surface of the second solar cell module and the eaves side thereof. The step formed between the surface of the module is the same as the step formed between the surface of the second solar cell module and the surface of the first solar cell module engaged with the ridge side thereof. It is installed so that it may become height .
[0021]
When snow falls and accumulates on the roof where the solar cell module of the present invention constructed as described above is piled up, the load of snow acting in the flow direction of the roof is received by the protruding portion, and the falling of the snow is prevented. .
[0022]
Here, in the solar cell module of the present invention, the position where the protrusion is provided is not particularly limited. For example, even if the protrusion is disposed on the surface of the solar cell, the protrusion is disposed at the ridge side end of the metal backing plate. Or you may arrange | position a protrusion part to the eaves side edge part of a metal backing plate.
[0025]
The protruding portion can be formed by folding a part of the metal backing plate as the protruding portion, in this case, slightly increasing the plate size of the metal backing plate, increasing the bending position as necessary, The projecting portion can be easily formed without changing the material cost and the processing cost only by changing the folding position.
[0026]
In particular, when changing the folding position of the eaves side portion of the metal backing plate that extends to the eave side from the solar cell to form the protrusion, without increasing the number of bending steps of the metal backing plate This is advantageous.
[0027]
Further, in this case, the height of the eaves side end portion of the metal backing plate may be formed higher than the height of the eaves side end of the traditional solar cell modules, solar cell modules shadow conventional In order to reduce the increase in material cost, the height of the eaves side end portion (underwater height) of the metal backing plate is the same as that of the conventional roof solar cell module. Flip high Sanishi, by bending the eaves side end portion of the solar cell to be placed ahead from the surface of the metal backing plate on the back side, the back surface of the eaves side end portion of the solar cell from the surface of the metal backing plate The eaves side end of the metal backing plate is protruded to the front side with respect to the surface of the solar cell by arranging it on the side, and the eaves side end of the metal backing plate protruding from the surface of the solar cell to the front side It is recommended that the projecting part is constituted by a part of the part.
[0028]
By the way, it is thought that it is important in practicing the present invention how high the protrusion height of the protrusion is to be made. Therefore, the height of the protrusion (underwater inner height) h3 is 5 mm to 30 mm, and a plurality of types of solar cell modules of the present invention that differ every 5 mm are made as prototypes, and the solar cell modules are roofed for each type. Prototypes of roofing structures with different roof slopes installed at intervals of 1 meter in the direction of the flow of the snow, and snow is placed on each of the roofing structures that were prototyped for each height of the protrusion The roof slope where the snow did not slide down was obtained for each snow depth, and the results shown in Table 1 were obtained.
[0029]
[Table 1]
Figure 0003929711
[0030]
From the results shown in Table 1, the conventional solar cell module (conventional example) having no projecting portion has a snowfall of 50 cm, 80 cm, 100 cm, and 150 cm, and the snow slides down even when the roof slope is 2 inches. According to the solar cell module (Example), when the amount of snow is 50 cm, the height of the protrusion (underwater height) h3 is 5 mm or more. I found that it was obtained. Here, the two-dimensional gradient means a gradient in the vertical direction 2 with respect to the horizontal direction 10.
[0031]
Further, 5 mm at 1 meter intervals is 0.5% higher than the pitch interval in consideration of the relationship with the pitch interval of the protrusions. That is, since the effect of the snow stop is the area of the snow stop protrusion with respect to the flow direction of the roof, it is effective if the length is 0.5% or more with respect to the pitch interval of the protrusion. Therefore, in the case of an interval of 2 meters, if h3 is 10 mm or more, a snow stop effect can be obtained for a roof having a roof slope of 2 inches or more.
[0032]
Also, the snow depth 80 cm, but sliding of snow occurs in less than 2 cun roof slope in the embodiment of the height h3 is 5mm protrusions, the roof in the embodiment of the height h3 is more than 10mm of the protrusion (10 or more) It was also found that a snow stop effect can be obtained even on a roof with a slope of 2.5 inches or more.
[0033]
Furthermore, at a snow depth of 100 cm, when the height h3 of the protrusion is 5 mm, snow falls even if the roof slope is less than 2 inches. However, if the height is 10 mm or more, a snow stop effect can be obtained even on a roof having a roof slope of 2 inches or more. I understand.
[0034]
At a snow depth of 150 cm, even if the height h3 of the protruding part is 10 mm, the snow slides down if the roof slope is less than 2 inches, but if it is 15 mm or more (15% or more), the snow stop effect is effective even on a roof with a roof slope of 2.5 inches or more. It was found that
[0035]
It has been found that, at any snow depth, the snow stop effect can be obtained even on a steep roof as the height of the protruding portion increases.
[0036]
In addition, since it is presumed that the snow stop effect by the protrusions is exhibited if the snow load in the roof flow direction received by each protrusion is equal to or less than a certain value (a value at which the snow layer is sheared and destroyed), the present invention. When the installation interval of the solar cell modules in the roof flow direction is narrowed, the snow stop effect becomes more prominent.
[0037]
That is, when the installation interval in the roof flow direction of the solar cell module of the present invention is narrowed, at the same snow depth, it is possible to stop the snow on a more steep roof with the same height protrusion, or a protrusion with a lower height. Snow stops with the same roof slope can be made in the area.
[0038]
From another point of view, if the installation interval in the roof flow direction of the solar cell module of the present invention is narrowed, it is possible to stop snow against deeper snow accumulation with the same height protrusion or the same snow accumulation for the same roof slope. Depth of snow can be stopped by low-profile protrusions.
[0039]
From a different viewpoint, if the installation interval in the roof flow direction of the solar cell module of the present invention is narrowed, it is possible to stop snow at a protrusion having a low height with respect to the same snow depth and the same roof gradient.
[0040]
By the way, in the solar cell module of the present invention, rainwater, snowmelt water, frost water, dew condensation water, and other moisture and dust that have fallen on the surface of the solar cell naturally fall along the flow of the roof, soot, etc. There is a problem in that the protruding portion is obstructed when it is swept out by using.
[0041]
Therefore, in the solar cell module of the present invention, in order to solve this problem, it is recommended that a discharge groove or a discharge hole penetrating the protrusion in the roof flow direction is formed in the protrusion.
[0042]
The cross-sectional shape of the discharge groove is not particularly limited as long as it is a groove shape opened to the surface of the protruding portion. For example, a square groove shape, a V-shaped groove shape, a U-shaped groove shape, a dovetail groove shape, a T-shaped groove shape. Any groove shape may be selected, and the groove bottom is preferably positioned on the surface of the solar cell or on the back side of the surface of the solar cell in order to increase the efficiency of discharging water or dust. .
[0043]
The cross-sectional shape of the discharge hole is not particularly limited as long as it is a shape that is not open to the surface side of the protrusion, and is arbitrary such as a circle, an ellipse, a triangle, a rectangle including a rhombus and a trapezoid, and a polygon such as a pentagon A cross-sectional shape can be selected. Moreover, it is preferable to open this discharge hole so that the lower edge is located on the back surface side of the surface of the solar cell or the surface of the solar cell in order to increase the discharge efficiency of water and dust.
[0045]
DETAILED DESCRIPTION OF THE INVENTION
A solar cell module according to an embodiment of the present invention will be described in detail with reference to the drawings as follows.
[0046]
FIG. 1 is a cross-sectional view of a roofing structure using a solar cell module according to an embodiment of the present invention, and this roofing structure is installed on, for example, a two-dimensional gradient field board.
[0047]
In this roofing structure, the conventional solar cell module 10 and the solar cell module M according to one embodiment of the present invention are alternately arranged and sequentially engaged from the ridge side to the eave side. The nominal size L in the roof flow direction of 10 and M is 500 mm, and the solar cell modules M according to one embodiment of the present invention are arranged at intervals of about 1 m in the roof flow direction.
[0048]
By the way, the solar cell module M according to an embodiment of the present invention is configured in the same manner as the conventional solar cell module 10 in a large part.
[0049]
That is, a solar cell 1 and a metal backing plate 2 that covers the back surface of the solar cell 1 are provided, and a sealing material 3 made of, for example, a silicone resin is sandwiched between the solar cell 1 and the metal backing plate 2. It prevents dust from entering.
[0050]
This solar cell 1 is formed by sealing a large number of solar cell elements (photoelectric conversion elements) made of crystalline silicon, amorphous silicon, and the like and lead wires connecting them into a resin layer. A transparent plate (also referred to as a surface material) made of glass, synthetic resin, or the like covering the surface of the resin layer is provided, and the peripheral portion of the solar cell 1 is attached to the metal backing plate 2 with a sealing material 3 made of, for example, silicone resin interposed therebetween. Glued.
[0051]
When the solar cell element is a thin film solar cell element such as amorphous silicon (a-Si) or CdTe, the solar cell element is directly formed on the back surface of the transparent plate, and a resin protective layer is provided on the back surface side. It is formed.
[0052]
The metal backing plate 2 is made of a rust-proof coated steel plate such as galvanized or gallium-plated, and its ridge side end 2a extends from the ridge side end surface 1a of the solar cell 1 toward the ridge side in advance. The ridge-side engagement portion 2b is formed by bending it into the formed shape, and the eaves-side end portion 2c is folded up into an inverted groove shape, and the eaves-side end surface 1b of the solar cell 1 is formed via the sealing material 3. I try to catch it.
[0053]
Further, an eaves side engaging portion 2d for bending the outer lower edge portion of the eaves side end portion 2c of the metal backing plate 2 in an inverted shape toward the ridge side to engage with the eaves side solar cell module 10 is formed. Has been.
[0054]
In addition, the terminal box 4 for taking out the direct current generated by the solar cell 1 is mounted on the ridge side end 2 a of the metal backing plate 2.
[0055]
The height (underwater outer height) h2 of the eaves side end 2c of the solar cell module M according to one embodiment of the present invention is the height (underwater outer side) of the eaves side end 12c of the conventional solar cell module 10. The height H2 is the same height as h1, and a step H2 formed between the surface of the solar cell module M of the present invention and the surface of the conventional solar cell module 10 engaged with the eaves side thereof, It is made to become the same height as the level | step difference H1 formed between the surface of the solar cell module M of this invention, and the surface of the conventional solar cell module 10 engaged with the ridge side.
[0056]
Now, the difference between the solar cell module M according to one embodiment of the present invention and the conventional solar cell module 10 is that the surface 11c of the solar cell 11 is the eave side end of the metal backing plate 12 in the conventional solar cell module 10. As shown in the perspective views of FIGS. 1 and 2, the solar cell module M according to the embodiment of the present invention includes the solar cell 1 as opposed to the surface 12 e of the portion 12 c. provided to decrease the side surface 1c of the solar cell 1 at eaves side end portion is positioned ahead the Underwater inward height h3 only backside from the surface 2e of the eaves side end portion 2c of the metal backing plate 2 It is in the point made to do.
[0057]
The underwater inner height h3 is, for example, 5 mm to 30 mm, and a portion of the eaves side end portion 2c that protrudes from the surface 1c of the solar cell 1 to the front side by the underwater inner height h3 (the portion indicated by hatching in FIG. 2). Thus, the protruding portion 5 having a snow stop function is configured.
[0058]
And this 2 which mixed the solar cell module M which concerns on one Example of this invention provided with the protrusion part 5 of the height of 5-30 mm which has this snow stop function, and the conventional solar cell module 10 as mentioned above. According to the roofing structure with a gradual slope, as shown in Table 1 above, it is possible to prevent snow from falling from a depth of 50 cm to 150 cm.
[0059]
In addition, since the protruding portion 5 having a snow stop function is configured by a part of the solar cell module M, it is not necessary to prepare a separate snow stop fitting, and the work of attaching the snow stop fitting at the site or at the factory is unnecessary. The manufacturing process is simplified, and the solar cell module M according to one embodiment of the present invention and the conventional solar cell module 10 may be rolled up at the installation site in exactly the same manner as in the past. Is as simple as a non-snowfall zone.
[0060]
In addition, the metal backing plate 2 has a planing dimension that is increased by the inner dimension under water, and the bending position of the eaves side end 2c only needs to be changed, so that the processing cost does not increase at all and the material cost also increases substantially. You do n’t have to.
[0061]
In addition, the height (underwater outer height) h2 of the eaves side end 2c of the metal backing plate 2 is equal to the height (underwater outer height) h1 of the eaves side end 12c of the conventional solar cell module 10. Since it is the same height, the size of the shadow made by the eaves side end 2c of the metal backing plate 2 is the same as the size of the shadow made by the eaves side end 12c of the conventional metal backing plate 12, and the snow stopper It can produce the same amount of power as a non-functional roof.
[0062]
In addition, the solar cell 1 is arranged such that the eaves side end of the solar cell 1 is disposed on the back side by a water inner height h3 from the surface 2e of the eaves side end 2c of the metal backing plate 2 in this way. Is inclined by 0.6 ° to 3.4 ° larger than that of the conventional solar cell module 10, but it is less than 0.2% in terms of incident sunlight intensity, which is almost equal to the output. There can be no effect.
[0063]
Furthermore, if the output voltage of each solar cell module M, 10 is increased, and the electrical connection between each solar cell module M, 10 is made in parallel by matching the input voltage of the inverter, each solar cell module M, 10 Even if there is a variation in the output between the solar cell modules M and 10 due to the difference in the intensity of sunlight incident on the solar cell, the output of the entire array is the sum of the outputs of the solar cell modules M and 10, so Can prevent a decrease in output.
[0064]
In a solar cell module M according to another embodiment of the present invention shown in the perspective view of FIG. 3, a discharge groove 6 is formed by cutting out a part of the protruding portion 5 into a square groove shape, and the solar cell 1 is formed from the discharge groove 6. The upper moisture and dust can be removed. The end face of the discharge groove 6 is sealed with the sealing material 3.
[0065]
The bottom of the discharge groove 6 is positioned on the back side of the surface of the solar cell 1 so that all moisture and dust on the solar cell 1 can be discharged.
[0066]
The detailed description of the other configurations, operations, and effects of this embodiment is the same as those of the previous example, and will be omitted to avoid duplication.
[0067]
A solar cell module M according to another embodiment of the present invention shown in the perspective view of FIG. 4 is formed with a discharge hole 7 penetrating the protruding portion 5 instead of the discharge groove 6 shown in FIG. The end face of the discharge hole 7 is also sealed with the sealing material 3 in the same manner as the discharge groove 6.
[0068]
The detailed description of the action or effect of the discharge hole 7 is the same as that of the discharge groove 6 of the previous example, and the detailed description of the other configuration, action or effect of this embodiment is the same as those of the previous two examples. Therefore, it is omitted to avoid duplication.
[0069]
【The invention's effect】
As described above, since the solar cell module of the present invention is provided with the protruding portion that protrudes to the front side from the surface of the solar cell, the protruding portion receives the weight of the snow in the roof flow direction, and thus the snow falls. The effect | action which can be prevented is acquired and the solar cell module which has what is called a snow stop function can be obtained.
[0070]
In particular, in the present invention, when the protruding portion is formed by bending a part of the metal backing plate that receives the eaves-side end of the solar cell, the metal backing plate has a slightly longer plate dimension, Since the protruding portion can be formed only by increasing or changing the bending position of the eaves side end portion as required, it is possible to obtain an effect of hardly increasing the material cost.
[0071]
In this case, the eaves side end of the metal backing plate has the same height as that of a conventional roof solar cell module, and the eaves side end of the solar cell is more than the surface of the metal backing plate. Bend the back side of the solar cell so that it can be placed on the back side, and place it on the back side from the surface of this metal backing plate, so that the front side of the surface of the solar cell at the side of the eave side If the protruding part is configured at the eaves side end of the metal backing plate that protrudes into the metal backing plate, it is not necessary to increase the number of bending processes, so that the processing cost does not increase, and the metal backing plate eaves Since the size of the shadow created by the side edge is the same as that of a conventional solar cell module without a snow stop function, the power generation amount is the same as that of a roofing structure using a conventional solar cell module without a snow stop function. The effect that you can get To.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a roofing structure according to the present invention.
FIG. 2 is a perspective view of the main part of the roofing structure according to the present invention.
FIG. 3 is a perspective view of the main part of the roofing structure according to the present invention.
FIG. 4 is a perspective view of a main part of the roofing structure according to the present invention.
FIG. 5 is a cross-sectional view of a conventional roofing structure.
FIG. 6 is a perspective view of a main part of a conventional roofing structure.
[Explanation of sign]
DESCRIPTION OF SYMBOLS 1 Solar cell 1c Surface of solar cell 2 Metal backing plate 2c Eave side edge part of metal backing plate 2e Surface of eave side edge part 5 Protrusion part 6 Ejection groove 7 Ejection hole

Claims (2)

太陽電池と、この太陽電池の裏面に配置される金属裏当て板とを備える第1の屋根用太陽電池モジュールと、太陽電池と、この太陽電池の裏面に配置される金属裏当て板と、前記金属裏当て板の一部と連接し、前記太陽電池の表面よりも表側に突出した雪止め用突出部とを備える第2の屋根用太陽電池モジュールと、を備え、前記第1、第2の太陽電池モジュールの前記金属裏当て板の軒側端部は同じ高さに形成され、前記第2の太陽電池モジュールの金属裏当て板の軒側端部は、太陽電池の軒側端部が前記金属裏当て板の軒側端部表面より裏面側に控えて配置できるように形成され、前記太陽電池の軒側端部をこの金属裏当て板の表面より軒側端部裏面側に控えて配置されてなり、前記第1の太陽電池モジュールと前記第2の太陽電池モジュールを混用して屋根流れ方向に並べて葺き、前記第2の太陽電池モジュールの表面とこれの軒側に係合される前記第1の太陽電池モジュールの表面との間に形成される段差が、前記第2の太陽電池モジュールの表面とこれの棟側に係合される前記第1の太陽電池モジュールの表面と間に形成される段差と同じ高さになるように設置されることを特徴とする屋根用太陽電池モジュールの設置方法。A solar cell module for a first roof comprising a solar cell and a metal backing plate disposed on the back surface of the solar cell, a solar cell, a metal backing plate disposed on the back surface of the solar cell, A second solar cell module for roof, which is connected to a part of the metal backing plate and includes a snow-preventing protruding portion protruding to the front side of the surface of the solar cell, and the first and second solar cell modules. The eaves side end of the metal backing plate of the solar cell module is formed at the same height, and the eaves side end of the metal backing plate of the second solar cell module is the eave side end of the solar cell. It is formed so that it can be placed on the back side from the eave side end surface of the metal backing plate, and the eave side end portion of the solar cell is placed on the eave side end back side from the surface of the metal backing plate. The first solar cell module and the second solar cell module A step is formed between the surface of the second solar cell module and the surface of the first solar cell module engaged with the eave side of the second solar cell module. The second solar cell module is installed so as to have the same height as the step formed between the surface of the second solar cell module and the surface of the first solar cell module engaged with the ridge side of the second solar cell module. The installation method of the solar cell module for roofs. 前記突出部に、該突出部を屋根流れ方向に貫通する排出溝又は排出孔を形成したことを特徴とする請求項1に記載の屋根用太陽電池モジュールの設置方法。The installation method of the solar cell module for roof according to claim 1, wherein a discharge groove or a discharge hole penetrating the protrusion in the roof flow direction is formed in the protrusion.
JP2001052877A 2001-02-27 2001-02-27 Installation method of solar cell module for roof Expired - Lifetime JP3929711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052877A JP3929711B2 (en) 2001-02-27 2001-02-27 Installation method of solar cell module for roof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052877A JP3929711B2 (en) 2001-02-27 2001-02-27 Installation method of solar cell module for roof

Publications (2)

Publication Number Publication Date
JP2002256664A JP2002256664A (en) 2002-09-11
JP3929711B2 true JP3929711B2 (en) 2007-06-13

Family

ID=18913437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052877A Expired - Lifetime JP3929711B2 (en) 2001-02-27 2001-02-27 Installation method of solar cell module for roof

Country Status (1)

Country Link
JP (1) JP3929711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012021298A1 (en) * 2012-10-30 2014-02-13 Matthias Bartnick Snow guard system for e.g. thermal solar system that is located on roof of building, has counter-part connected with snow trap hook, where guard system is releasably connected with girder construction of solar system as integral component

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204514A (en) * 2002-12-25 2004-07-22 Ig Tech Res Inc Roofing material
JP2004225257A (en) * 2003-01-20 2004-08-12 Ig Tech Res Inc Roofing material
JP2004232223A (en) * 2003-01-28 2004-08-19 Ig Tech Res Inc Roofing material
JP2004232257A (en) * 2003-01-29 2004-08-19 Ig Tech Res Inc Roofing material
JP2004232320A (en) * 2003-01-30 2004-08-19 Ig Tech Res Inc Roofing material
JP2004232370A (en) * 2003-01-31 2004-08-19 Ig Tech Res Inc Roof material
JP2004238921A (en) * 2003-02-06 2004-08-26 Ig Tech Res Inc Roof material
JP2004238966A (en) * 2003-02-07 2004-08-26 Ig Tech Res Inc Roof material
JP2004244830A (en) * 2003-02-12 2004-09-02 Ig Tech Res Inc Roofing material
JP4180436B2 (en) * 2003-05-07 2008-11-12 アイジー工業株式会社 Roofing material
JP2005146728A (en) * 2003-11-18 2005-06-09 Gantan Beauty Ind Co Ltd Exterior member integrated solar energy converting device and exterior structure
TWI487124B (en) * 2006-08-25 2015-06-01 Sanyo Electric Co Solar battery module and solar battery module manufacturing method
JP5461806B2 (en) * 2008-05-15 2014-04-02 株式会社カネカ Roof structure
JP2011113988A (en) * 2009-11-24 2011-06-09 Sharp Corp Solar cell module, and method of manufacturing the same and method of installing the same
KR101235726B1 (en) * 2011-05-04 2013-02-27 (주)지티씨코퍼레이션 A sloar power generator reducing wind pressure at solar cell
JP5993624B2 (en) * 2012-06-15 2016-09-14 株式会社カネカ Snow clasp, solar cell module, and method for laying solar cell module
JP5993623B2 (en) * 2012-06-15 2016-09-14 株式会社カネカ Snow clasp, solar cell module, and laying structure of solar cell module
JP2015180171A (en) * 2013-11-19 2015-10-08 シャープ株式会社 solar cell module
JP6290725B2 (en) * 2014-06-26 2018-03-07 京セラ株式会社 Solar cell device
JP6779031B2 (en) * 2016-05-10 2020-11-04 株式会社カネカ Arrangement structure of solar cell module and solar cell module
JP6769736B2 (en) * 2016-05-10 2020-10-14 株式会社カネカ Arrangement structure of solar cell module
CN110670819A (en) * 2019-11-07 2020-01-10 国网新疆电力有限公司昌吉供电公司 Snow-scraping eave of solar substation machine room and snow-proof substation machine room

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012021298A1 (en) * 2012-10-30 2014-02-13 Matthias Bartnick Snow guard system for e.g. thermal solar system that is located on roof of building, has counter-part connected with snow trap hook, where guard system is releasably connected with girder construction of solar system as integral component

Also Published As

Publication number Publication date
JP2002256664A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP3929711B2 (en) Installation method of solar cell module for roof
US10547270B2 (en) Building integrated photovoltaic roofing assemblies and associated systems and methods
US20080035140A1 (en) Solar Roof Tile
JP6616847B2 (en) Panels, panel assemblies, and associated roofs
US20100325976A1 (en) Solar shingle system
US9673750B2 (en) Mounting structures for photovoltaic cells
US20130055664A1 (en) Photovoltaic Roofing Elements, Photovoltaic Roofing Systems, Methods and Kits
EP1071136B1 (en) Solar electric power apparatus, solar module, and installation method of solar modules
US20110197954A1 (en) Photovoltaic apparatus and photovoltaic array attached to a support structure
US20100101561A1 (en) Solar panels systems and methods
JP4351567B2 (en) Solar power plant
JP2013249582A (en) Roof tile type solar cell module
CN211499531U (en) Roof structure
JP2000064509A (en) Solar cell loaded roof tile
JP2004014887A (en) Installation stand for solar battery panel
JP2005113430A (en) Cladding-integrated solar energy conversion device, and cladding structure
WO2019242158A1 (en) Photovoltaic system, house panel and vehicle
JP4279954B2 (en) Solar cell module roof tiles
CN214658292U (en) Notch cuttype metal roofing system
JP2006009514A (en) Sheet metal roofing member and photovoltaic power generation system
CN217204973U (en) Novel solar photovoltaic board system anti-wind clip
JP6290725B2 (en) Solar cell device
CN210807143U (en) Photovoltaic tile fastening mechanism
JP3946185B2 (en) Exterior structure of solar energy conversion module holding member and exterior material integrated solar energy conversion device
JP3989456B2 (en) Solar energy conversion module integrated exterior structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3929711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term