JP3929393B2 - Cutting device - Google Patents

Cutting device Download PDF

Info

Publication number
JP3929393B2
JP3929393B2 JP2002351329A JP2002351329A JP3929393B2 JP 3929393 B2 JP3929393 B2 JP 3929393B2 JP 2002351329 A JP2002351329 A JP 2002351329A JP 2002351329 A JP2002351329 A JP 2002351329A JP 3929393 B2 JP3929393 B2 JP 3929393B2
Authority
JP
Japan
Prior art keywords
cutting
brittle
cooling
laser irradiation
irradiation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002351329A
Other languages
Japanese (ja)
Other versions
JP2004182530A (en
Inventor
勉 寺本
Original Assignee
株式会社日本エミック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本エミック filed Critical 株式会社日本エミック
Priority to JP2002351329A priority Critical patent/JP3929393B2/en
Publication of JP2004182530A publication Critical patent/JP2004182530A/en
Application granted granted Critical
Publication of JP3929393B2 publication Critical patent/JP3929393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • C03B33/093Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/1099After-treatment of the layered product, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0207Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet being in a substantially vertical plane
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/076Laminated glass comprising interlayers
    • C03B33/078Polymeric interlayers

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂部材と脆性部材とからなる積層板を切断線に沿って切断する切断装置に関する。
【0002】
【従来の技術】
ガラス板とプラスチック板とにより構成された積層板は、防犯ガラスや自動車の安全ガラス等に使用されている。この積層板の具体的な構造は、2枚のガラス板の間に1枚のポリカーボネート等のプラスチック板を挟み、接着剤等により貼り合わされたものとなっている。
この積層板を所望の形状・寸法に切断する従来の方法としては、以下のような方法がある。
(1)ガラス板の表面にガラス切断用の工具により傷を付け、その後、機械的応力(曲げ力)を加えて割る方法。
(2)ガラス板内部に熱応力を生じさせて表面に亀裂を発生させ、その後、機械的応力(曲げ力)を加えて割る方法(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平1−108006号公報
【0004】
【発明が解決しようとする課題】
しかし、上記 (1)及び (2)の方法では、中間層のプラスチック層を切断線に沿って切ることができないため、片面のガラス板を工具により大きく切り込んで切断し、プラスチック板を露出させ、その後、熱カッタ等の工具によりプラスチック板を切断する必要がある。
しかしこの方法は、切断線上において切断用の工具による切り込み作業が何度も必要である等、作業性が非常に悪く、作業効率が悪いという欠点がある。
【0005】
そこで本発明は、簡単かつ効率良く樹脂部材と脆性部材とからなる積層板を精度良く切断する切断装置を提供することを目的とする
【0006】
【課題を解決するための手段】
述の目的を達成するために、本発明に係る切断装置は、樹脂部材を両面から脆性部材により挟んで構成した積層板を切断線に沿って切断する切断装置に於て、上記積層板の一面側の第一作業ヘッドと他面側の第二作業ヘッドとを備え、上記第一作業ヘッドは、上記樹脂部材を上記切断線に沿って切断する第一レーザ照射手段と上記一面側の脆性部材を上記切断線に沿って加熱する第二レーザ照射手段と該第二レーザ照射手段に追従して該脆性部材を冷却する冷却手段とを有し、上記第二作業ヘッドは、上記他面側の脆性部材を該切断線に沿って加熱する第三レーザ照射手段と該第三レーザ照射手段に追従して該脆性部材を冷却する冷却手段とを有するものである。
また、上記第一作業ヘッドに一直線上に配設された上記第一レーザ照射手段と第二レーザ照射手段と冷却手段の直線配設方向と、上記第二作業ヘッドに一直線上に配設された上記第三レーザ照射手段と上記冷却手段の直線配設方向とが、上記積層板の切断線の方向に応じて方向変換可能とされている。
【0007】
【発明の実施の形態】
以下、図示の実施の形態に基づき、本発明を詳説する。
【0008】
本発明に係る切断装置及び切断方法により切断を行うワークとしては、ガラス板にプラスチック板を貼り合わせた積層板であり、例えば図1に示すように1枚の樹脂部材(プラスチック板)1を両面から2枚の脆性部材(ガラス板)2,2により挟んで構成した積層板Wであり、脆性部材2,2が外層であり、樹脂部材1が中間層の積層構造による板部材がある。そして現在、この積層板は防犯用の窓ガラス等に使用されている。
【0009】
積層板Wの樹脂部材1としてはポリカーボネート、ポリエチレン、PVTフィルム、吹付塗ポリマーフィルム等であり、脆性部材2としては平板ガラス、ガラスセラミック、セラミック等が使用されている。
そして、樹脂部材1と脆性部材2との接合は、接着剤層によるものや、脆性部材2の上に押出法、注型法、スプレー法、ローラコーティング法により樹脂部材1を形成したものや、ガラス板にプラスチックフィルムをラミネートすることにより形成された構造である。
【0010】
図2は積層板Wの切断作業を説明する積層板Wの断面図である。この積層板Wを切断線(切断を意図する切断予定線)に沿って切断する切断方法は、積層板Wの樹脂部材1のみを第一レーザ光Aにより切断する樹脂部材切断工程と、両面の脆性部材2,2の夫々において第二レーザ光Bと冷却媒体を噴出する冷却手段3によりその表面に亀裂a,aを生じさせる脆性部材亀裂形成工程と、両脆性部材2,2に生じた亀裂a,aに沿って積層板Wを分断する分断工程と、を有している。そして、この樹脂部材切断工程と脆性部材亀裂形成工程とを同時に行い、その後、積層板Wを切断線に沿って分断している。
【0011】
つまり、図2と図3の切断装置の斜視図に示すように、積層板Wの一面側に第一レーザ光Aを照射する第一レーザ照射手段7と第二レーザ光Bを照射する第二レーザ照射手段8と冷却手段3とを配設し、さらに、積層板Wの他面側に第二レーザ光Bを照射する第三レーザ照射手段9と冷却手段3とを配設する。そして、これらを切断線に沿って移動させ、一枚の積層板Wに対して、一面側から第一レーザ光Aと第二レーザ光Bと冷却手段3による冷却媒体とを照射・噴出し、他面側から第二レーザ光Bと冷却手段3による冷却媒体とを照射・噴出する。
【0012】
この積層板Wを切断線に沿って切断する切断装置についてさらに説明すると、図3に示すように、この装置は、積層板Wの一面側の第一作業ヘッド5と他面側の第二作業ヘッド6とを備えている。第一作業ヘッド5は、樹脂部材1を切断線に沿って切断する第一レーザ照射手段7と一面側の脆性部材2を切断線に沿って加熱する第二レーザ照射手段8と第二レーザ照射手段8による加熱エリアHに所定の間隔Gをもって追従して脆性部材2を冷却する冷却手段3とを有している。そして、第二作業ヘッド6は、他面側の脆性部材2を切断線に沿って加熱する第三レーザ照射手段9と第三レーザ照射手段9による加熱エリアHに所定の間隔Gをもって追従して脆性部材2を冷却する冷却手段3とを有している。
そして、この第一作業ヘッド5と第二作業ヘッド6とはアーム部材10に連結しており、アーム部材10の駆動により積層板Wに対して位置変化(移動)できる。
【0013】
図2の矢印Eは、積層板Wに対するこれらレーザ照射手段7,8,9と冷却手段3,3の進行方向を示しており、図2では、樹脂部材1用の第一レーザ光Aを脆性部材2用の第二レーザ光Bと冷却手段3より先行させているが(第一レーザ光Aが進行方向前方側としているが)、これとは逆に、図示省略するが、第二レーザ光Bと冷却手段3を、第一レーザ光Aより先行させてもよい。
【0014】
樹脂部材切断工程について説明すると、積層板Wの脆性部材2を透過して樹脂部材1において吸収されて樹脂部材1を加熱する第一レーザ光Aにより、樹脂部材1を切断線に沿って切断する作業である。この樹脂部材(プラスチック)切断用レーザである第一レーザ光Aとしては、YAGレーザ、YVO4レーザ、半導体レーザ等であり、その発振波長が0.4 μm以上2μm未満のものとしている。
【0015】
即ち、この工程において、樹脂部材1が吸収する波長のレーザを樹脂部材1の表面または樹脂部材1の内部に焦点を合わせることによりエネルギーを集め樹脂部材1を切断する。
また、これ以外にも、脆性部材2を透過し樹脂部材1に吸収される波長であって樹脂部材1を破壊しうるエネルギーを持ったレーザであってもよく、又はその他として熱線、粒子、放射線等を使用してもよい。
【0016】
この樹脂部材1の切断においては、第一レーザ光Aにより熱破壊されるが、その両面をガラス等の脆性部材2により挟まれて大気と隔絶されているため、熱による酸化(燃焼等)がほとんど発生しないため、黒煙を発生させず作業環境に対して非常に好ましい。
【0017】
脆性部材亀裂形成工程は、積層板Wの両面側から、夫々の脆性部材2,2を切断線に沿って第二レーザ光B,Bと冷却手段3,3とにより加熱し冷却して熱応力により、脆性部材2,2の表面に夫々亀裂a,aを生じさせ割断(熱割断)する作業である。つまり、脆性部材2を熱源により材料表面を溶融・破壊することなく加熱を行い、加熱した部位を急冷することにより、材料内部に熱応力を発生させ、この熱応力により脆性部材2の表面に亀裂aを発生させるものである。
【0018】
第二レーザ光Bは、脆性部材2に吸収される波長のレーザを使用することで脆性部材2を切断するが、具体的な第二レーザ光Bとしては、CO2 レーザ、COレーザ、半導体レーザ等であり、その発振波長が1μm以上20μm以下のものとしている。なお、通常のガラスの透過領域は、波長が 400nm〜3000nm程度である。
つまり、脆性部材2と樹脂部材1とからなる積層板Wを夫々異なる波長のレーザ光線を使用して、非接触で切断及び亀裂aの形成を行う。
【0019】
冷却手段3は、脆性部材2へ冷却媒体を吹きつける噴出手段(ノズル)と、冷却媒体の吹きつけを遮断するシャッター手段と、を有し、冷却媒体としては、気体及び液体であり、エア、エアと水の気液混流物、ヘリウム等のガス、液化ガス、ドライアイス等がある。
【0020】
さらに、亀裂形成工程について説明すると、図4は、脆性部材2における亀裂a発生を説明する積層板Wの平面図であり、積層板Wの切断を意図する線(図4の一点鎖線)に沿って、第二レーザ光Bにより脆性部材2を加熱し、第二レーザ光Bによる加熱エリアHに間隔Gをもって追従して冷却手段3により脆性部材2を冷却している。さらに、加熱エリアHと冷却手段3による冷却ポイントCとの間隔Gを変更(調整)可能としている。
【0021】
なお、加熱エリアHとは、後述する複数本のレーザビーム(第二レーザ光B)によるビーム列により積層板Wが照射された領域であり、また、冷却ポイントCとは、冷却媒体による積層板W表面の冷却エリアの中心点である。そして、間隔Gは、加熱エリアHの後方側端部と冷却ポイントCとの距離を表す。なお、図4に示すように、矢印Eは、第二レーザ光Bと冷却手段3による冷却媒体の積層板Wに対する進行方向である。つまり、加熱エリアHは、冷却ポイントCより前方であると言える。
また、図4は積層板Wの一面側を示しており、樹脂部材1切断用の第一レーザ光Aが加熱エリアHよりさらに前方に所定の間隔をもって移動(位置)している。そして、図示省略の積層板Wの他面側においては、(第一レーザ光Aは照射されず)加熱エリアHと冷却ポイントCとの関係は、一面側と同様である。
【0022】
また、亀裂形成工程における第二レーザ光Bによる加熱と、冷却手段3による冷却とについてさらに説明すると、本発明では、図4に示すように、異なったエネルギーを持つ複数のビームによる列を形成し、これを第二レーザ光Bとして脆性部材2に照射している。つまり、第二レーザ照射手段8は、図示省略するが、一本のレーザビームを複数本のビームによるビーム列とする変換手段(ビームスプリッタ)を有し、ビーム列による加熱エリアHの長手方向を積層板Wの切断線方向としている。
【0023】
さらに、この熱応力による亀裂a発生についてさらに説明すると、脆性部材2の加熱を行うことにより、加熱された領域(加熱エリアHより広い範囲)は脆性部材2内部で膨張しようと働き、図4に示すように、その周囲の加熱されていない領域によって押し返されるために脆性部材2に圧縮応力が発生する。この後、加熱エリアHの後方側位置の冷却を行うと、熱膨張した部分が急激に収縮し引張応力が発生し、この引張応力が材料の破壊靱性値を超えた際に、材料表面に亀裂aを形成する。
【0024】
そして、冷却ポイントCは、加熱分布によって最適な部位が存在しており、その部位に正確に冷却作用を与える事で効率よく最大の引張応力を発生させることができる。つまり、冷却手段3による冷却ポイントCとしては、図4に示すように、脆性部材2の切断線上で加熱による膨張により生ずる脆性部材2の圧縮応力が引張応力へと変化する応力変曲点11乃至その近傍を冷却し、脆性部材2の表面に亀裂aを生じさせるようすればよい。
具体的に説明すると、図4に示すように、脆性部材2において加熱された領域は圧縮応力が作用するが、熱源(加熱エリアH)の移動方向前方側及び後方側には、(何もしない状態において)引張応力が作用している。そして、この内部応力が圧縮から引張に変化する点であって、加熱エリアHの後方側の切断線上の点を冷却すればよい。
【0025】
なお、この脆性部材2内部に生じる応力は、例えば、有限要素法を用いて解析することができ、冷却すべき位置の特定が可能となる。つまり、材料の特性、熱源、熱源後方の熱分布等によって決定される位置に、圧縮応力から引張応力に変化する位置(変曲点)11が存在する。そして、この位置を中心としたエリアを冷却し、その変曲点11前後の温度差を拡大させることにより、発生する内部応力を最大にすることができる。この場合、亀裂aを発生させる引張応力は、変曲点11を越える位置で発生するため、冷却する面積は極めて小さくてよく、冷却量も材料の強度を超える応力が発生する一定量以上であればよいため、冷却量の変化に結果が影響されにくい。
【0026】
そして、樹脂部材切断工程と脆性部材亀裂形成工程とを経て、図5に示すように、切断線に沿って、樹脂部材1が切断され、脆性部材2の表面に亀裂aが形成できる。そして、この後の分断工程において、両面の脆性部材2,2に生じた亀裂a,aに沿って積層板Wを分断する。
【0027】
分断工程について説明すると、積層板Wには、両面に脆性部材2,2が配置されているため、その両面の脆性部材2,2を切り離す(分断する)必要がある。そして、図5に示すように、その脆性部材2,2には、夫々反対方向へ開口する亀裂a,aが形成されているため、図7に示す従来より考えられる方法のように、積層板W全体に曲げ力を作用させると、一面側の亀裂13は亀裂13を開く方向へ力が作用して一面側の脆性部材2を割ることができるが、他面側の亀裂14は、亀裂14を閉じる方向となる。従って、両面ともを割るためには、両側に大きな曲げ力を作用させることが必要であり、さらに、防犯用のガラスのように高い強度を持つ材料では、材料を曲げるために大きな力が必要であり、装置が大型化し大きな動力が必要となって、コストアップを招くという問題がある。
【0028】
さらに、この従来の方法では、一面側を分断した後、他面側を分断しようとすると、既に分断した面同士が押しつけられることとなり、その面が破壊されて切断面の品質・精度を低下させるという問題があり、また、ガラス粉が発生し環境に対して好ましくない。
そこで、本発明では、この分断工程において、図6に示すように、熱応力により生じさせた脆性部材2の表面における亀裂aを、超音波により脆性部材2の厚さ方向に進行させ、積層板Wを分断している。
【0029】
具体的な構成について説明すると、図6に示すように、積層板Wの両面側から材料表面の亀裂a上又はその近傍部位に超音波発生手段12の当接部を接触させ、超音波を発生させ、超音波を積層板Wの面に垂直な方向へ向かって材料内を伝搬させる。材料内部に進行した超音波は、気体や液体では縦波であるが、固体中では縦波だけではなく、変位が進行方と垂直な横波の作用も持つこととなる。これにより、両面側の亀裂a,aの先端には、超音波の伝搬に伴い開く方向の力と閉じる方向の力が交互に作用し、開く方向の力により表面に形成された亀裂aは、脆性部材2の裏面に向かって進行することができる。
【0030】
また、樹脂部材切断工程と脆性部材亀裂形成工程とが開始される前において、積層板Wの切断線の切断開始始点(積層板Wの端縁)に、機械的手段にて初期亀裂a0 を形成する。つまり、積層板Wの切断線の始端に機械的切欠手段4により初期亀裂a0 を形成してから、第二レーザ光Bが初期亀裂a0 近傍位置から切断線に沿って照射する。
この切欠手段4は、図3に示すように、第一作業ヘッド5及び第二作業ヘッド6に設置されて自動制御されて駆動し、積層板Wに当接し、初期亀裂a0 を形成するものであり、例えば、硬質金属、セラミック、タングステンカーバイド、ダイヤモンド含有焼結金属により作製された切断ホイールや切断刃とし、これを脆性部材2の端縁に接触させる。
【0031】
本発明においては、脆性部材2における亀裂aの発生は熱応力による割断としたが、さらに高熱源による加熱破壊(溶断)にてガラスに亀裂aの発生をさせた場合、ガラスの溶融及び収縮の際に亀裂aに多数の微細なクラック(マイクロクラック)が発生する。これにより、亀裂aが複雑な形状となり、分断すると多数のクラック(亀裂)に沿って割れるため、思わぬ方向へ破壊が進行し、切断面の表面精度が悪くなって製品の品質が低下する。従って、切断されたガラスの表面精度を高めるための砥石等による端面の仕上げ加工及びそれによって発生するガラス屑の洗浄作業が必要となり、生産コストが高くなったり、環境の悪化が生ずる。
しかし、本発明によれば、これらは全て解消でき、低エネルギーで高速、高精度に切断が行える。
【0032】
図3に示した切断装置についてさらに説明すると、積層板Wは傾斜作業面16に傾斜状にして下部に設けた搬送手段15に載置状とされている。そして、傾斜作業面16には、多数のエア噴出孔17が形成されており、エアの噴出により、積層板Wを浮上させ姿勢を保持している。さらに、傾斜作業面16には、レーザ式の距離センサ18が設けられており、積層板Wまでの距離を検知し、上記のレーザ光A,Bの焦点調整が行われる。
【0033】
また、積層板Wの切断方向について説明すると、切断線Yに沿って切断するには、上記第一作業ヘッド5及び第二作業ヘッド6をアーム部材10の上昇(又は下降)動作させ、積層板Wの一面側において第一レーザ照射手段7と第二レーザ照射手段8と冷却手段3、及び、他面側において第三レーザ照射手段9と冷却手段3を切断線Yに沿って走行させればよい。
【0034】
そして、この切断線Yに直交方向である切断線Xに沿って切断するには、第一作業ヘッド5及び第二作業ヘッド6を90°回転させ、搬送手段(コンベア)15により積層板Wを移動させながら、レーザの照射等を行えばよい。
また、第一作業ヘッド5及び第二作業ヘッド6を所定の角度に回転させ、搬送手段15とアーム部材10との連動動作により、斜め切断が可能となる。
【0035】
つまり、第一作業ヘッド5には、第一レーザ照射手段7と第二レーザ照射手段8と冷却手段3とが一直線上に配設されており、これら第一レーザ照射手段7と第二レーザ照射手段8と冷却手段3の直線配設方向は、第一作業ヘッド5の回転により積層板Wの切断線の方向に応じて方向変換可能とされており、また、第二作業ヘッド6には、第三レーザ照射手段9と冷却手段3とが一直線上に配設されており、これら第三レーザ照射手段9と冷却手段3の直線配設方向とは、第二作業ヘッド6の回転により積層板Wの切断線の方向に応じて方向変換可能とされている。
【0036】
【発明の効果】
本発明は上述の構成により次のような効果を奏する。
【0037】
(請求項1によれば)内層の樹脂部材1とその両面の脆性部材2,2とを一度に切断でき、工程短縮が図れる。切断線に沿ってレーザ照射手段7,8,9と冷却手段3とが移動でき、切断精度を高くすることができる。
【0038】
(請求項によれば)積層板Wを一方向にしたまま、任意の方向への切断が可能となり、作業の効率化が図れる。
【図面の簡単な説明】
【図1】 本発明の切断装置により切断される積層板の断面図である。
【図2】 本切断装置による作用を説明する積層板の断面図である。
【図3】 本発明に係る切断装置の斜視図である。
【図4】 脆性部材亀裂形成工程の説明図である。
【図5】 樹脂部材切断工程と脆性部材亀裂形成工程とが終了した状態の積層板の斜視図である。
【図6】 超音波による分断工程を説明する積層板の断面図である。
【図7】 従来の分断工程を説明する積層板の断面説明図である。
【符号の説明】
1 樹脂部材
2 脆性部材
3 冷却手段
4 切欠手段
5 第一作業ヘッド
6 第二作業ヘッド
7 第一レーザ照射手段
8 第二レーザ照射手段
9 第三レーザ照射手段
A 第一レーザ光
a 亀裂
0 初期亀裂
B 第二レーザ光
W 積層板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a disconnect device you along the laminate comprising a resin member and the brittle member to the cutting line.
[0002]
[Prior art]
A laminated plate composed of a glass plate and a plastic plate is used for security glass, automobile safety glass, and the like. The specific structure of the laminated plate is such that a single plastic plate such as polycarbonate is sandwiched between two glass plates and bonded together with an adhesive or the like.
As a conventional method for cutting this laminated plate into a desired shape and size, there are the following methods.
(1) A method of scratching the surface of a glass plate with a tool for cutting glass, and then cracking it by applying mechanical stress (bending force).
(2) A method in which a thermal stress is generated in a glass plate to cause cracks on the surface, and then mechanically (bending force) is applied for cracking (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 1-108006
[Problems to be solved by the invention]
However, in the methods (1) and (2) above, since the intermediate plastic layer cannot be cut along the cutting line, the glass plate on one side is largely cut with a tool and cut to expose the plastic plate, Thereafter, it is necessary to cut the plastic plate with a tool such as a heat cutter.
However, this method has the disadvantages that workability is very poor and work efficiency is poor, such as the need for cutting work with a cutting tool many times on the cutting line.
[0005]
Accordingly, the present invention aims at providing a simple and efficient resin member and the brittle member and disconnecting device laminates you accurately cut consisting of.
[0006]
[Means for Solving the Problems]
To achieve the above purposes mentioned, the cutting device according to the present invention, the resin member At a cutting device for cutting along the cutting line a laminate constructed by sandwiching a brittle member from both sides, of the laminate A first working head on one side and a second working head on the other side, wherein the first working head includes first laser irradiation means for cutting the resin member along the cutting line and brittleness on the one side. A second laser irradiation means for heating the member along the cutting line; and a cooling means for cooling the brittle member following the second laser irradiation means. A third laser irradiation means for heating the brittle member along the cutting line and a cooling means for cooling the brittle member following the third laser irradiation means.
Further, the first laser irradiation means, the second laser irradiation means, and the cooling means arranged in a straight line on the first work head, and the straight lines in the second work head. The direction in which the third laser irradiation unit and the linear arrangement direction of the cooling unit are arranged can be changed in accordance with the direction of the cutting line of the laminated plate.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
[0008]
The workpiece to be cut by the cutting device and the cutting method according to the present invention is a laminated plate in which a plastic plate is bonded to a glass plate. For example, as shown in FIG. 1, a single resin member (plastic plate) 1 is provided on both sides. 2 is a laminated plate W sandwiched between two brittle members (glass plates) 2, 2, with the brittle members 2, 2 being an outer layer and the resin member 1 being a plate member having a laminated structure of an intermediate layer. And now, this laminated board is used for the window glass for crime prevention.
[0009]
As the resin member 1 of the laminated board W, polycarbonate, polyethylene, PVT film, spray coating polymer film, or the like is used, and as the brittle member 2, flat glass, glass ceramic, ceramic, or the like is used.
The bonding between the resin member 1 and the brittle member 2 is performed by an adhesive layer, the resin member 1 formed on the brittle member 2 by an extrusion method, a casting method, a spray method, or a roller coating method, It is a structure formed by laminating a plastic film on a glass plate.
[0010]
FIG. 2 is a cross-sectional view of the laminated sheet W for explaining the cutting operation of the laminated sheet W. A cutting method for cutting the laminated plate W along a cutting line (a planned cutting line intended for cutting) includes a resin member cutting step of cutting only the resin member 1 of the laminated plate W with the first laser light A, In each of the brittle members 2, 2, the second laser beam B and the cooling means 3 for ejecting the cooling medium cause a crack a, a on the surface of the brittle member crack forming step, and cracks in both the brittle members 2, 2 a dividing step of dividing the laminated sheet W along a and a. And this resin member cutting process and a brittle member crack formation process are performed simultaneously, and the laminated board W is divided | segmented along the cutting line after that.
[0011]
That is, as shown in the perspective views of the cutting device in FIGS. 2 and 3, the first laser irradiation means 7 that irradiates the first laser light A and the second laser light B that irradiates one surface side of the laminated plate W. The laser irradiation means 8 and the cooling means 3 are disposed, and further, the third laser irradiation means 9 and the cooling means 3 for irradiating the second laser light B to the other surface side of the laminated plate W are disposed. Then, these are moved along the cutting line, and the first laser beam A, the second laser beam B, and the cooling medium by the cooling means 3 are irradiated and ejected from one side to the single laminated plate W, The second laser beam B and the cooling medium by the cooling means 3 are irradiated and ejected from the other surface side.
[0012]
The cutting device that cuts the laminated plate W along the cutting line will be further described. As shown in FIG. 3, this device includes a first working head 5 on one side of the laminated plate W and a second work on the other side. And a head 6. The first working head 5 includes a first laser irradiation means 7 for cutting the resin member 1 along the cutting line, a second laser irradiation means 8 for heating the brittle member 2 on the one surface side along the cutting line, and a second laser irradiation. Cooling means 3 for cooling the brittle member 2 by following the heating area H by means 8 with a predetermined gap G is provided. The second working head 6 follows the third laser irradiation means 9 for heating the brittle member 2 on the other surface along the cutting line and the heating area H by the third laser irradiation means 9 with a predetermined interval G. And a cooling means 3 for cooling the brittle member 2.
The first working head 5 and the second working head 6 are connected to the arm member 10 and can be moved (moved) relative to the laminated plate W by driving the arm member 10.
[0013]
An arrow E in FIG. 2 indicates the traveling direction of the laser irradiation means 7, 8, 9 and the cooling means 3, 3 with respect to the laminated plate W. In FIG. 2, the first laser light A for the resin member 1 is brittle. Although the second laser beam B for the member 2 is preceded by the cooling means 3 (the first laser beam A is on the front side in the traveling direction), on the contrary, although not shown, the second laser beam is omitted. B and the cooling means 3 may be preceded by the first laser beam A.
[0014]
The resin member cutting step will be described. The resin member 1 is cut along the cutting line by the first laser light A that passes through the brittle member 2 of the laminated plate W and is absorbed in the resin member 1 to heat the resin member 1. Work. The first laser beam A which is a laser for cutting the resin member (plastic) is a YAG laser, a YVO4 laser, a semiconductor laser or the like, and has an oscillation wavelength of 0.4 μm or more and less than 2 μm.
[0015]
That is, in this step, the laser beam having a wavelength absorbed by the resin member 1 is focused on the surface of the resin member 1 or the inside of the resin member 1 to collect energy and cut the resin member 1.
In addition to this, a laser having a wavelength that is transmitted through the brittle member 2 and absorbed by the resin member 1 and that can destroy the resin member 1 may be used. Etc. may be used.
[0016]
In the cutting of the resin member 1, it is thermally destroyed by the first laser beam A, but since both surfaces thereof are sandwiched by the brittle member 2 such as glass and isolated from the atmosphere, oxidation (combustion etc.) due to heat is caused. Since it hardly generates, it does not generate black smoke and is very preferable for the working environment.
[0017]
In the brittle member crack forming step, the respective brittle members 2 and 2 are heated by the second laser beams B and B and the cooling means 3 and 3 along the cutting line from both sides of the laminated plate W, and then cooled to cause thermal stress. Thus, the cracks a and a are generated on the surfaces of the brittle members 2 and 2, respectively, and are cleaved (thermal cleaving). That is, the brittle member 2 is heated by a heat source without melting or destroying the material surface, and the heated portion is rapidly cooled to generate a thermal stress inside the material, and the surface of the brittle member 2 is cracked by this thermal stress. a is generated.
[0018]
The second laser beam B cuts the brittle member 2 by using a laser having a wavelength that is absorbed by the brittle member 2. Specific examples of the second laser beam B include a CO 2 laser, a CO laser, and a semiconductor laser. The oscillation wavelength is 1 μm or more and 20 μm or less. In addition, the transmission region of normal glass has a wavelength of about 400 nm to 3000 nm.
That is, the laminated plate W composed of the brittle member 2 and the resin member 1 is cut in a non-contact manner and a crack a is formed using laser beams having different wavelengths.
[0019]
The cooling means 3 includes jetting means (nozzles) for blowing a cooling medium to the brittle member 2 and shutter means for blocking the blowing of the cooling medium. The cooling medium is a gas and a liquid, and air, There are gas-liquid mixture of air and water, gas such as helium, liquefied gas, dry ice and the like.
[0020]
Further, the crack forming process will be described. FIG. 4 is a plan view of the laminated board W for explaining the generation of cracks a in the brittle member 2, and is along a line intended for cutting the laminated board W (the dashed line in FIG. 4). Then, the brittle member 2 is heated by the second laser beam B, and the brittle member 2 is cooled by the cooling means 3 following the heating area H by the second laser beam B with a gap G. Furthermore, the interval G between the heating area H and the cooling point C by the cooling means 3 can be changed (adjusted).
[0021]
The heating area H is a region irradiated with the laminated plate W by a beam array of a plurality of laser beams (second laser light B) described later, and the cooling point C is a laminated plate made of a cooling medium. This is the center point of the cooling area on the W surface. The interval G represents the distance between the rear end of the heating area H and the cooling point C. As shown in FIG. 4, the arrow E indicates the traveling direction of the cooling medium with respect to the laminated plate W by the second laser beam B and the cooling means 3. That is, it can be said that the heating area H is ahead of the cooling point C.
FIG. 4 shows one surface side of the laminated plate W, and the first laser light A for cutting the resin member 1 moves (positions) further forward than the heating area H with a predetermined interval. Then, on the other surface side of the laminated plate W (not shown), the relationship between the heating area H and the cooling point C (not irradiated with the first laser light A) is the same as that on the one surface side.
[0022]
Further, the heating by the second laser beam B and the cooling by the cooling means 3 in the crack forming step will be further described. In the present invention, as shown in FIG. 4, a row of a plurality of beams having different energies is formed. The brittle member 2 is irradiated with this as the second laser beam B. That is, although not shown, the second laser irradiation means 8 has conversion means (beam splitter) that converts a single laser beam into a beam train of a plurality of beams, and the longitudinal direction of the heating area H by the beam train is changed. The cutting line direction of the laminated board W is used.
[0023]
Further, the generation of the crack a due to the thermal stress will be further described. By heating the brittle member 2, the heated region (range wider than the heating area H) works to expand inside the brittle member 2, and FIG. As shown, a compressive stress is generated in the brittle member 2 because it is pushed back by an unheated region around it. Thereafter, when the rear side position of the heating area H is cooled, the thermally expanded portion contracts suddenly and tensile stress is generated. When this tensile stress exceeds the fracture toughness value of the material, the surface of the material is cracked. a is formed.
[0024]
The cooling point C has an optimum portion depending on the heating distribution, and the maximum tensile stress can be efficiently generated by accurately giving a cooling action to the portion. That is, as the cooling point C by the cooling means 3, as shown in FIG. 4, the stress inflection points 11 to 11 at which the compressive stress of the brittle member 2 caused by expansion due to heating on the cutting line of the brittle member 2 changes to tensile stress. The vicinity thereof may be cooled to cause a crack a on the surface of the brittle member 2.
Specifically, as shown in FIG. 4, compressive stress acts on the heated area in the brittle member 2, but nothing is done on the front side and the rear side in the movement direction of the heat source (heating area H). In the state) tensile stress is acting. And what is necessary is just to cool the point on the cutting line of the back side of the heating area H, Comprising: This internal stress changes from compression to tension | tensile_strength.
[0025]
The stress generated in the brittle member 2 can be analyzed using, for example, a finite element method, and the position to be cooled can be specified. That is, a position (inflection point) 11 where the compressive stress changes to the tensile stress exists at a position determined by the material characteristics, the heat source, the heat distribution behind the heat source, and the like. The generated internal stress can be maximized by cooling the area around this position and expanding the temperature difference around the inflection point 11. In this case, since the tensile stress that generates the crack a is generated at a position exceeding the inflection point 11, the area to be cooled may be extremely small, and the cooling amount may be a certain amount or more that generates stress exceeding the strength of the material. Therefore, the result is not easily affected by changes in the cooling amount.
[0026]
Then, through the resin member cutting step and the brittle member crack forming step, the resin member 1 is cut along the cutting line and a crack a can be formed on the surface of the brittle member 2 as shown in FIG. Then, in the subsequent dividing step, the laminated plate W is divided along the cracks a and a generated in the brittle members 2 and 2 on both sides.
[0027]
The splitting process will be explained. Since the brittle members 2 and 2 are arranged on both sides of the laminated sheet W, the brittle members 2 and 2 on both sides need to be separated (divided). Then, as shown in FIG. 5, the brittle members 2 and 2 are formed with cracks a and a that open in opposite directions, respectively, so that the laminated plate as in the conventional method shown in FIG. When bending force is applied to the entire W, the crack 13 on one side can act in the direction of opening the crack 13 to break the brittle member 2 on one side, but the crack 14 on the other side is crack 14 The direction is to close. Therefore, in order to split both sides, it is necessary to apply a large bending force to both sides. Furthermore, a material having high strength such as security glass requires a large force to bend the material. In addition, there is a problem that the apparatus becomes large and requires a large amount of power, resulting in an increase in cost.
[0028]
Furthermore, in this conventional method, when one surface side is divided and then the other surface side is divided, the already divided surfaces are pressed against each other, and the surfaces are broken to reduce the quality and accuracy of the cut surface. In addition, glass powder is generated, which is undesirable for the environment.
Therefore, in the present invention, in this dividing step, as shown in FIG. 6, the crack a on the surface of the brittle member 2 caused by thermal stress is advanced in the thickness direction of the brittle member 2 by ultrasonic waves, and the laminated board W is divided.
[0029]
A specific configuration will be described. As shown in FIG. 6, the contact portion of the ultrasonic wave generating means 12 is brought into contact with the crack a on the surface of the material or the vicinity thereof from both sides of the laminate W to generate ultrasonic waves. The ultrasonic wave is propagated in the material in a direction perpendicular to the surface of the laminated plate W. Ultrasonic waves traveling inside the material is, in the gas or liquid is longitudinal, not only longitudinal waves in solids, the displacement is to have also the action of progression Direction perpendicular transverse. Thereby, the force in the opening direction and the force in the closing direction act alternately on the front ends of the cracks a and a on both sides, and the crack a formed on the surface by the force in the opening direction It can proceed toward the back surface of the brittle member 2.
[0030]
In addition, before the resin member cutting step and the brittle member crack forming step are started, an initial crack a 0 is formed by mechanical means at the cutting start point (edge of the laminated plate W) of the cutting line of the laminated plate W. Form. That is, after the initial crack a 0 is formed by the mechanical notch means 4 at the starting end of the cutting line of the laminate W, the second laser beam B is irradiated along the cutting line from the position near the initial crack a 0 .
As shown in FIG. 3, this notch means 4 is installed in the first working head 5 and the second working head 6 and is automatically controlled and driven to come into contact with the laminated plate W to form an initial crack a 0. For example, a cutting wheel or cutting blade made of hard metal, ceramic, tungsten carbide, or diamond-containing sintered metal is used, and this is brought into contact with the edge of the brittle member 2.
[0031]
In the present invention, the crack a in the brittle member 2 is cleaved due to thermal stress. However, when crack a is generated in the glass by heat destruction (melting) by a high heat source, the melting and shrinkage of the glass is caused. At this time, many fine cracks (microcracks) are generated in the crack a. As a result, the crack a has a complicated shape, and when divided, it breaks along a large number of cracks (cracks), so that the breakage progresses in an unexpected direction, the surface accuracy of the cut surface is deteriorated, and the quality of the product is deteriorated. Therefore, it is necessary to finish the end face with a grindstone or the like for improving the surface accuracy of the cut glass and to clean glass waste generated thereby, resulting in an increase in production cost and deterioration of the environment.
However, according to the present invention, all of these can be eliminated, and cutting can be performed with low energy, high speed and high accuracy.
[0032]
The cutting apparatus shown in FIG. 3 will be further described. The laminated plate W is inclined on the inclined work surface 16 and is placed on the conveying means 15 provided in the lower portion. A large number of air ejection holes 17 are formed in the inclined work surface 16, and the laminated sheet W is lifted and held in an attitude by the air ejection. Further, a laser type distance sensor 18 is provided on the inclined work surface 16, and the distance to the laminated plate W is detected to adjust the focus of the laser beams A and B described above.
[0033]
The cutting direction of the laminated plate W will be described. To cut along the cutting line Y, the first working head 5 and the second working head 6 are moved up (or lowered) by the arm member 10, and the laminated plate If the first laser irradiating means 7, the second laser irradiating means 8, the cooling means 3 on one surface side of W and the third laser irradiating means 9 and cooling means 3 on the other surface side run along the cutting line Y, Good.
[0034]
In order to cut along the cutting line X which is orthogonal to the cutting line Y, the first working head 5 and the second working head 6 are rotated by 90 °, and the laminated plate W is moved by the conveying means (conveyor) 15. Laser irradiation or the like may be performed while moving.
Further, the first working head 5 and the second working head 6 are rotated at a predetermined angle, and the oblique cutting is possible by the interlocking operation of the conveying means 15 and the arm member 10.
[0035]
That is, the first laser irradiation means 7, the second laser irradiation means 8, and the cooling means 3 are arranged in a straight line on the first working head 5, and these first laser irradiation means 7 and the second laser irradiation means. The linear arrangement direction of the means 8 and the cooling means 3 can be changed according to the direction of the cutting line of the laminated plate W by the rotation of the first work head 5, and the second work head 6 includes The third laser irradiation means 9 and the cooling means 3 are arranged in a straight line, and the linear arrangement direction of the third laser irradiation means 9 and the cooling means 3 is determined by the rotation of the second working head 6 and the laminated plate. The direction can be changed according to the direction of the W cutting line.
[0036]
【The invention's effect】
The present invention has the following effects by the above-described configuration.
[0037]
(According to claim 1) in layer of the resin member 1 and be cut at once and brittle members 2 of both sides, thereby the process shortened. The laser irradiation means 7, 8, 9 and the cooling means 3 can move along the cutting line, and the cutting accuracy can be increased.
[0038]
(According to claim 2 ) It becomes possible to cut in any direction while keeping the laminated sheet W in one direction, and work efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a laminated board cut by a cutting device of the present invention.
FIG. 2 is a cross-sectional view of a laminated board for explaining the operation of the cutting device .
FIG. 3 is a perspective view of a cutting device according to the present invention.
FIG. 4 is an explanatory diagram of a brittle member crack forming step.
FIG. 5 is a perspective view of a laminated board in a state where a resin member cutting step and a brittle member crack forming step are completed.
FIG. 6 is a cross-sectional view of a laminated plate for explaining a cutting process using ultrasonic waves.
FIG. 7 is a cross-sectional explanatory view of a laminated board for explaining a conventional dividing step.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Resin member 2 Brittle member 3 Cooling means 4 Notch means 5 First work head 6 Second work head 7 First laser irradiation means 8 Second laser irradiation means 9 Third laser irradiation means A First laser light a Crack a 0 Initial stage Crack B Second laser beam W Laminated plate

Claims (2)

樹脂部材(1)を両面から脆性部材(2)(2)により挟んで構成した積層板(W)を切断線に沿って切断する切断装置に於て、上記積層板(W)の一面側の第一作業ヘッド(5)と他面側の第二作業ヘッド(6)とを備え、上記第一作業ヘッド(5)は、上記樹脂部材(1)を上記切断線に沿って切断する第一レーザ照射手段(7)と上記一面側の脆性部材(2)を上記切断線に沿って加熱する第二レーザ照射手段(8)と該第二レーザ照射手段(8)に追従して該脆性部材(2)を冷却する冷却手段(3)とを有し、上記第二作業ヘッド(6)は、上記他面側の脆性部材(2)を該切断線に沿って加熱する第三レーザ照射手段(9)と該第三レーザ照射手段(9)に追従して該脆性部材(2)を冷却する冷却手段(3)とを有することを特徴とする切断装置。  In a cutting apparatus for cutting a laminated board (W) constituted by sandwiching a resin member (1) from both sides by brittle members (2) and (2) along a cutting line, the one side of the laminated board (W) is provided. A first work head (5) and a second work head (6) on the other surface side are provided, and the first work head (5) is a first for cutting the resin member (1) along the cutting line. A second laser irradiation means (8) for heating the laser irradiation means (7) and the brittle member (2) on the one surface side along the cutting line, and the brittle member following the second laser irradiation means (8). Cooling means (3) for cooling (2), and the second working head (6) is a third laser irradiation means for heating the brittle member (2) on the other side along the cutting line. (9) and a cooling means (3) for cooling the brittle member (2) following the third laser irradiation means (9). Cutting device and butterflies. 上記第一作業ヘッド(5)に一直線上に配設された上記第一レーザ照射手段(7)と第二レーザ照射手段(8)と冷却手段(3)の直線配設方向と、上記第二作業ヘッド(6)に一直線上に配設された上記第三レーザ照射手段(9)と上記冷却手段(3)の直線配設方向とが、上記積層板(W)の切断線の方向に応じて方向変換可能とされた請求項記載の切断装置。The first laser irradiation means (7), the second laser irradiation means (8) and the cooling means (3) arranged in a straight line on the first working head (5), and the second arrangement direction of the second laser irradiation means (8) and the cooling means (3). The linear arrangement direction of the third laser irradiation means (9) and the cooling means (3) arranged in a straight line on the work head (6) depends on the direction of the cutting line of the laminate (W). cutting device according to claim 1 which is capable redirecting Te.
JP2002351329A 2002-12-03 2002-12-03 Cutting device Expired - Fee Related JP3929393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351329A JP3929393B2 (en) 2002-12-03 2002-12-03 Cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351329A JP3929393B2 (en) 2002-12-03 2002-12-03 Cutting device

Publications (2)

Publication Number Publication Date
JP2004182530A JP2004182530A (en) 2004-07-02
JP3929393B2 true JP3929393B2 (en) 2007-06-13

Family

ID=32753273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351329A Expired - Fee Related JP3929393B2 (en) 2002-12-03 2002-12-03 Cutting device

Country Status (1)

Country Link
JP (1) JP3929393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104647840A (en) * 2011-05-13 2015-05-27 日本电气硝子株式会社 Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100626554B1 (en) * 2004-05-11 2006-09-21 주식회사 탑 엔지니어링 Device for Cutting Glass Substrate in Manufacturing Process of Flat Type Display and Method for controlling depth of cutting for the Glass Substrate
WO2007037118A1 (en) * 2005-09-28 2007-04-05 Shibaura Mechatronics Corporation Laser cutting device, laser cutting system and laser cutting method for brittle material
JP2007246298A (en) * 2006-03-13 2007-09-27 Shibuya Kogyo Co Ltd Method and apparatus for cutting brittle material
DE102007008634B3 (en) * 2007-02-16 2008-08-07 Jenoptik Automatisierungstechnik Gmbh Cutting laminated glass sheets to make liquid crystal- and other electronic displays, supports glass on worktable and cuts from above and below using laser beams and coolant jets
CN102672741B (en) 2008-01-15 2015-06-03 三星钻石工业股份有限公司 Cutting blade
JP2010037140A (en) * 2008-08-05 2010-02-18 Omron Corp Method and device for cutting glass plate
DE102008048255A1 (en) * 2008-09-22 2010-04-01 Hegla Gmbh & Co. Kg Method and apparatus for separating laminated safety glass from laminated safety glass panels
IT1394939B1 (en) * 2009-01-13 2012-07-27 Bottero Spa METHOD AND MACHINE FOR CUTTING A LAMINATED GLASS SHEET
JPWO2010097908A1 (en) * 2009-02-25 2012-08-30 セイコーインスツル株式会社 Bonding glass cutting method, package manufacturing method, package, piezoelectric vibrator, oscillator, electronic device, and radio timepiece
DE102010012265B4 (en) 2010-03-22 2012-09-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for separating individual slices from a composite glass sheet and use of a device therefor
JP5669001B2 (en) 2010-07-22 2015-02-12 日本電気硝子株式会社 Glass film cleaving method, glass roll manufacturing method, and glass film cleaving apparatus
JP5309107B2 (en) * 2010-10-05 2013-10-09 三星ダイヤモンド工業株式会社 Fragment material substrate cutting device
EP2754524B1 (en) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line
EP2781296B1 (en) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Device and method for cutting out contours from flat substrates using a laser
KR101511638B1 (en) 2013-09-24 2015-04-13 김광식 The apparatus for cutting the thin glass plate
KR101438137B1 (en) * 2013-11-26 2014-09-12 김광식 The apparatus for cutting the thin glass plate and the method therefor
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
EP2978716A1 (en) * 2014-02-10 2016-02-03 LISEC Austria GmbH Method for cutting laminated glass
EA032743B1 (en) * 2014-03-04 2019-07-31 Сэн-Гобэн Гласс Франс Method for cutting a laminated ultra-thin glass layer
CN106687419A (en) 2014-07-08 2017-05-17 康宁股份有限公司 Methods and apparatuses for laser processing materials
EP3169477B1 (en) 2014-07-14 2020-01-29 Corning Incorporated System for and method of processing transparent materials using laser beam focal lines adjustable in length and diameter
JP2016166120A (en) * 2015-03-06 2016-09-15 三星ダイヤモンド工業株式会社 Processing method of laminated substrate, and processing device of laminated substrate by laser beam
KR102546692B1 (en) 2015-03-24 2023-06-22 코닝 인코포레이티드 Laser Cutting and Processing of Display Glass Compositions
WO2017011296A1 (en) 2015-07-10 2017-01-19 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
PL3334697T3 (en) 2015-08-10 2022-01-24 Saint-Gobain Glass France Method for cutting a thin glass layer
DE102016110351B4 (en) * 2016-06-03 2019-08-29 Carl Zeiss Meditec Ag Process for producing an optical element
KR102078294B1 (en) 2016-09-30 2020-02-17 코닝 인코포레이티드 Apparatus and method for laser machining transparent workpieces using non-axisymmetric beam spots
EP3848333A1 (en) 2016-10-24 2021-07-14 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) * 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
DE102019116560A1 (en) * 2019-01-22 2020-07-23 Hegla Gmbh & Co. Kg Device and method for separating a laminated safety glass panel
CN111948136B (en) * 2020-08-25 2023-07-07 温州大学 Resin drill peeling strength detection method and sample preparation equipment thereof
JP2022149835A (en) * 2021-03-25 2022-10-07 日本電気硝子株式会社 Production method of glass sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104647840A (en) * 2011-05-13 2015-05-27 日本电气硝子株式会社 Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
CN104691058A (en) * 2011-05-13 2015-06-10 日本电气硝子株式会社 Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
US9446566B2 (en) 2011-05-13 2016-09-20 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
CN104691058B (en) * 2011-05-13 2016-09-28 日本电气硝子株式会社 Duplexer, the cutting-off method of duplexer and the processing method of duplexer and the shearing device of fragility plate object and cutting-off method
CN104647840B (en) * 2011-05-13 2017-06-06 日本电气硝子株式会社 The shearing device and cutting-off method of layered product, the processing method of the cutting-off method of layered product and layered product and fragility plate object
US10279568B2 (en) 2011-05-13 2019-05-07 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object

Also Published As

Publication number Publication date
JP2004182530A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP3929393B2 (en) Cutting device
JP7191908B2 (en) Method and apparatus for laser-assisted separation of partial pieces from planar glass members
TWI460044B (en) Thermal Stress Cutting Method for Brittle Materials
JP3792639B2 (en) Cutting device
JP5249979B2 (en) Method of processing brittle material substrate and laser processing apparatus used therefor
JP5525491B2 (en) Control of crack depth in laser scoring.
JP4175636B2 (en) Glass cutting method
JP6378167B2 (en) Thermal laser scribe cutting method and apparatus for manufacturing electrochromic devices and corresponding cut glass panels
US6592703B1 (en) Method and apparatus for cutting a laminate made of a brittle material and a plastic
JP4795704B2 (en) Method for free-form cutting of curved substrate manufactured from brittle material
JP5325209B2 (en) Processing method of brittle material substrate
JP2004501052A (en) Method of manufacturing glass sheet of arbitrary contour from flat glass
US20070051461A1 (en) Method for joining plastic work pieces
WO2008147510A1 (en) Apparatus for separation of glasses and methods therefor
KR20090027565A (en) Method for chamfering substrate of brittle material
KR20120004456A (en) Precision laser scoring
JP4256840B2 (en) Laser cutting method and apparatus
WO2009128314A1 (en) Method for processing fragile material substrate
KR101404250B1 (en) Splitting apparatus and cleavage method for brittle material
TW201620844A (en) Dividing method and dividing device
JP2007260749A (en) Laser beam machining method and apparatus, and machined product of brittle material
US20160318790A1 (en) Method and system for scribing heat processed transparent materials
JP4709599B2 (en) Laser processing method, laser processing apparatus, and structural member manufactured by laser processing method
JP2004035315A5 (en)
CN113453902B (en) Apparatus and method for separating composite safety glass sheets

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees