JP4709599B2 - Laser processing method, laser processing apparatus, and structural member manufactured by laser processing method - Google Patents

Laser processing method, laser processing apparatus, and structural member manufactured by laser processing method Download PDF

Info

Publication number
JP4709599B2
JP4709599B2 JP2005205541A JP2005205541A JP4709599B2 JP 4709599 B2 JP4709599 B2 JP 4709599B2 JP 2005205541 A JP2005205541 A JP 2005205541A JP 2005205541 A JP2005205541 A JP 2005205541A JP 4709599 B2 JP4709599 B2 JP 4709599B2
Authority
JP
Japan
Prior art keywords
temperature
laser
laser beam
workpiece
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005205541A
Other languages
Japanese (ja)
Other versions
JP2007021518A (en
Inventor
基 城戸
浩文 今井
直也 浜田
弘二 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005205541A priority Critical patent/JP4709599B2/en
Publication of JP2007021518A publication Critical patent/JP2007021518A/en
Application granted granted Critical
Publication of JP4709599B2 publication Critical patent/JP4709599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は,被加工材の表面にレーザビームを照射し,該表面及びその直下部分の被加工部を切断または破砕するレーザ加工技術に関し,特に被加工部に熱応力起因の切断または破砕を生じさせるレーザ加工に用いて好適な技術である。   The present invention relates to a laser processing technique for irradiating a surface of a workpiece with a laser beam, and cutting or crushing the surface and a portion to be processed immediately below the surface. This technique is suitable for use in laser processing.

一般にコンクリート,岩石等の構造材を除去加工や解体する際には,ダイヤモンドソーによる切断や,物理的な衝撃を与える小さな破壊を繰り返すことにより進めて行くことが多い。その際,被加工物が屋外にあり,大型で,且つ加工寄りつき方向の自由度も少ない為,高加工精度で充分な加工効率をもつ加工方法がなかった。特に,近年重要となってきている既設建造物,構造物等の修繕工事に於いては,従来のダイヤモンドソーや物理衝撃による加工法では,振動・騒音問題等で対応不可能な状況も発生する。   In general, when removing and dismantling structural materials such as concrete and rock, it is often carried out by repeatedly cutting with a diamond saw or performing a small break that gives a physical impact. At that time, there was no machining method with high machining accuracy and sufficient machining efficiency because the work piece was outdoors, it was large and the degree of freedom in the machining approaching direction was small. In particular, in the repair work of existing buildings and structures, which have become important in recent years, there are cases where conventional diamond saws and processing methods using physical impact cannot be handled due to vibration and noise problems. .

これに対する新しい構造材加工方法として,屋外でも適用可能で,振動・騒音問題のほとんどないレーザビームによる加工技術が注目されている。例えば,特許文献1には,コンクリートにレーザビームを集光・照射することにより,レーザビームの持っているエネルギー密度を高め,これにより被加工材の加工部を溶融切断する技術が開示されている。また,特許文献2には,コンクリートや岩石等のセラミック構造体に穿孔する技術が開示されている。しかし,一般的にコンクリート等の構造材は奥行きが深く,かつレーザビームやガスが反対面に貫通していない加工状況が多いため,溶融した構造材であるドロスを被加工部近傍から排出しにくく,レーザビームのエネルギーが有効に利用されていないことが多い。   As a new structural material processing method, laser beam processing technology that can be applied outdoors and has almost no vibration and noise problems is attracting attention. For example, Patent Document 1 discloses a technique for increasing the energy density of a laser beam by condensing and irradiating the laser beam on concrete, thereby melting and cutting a processed portion of the workpiece. . Patent Document 2 discloses a technique for perforating a ceramic structure such as concrete or rock. However, since structural materials such as concrete are generally deep and there are many machining situations in which laser beams and gases do not penetrate the opposite surface, it is difficult to discharge dross, which is a molten structural material, from the vicinity of the workpiece. In many cases, the energy of the laser beam is not used effectively.

この場合,加工効率(単位時間当たりの加工除去量で定義)を高めるためには,レーザビームを吸収,反射してしまう溶融ドロス(以下ではドロスと記す)を効率良く除去して,レーザビームが常に被加工材の新しい表面に直接当たるようにする必要がある。このため,特許文献3では,ガス噴射によるドロス除去や,添加材によるドロスの粘性を低下させ除去改善を図る等,種々の技術が開示されている。しかし,完全にはドロスを除去し切れず,ダイヤモンドブレードや物理衝撃破壊等を使用した加工方法に比較してレーザ加工の加工能率が悪いという問題があった。これらに対し特許文献4に記載されているような,コンクリート内に比較的吸収率の高い液体(水)を吸収させ,加工に寄与するレーザエネルギーを増加させる試みもあったが,加工全域に液体をまんべんなく吸収させることは難しい上,コンクリートを溶融除去するという観点では大きな改善は得られなかった。 また,レーザ出力容量を増加させ加工速度を上げる考え方も,野外での施工を考えると現実的ではなかった。   In this case, in order to increase the processing efficiency (defined by the amount of processing removal per unit time), the molten dross that absorbs and reflects the laser beam (hereinafter referred to as dross) is efficiently removed, and the laser beam is It is always necessary to make direct contact with the new surface of the workpiece. For this reason, Patent Document 3 discloses various techniques such as dross removal by gas injection and reduction of dross viscosity by additive material to improve removal. However, there was a problem that the dross could not be completely removed and the machining efficiency of laser machining was poor compared to machining methods using diamond blades or physical impact fracture. On the other hand, as described in Patent Document 4, there has been an attempt to absorb a liquid (water) having a relatively high absorption rate in concrete and increase the laser energy contributing to processing. It was difficult to absorb all of them uniformly, and no significant improvement was obtained from the viewpoint of melting and removing concrete. In addition, the idea of increasing the laser output capacity and increasing the processing speed was not realistic considering the construction in the field.

特開平10−18612号公報Japanese Patent Laid-Open No. 10-18612 特開2000−170473号公報JP 2000-170473 A 特開2000−170475号公報JP 2000-170475 A 特開昭64−15296号公報JP-A 64-15296

コンクリートや岩石等の無機材料もしくは有機材料,又はその両方からなる構造材を被加工材として切断または破砕加工する際の,従来のレーザビーム加工法の問題点に鑑みて,本発明は,加工のためのレーザビームのエネルギー利用効率を可及的に高く,且つ高速加工ができる構造材のレーザ加工方法及びレーザ加工装置を提供し,あわせて該レーザ加工方法にて製造された構造部材を提供することを目的とする。   In view of the problems of the conventional laser beam processing method when cutting or crushing a structural material made of an inorganic material or an organic material such as concrete or rock, or both, as a workpiece, the present invention The present invention provides a laser processing method and a laser processing apparatus for a structural material capable of high-speed processing with the energy utilization efficiency of the laser beam as high as possible, and also provides a structural member manufactured by the laser processing method. For the purpose.

本発明者は,レーザビームを用いたレーザ加工によるコンクリート等の構造材の破砕メカニズムを詳細に検討した結果,以下のような知見を得た。従来のレーザ加工方法は,言わば見かけの破砕力を大きくするためにレーザビーム強度を大きくして被加工部に照射するものであり,構造材の溶融,高温軟化,又は蒸発除去を主メカニズムとする加工であった。溶融,高温軟化,及び蒸発を発生するのに多量のレーザビームエネルギーを投入する必要があることに加えて,溶融又は高温軟化した構造材によるレーザビームの吸収,反射,及び散乱が生じることが判明した。そこで,レーザビームを被加工部に照射する際に,被加工材の溶融,高温軟化,又は昇華を抑制しながら,被加工部を急速加熱する,または加熱後に急冷することにより,レーザビーム照射部と近傍の低温部との間に大きな熱応力を発生させて,被加工部に熱応力起因の破砕現象をおこすことにより,従来法に比して高速かつ高エネルギー効率で切断又は破砕加工する方法を発明するに至った。なお,本発明において,「熱応力起因の破砕」とは,加工部にレーザビームを照射して昇温させたことにより,被加工材内部に発生する熱応力による破砕と,昇温後冷却させたことにより,被加工材内部に発生する熱応力による破砕の両方を含む。   As a result of detailed examination of the crushing mechanism of structural materials such as concrete by laser processing using a laser beam, the present inventor has obtained the following knowledge. The conventional laser processing method is to increase the laser beam intensity and irradiate the part to be processed in order to increase the apparent crushing force. The main mechanism is the melting, high temperature softening, or evaporative removal of the structural material. It was processing. In addition to the need to use large amounts of laser beam energy to generate melting, high temperature softening, and evaporation, laser beam absorption, reflection, and scattering are found to be caused by molten or high temperature softening structures did. Therefore, when the laser beam is irradiated onto the workpiece, the workpiece is rapidly heated or rapidly cooled after heating while suppressing melting, high-temperature softening, or sublimation of the workpiece. A method of cutting or crushing at a higher speed and higher energy efficiency than the conventional method by generating a large thermal stress between the low temperature part and the nearby low temperature part and causing a crushing phenomenon due to the thermal stress in the work part. It came to invent. In the present invention, “fracturing due to thermal stress” means that the processing part is irradiated with a laser beam to raise the temperature, thereby causing fracture due to thermal stress generated inside the workpiece and cooling after the temperature rise. This includes both fracture due to thermal stress generated inside the workpiece.

本発明の要旨とするところは, 以下に記載の如くである。
(1) 本発明のレーザ加工方法は,コンクリートまたは岩石からなる構造部材を被加工材し,レーザビームを被加工材の所定の加工部に照射して昇温し,該加工部で熱応力起因の破砕を発生させるレーザ加工方法であって,前記レーザビームの照射により,加工部の最高温度が,被加工材の融点又は軟化温度以下となるように,加工部の表面の二次元温度分布を放射温度計を用いて測定して、レーザビームのパワー,走査速度,又は加工部上のレーザビームスポット寸法形状を制御することを特徴とする。
(2) 本発明のレーザ加工方法は,(1)に記載の発明において,前記レーザビームはパルス光であって,冷却ガス又は冷却液を加工部に付与しながらレーザビームを照射することを特徴とする。
(3) 本発明のレーザ加工方法は,(1)に記載の発明において,前記レーザビームはパルス光又は連続光であって,レーザビーム照射により,加工部の最高温度が被加工材の融点,軟化温度,熱分解温度,又は昇華点以下で,且つ,融点,軟化温度,熱分解温度,又は昇華点と,加工部の最高温度との温度差が300℃以内となるようにレーザビームのパワー,走査速度,又は加工部上のレーザビーム寸法形状を制御することを特徴とする。
(4) (1)〜()のうちの一つに記載のレーザ加工方法により加工された構造部材である。
(5) 本発明のレーザ加工装置は,コンクリートまたは岩石からなる構造部材を被加工材とし、レーザ光源と,該レーザ光源から出射したレーザビームを被加工材の所定の加工部に集光照射するためのレーザ集光光学系と,前記レーザビームを被加工材上で走査する為のスキャニング装置とを具備し,前記被加工材の所定の加工部にレーザビームを集光照射して昇温し,該加工部で熱応力起因の破砕を発生させるレーザ加工装置であって,前記加工部の表面の二次元温度分布を検知する放射温度計を具備し,該放射温度計の温度測定データの最高温度が前記被加工材の融点,軟化温度,熱分解温度,又は昇華点以下の温度で破砕加工できるようにしたことを特徴とする。
(6) 本発明のレーザ加工装置は,(5)に記載のレーザ加工装置であって,前記放射温度計の温度測定データに基づいて前記レーザビームのパワーを制御する最高温度制御部を具備し,前記被加工材の融点,軟化温度,熱分解温度,又は昇華点以下の温度で破砕加工できるようにしたことを特徴とする。
(7) 本発明のレーザ加工装置は,(5)又は(6)に記載のレーザ加工装置において,前記加工部で発生する加工屑を排出する為の吸引ノズルと,前記レーザビームを被加工材上で走査する為のスキャニング装置とを具備することを特徴とする。
The gist of the present invention is as described below.
(1) In the laser processing method of the present invention, a structural member made of concrete or rock is processed, and a laser beam is irradiated to a predetermined processing portion of the processing material to raise the temperature. A two-dimensional temperature distribution on the surface of the processed part so that the maximum temperature of the processed part is lower than the melting point or softening temperature of the workpiece by the laser beam irradiation. The measurement is performed using a radiation thermometer, and the laser beam power, the scanning speed, or the laser beam spot size shape on the processing portion is controlled .
(2) In the laser processing method of the present invention, in the invention described in (1 ), the laser beam is pulsed light, and the laser beam is irradiated while applying a cooling gas or a cooling liquid to the processing portion. And
(3) the laser processing method of the present invention is the invention described in (1), before Symbol laser beam is a pulsed light or continuous light, the laser by the beam irradiation, the maximum temperature of the working portion is the melting point of the workpiece , Softening temperature, thermal decomposition temperature, or sublimation point or less, and the temperature difference between the melting point, softening temperature, thermal decomposition temperature, or sublimation point and the maximum temperature of the processed part is within 300 ° C. It is characterized by controlling the power, the scanning speed, or the size and shape of the laser beam on the processing part.
(4) A structural member processed by the laser processing method according to any one of (1) to ( 3 ).
(5) The laser processing apparatus of the present invention uses a structural member made of concrete or rock as a workpiece, and condenses and irradiates a laser light source and a laser beam emitted from the laser light source onto a predetermined processing portion of the workpiece. A laser condensing optical system for scanning and a scanning device for scanning the laser beam on the workpiece, and the laser beam is focused on a predetermined processing portion of the workpiece to raise the temperature. And a laser processing apparatus for generating fracture due to thermal stress in the processed part, comprising a radiation thermometer for detecting a two-dimensional temperature distribution on the surface of the processed part, and for measuring temperature measurement data of the radiation thermometer. It is characterized in that the maximum temperature can be crushed at the melting point, softening temperature, thermal decomposition temperature, or sublimation point temperature of the workpiece .
(6) The laser processing apparatus of the present invention, (5) A laser processing apparatus according to, comprising a maximum temperature control unit for controlling the power of the laser beam on the basis of the temperature measurement data of the radiation thermometer The material can be crushed at a melting point, a softening temperature, a thermal decomposition temperature, or a temperature below the sublimation point of the workpiece.
(7) The laser processing apparatus of the present invention, (5) or in the laser processing apparatus according to (6), a suction nozzle for discharging the swarf generated in the previous SL machining unit, the workpiece the laser beam characterized by comprising a scanning device for scanning on wood.

本発明によれば,構造材を被加工材とするレーザ加工方法において,被加工材の溶融,高温軟化,熱分解,又は昇華を抑制した熱応力起因の破砕現象を利用して加工することにより,レーザビームのエネルギー損失を抑制し高エネルギー効率で高速にレーザ加工を実施することができる。そのために,レーザ加工の特徴である充分な加工精度とエネルギー効率を持ち,比較的小容量のレーザ装置で実施可能な加工を実現でき,産業上有用な著しい効果を奏する。   According to the present invention, in a laser processing method using a structural material as a work material, the work material is processed using a fracture phenomenon caused by thermal stress that suppresses melting, high-temperature softening, thermal decomposition, or sublimation of the work material. , Laser processing can be performed at high speed with high energy efficiency by suppressing energy loss of the laser beam. Therefore, it is possible to realize processing that has sufficient processing accuracy and energy efficiency, which is a feature of laser processing, and can be performed with a relatively small-capacity laser device, and has a remarkable industrially useful effect.

以下,本発明の実施の形態を図面を参照しつつ詳細に説明する。なお,本明細書および図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
<第一の実施の形態>
図1は,本発明におけるレーザ加工方法の実施の形態の一例を示す概略図である。図1は,レーザ加工線に沿って被加工材3の断面を図示したものである。加工点7近傍には,加熱用のレーザビーム1,ガス又は液体を噴射する噴射ノズル4,粉体を吸引する為の吸引ノズル6が設置されている。レーザビーム1を集光光学系である集光レンズ2により被加工物3に集光・照射し,被加工物3表面を昇温させて被加工物3表面近傍を部分的に膨張させ,発生させた熱応力により破砕する。破砕された被加工材破砕物5は自然落下するが,噴射ノズル4から噴射した粉体除去用の窒素ガス等のアシストガス,又は水等の液体で加工部より除去するとさらに加工性が改善する。また,被加工材破砕物5の一部又は全部を吸引ノズル6にて除去しても良い。上記は,加工部表層を加熱し,膨張させることにより発生させた熱応力で破砕する手法であるが,レーザビーム1により加熱を受けた被加工部を冷却して部分的に収縮させ,冷却の際に発生する熱応力によって被加工材5を破砕することもできる。その場合には,冷却用ガス,又は冷却用液体を噴出ノズル4より加工点7付近に噴射することにより破砕を行っても良い。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
<First embodiment>
FIG. 1 is a schematic diagram showing an example of an embodiment of a laser processing method according to the present invention. FIG. 1 illustrates a cross section of the workpiece 3 along the laser processing line. In the vicinity of the processing point 7, a heating laser beam 1, an injection nozzle 4 for injecting gas or liquid, and a suction nozzle 6 for sucking powder are installed. A laser beam 1 is condensed and irradiated on a workpiece 3 by a condenser lens 2 which is a condensing optical system, the surface of the workpiece 3 is heated, and the vicinity of the surface of the workpiece 3 is partially expanded and generated. It crushes by the applied thermal stress. The crushed workpiece crushed material 5 falls spontaneously, but if it is removed from the processing part with an assist gas such as nitrogen gas for removing powder sprayed from the spray nozzle 4 or a liquid such as water, the workability is further improved. . Further, a part or all of the crushed material 5 may be removed by the suction nozzle 6. The above is a method of crushing by the thermal stress generated by heating and expanding the surface layer of the processed part, but the processed part heated by the laser beam 1 is cooled and partially contracted, The workpiece 5 can also be crushed by the thermal stress generated during the process. In that case, crushing may be performed by injecting a cooling gas or a cooling liquid to the vicinity of the processing point 7 from the ejection nozzle 4.

図2は,上記の破砕に際して,レーザビームが照射された加工点近傍の加工部における温度分布を略記したものである。加工点近傍は,レーザパワーP(W/cm)のレーザビーム1で加熱されて伝熱方程式(1)式で記述される温度θに昇温している。一方,熱応力誘起のみによる破砕発生の条件は,(A)被加工物3の温度が融点,軟化温度,又は昇華点を超えないこと,且つ(B)加工部の昇温時に発生する(2)式で表現される熱応力σが,被加工物3の物性値の引っ張り強度,又は圧縮強度σtを超えることである。これが,本発明において用いる破砕のメカニズムである。
θ−(1/κ)(dθ/dt)=− P/ρ・C (1)
但し,κは被加工材の熱拡散定数,ρは密度,Cは熱容量である。
σ=α・Δθ・E (2)
但し,αは被加工材の線膨張率,Δθは温度勾配 ,Eヤング率である。
FIG. 2 schematically shows a temperature distribution in a processing portion near a processing point irradiated with a laser beam during the crushing. The vicinity of the processing point is heated by the laser beam 1 having a laser power P (W / cm 2 ) and heated to a temperature θ described by the heat transfer equation (1). On the other hand, the conditions for occurrence of crushing only by induction of thermal stress occur when (A) the temperature of the workpiece 3 does not exceed the melting point, softening temperature, or sublimation point, and (B) when the temperature of the processed part is increased (2 The thermal stress σ expressed by the formula (1) exceeds the tensile strength or compressive strength σt of the physical property value of the workpiece 3. This is the crushing mechanism used in the present invention.
2 θ− (1 / κ) (dθ / dt) = − P / ρ · C (1)
Where κ is the thermal diffusion constant of the workpiece, ρ is the density, and C is the heat capacity.
σ = α ・ Δθ ・ E (2)
Where α is the linear expansion coefficient of the workpiece, Δθ is the temperature gradient, and E Young's modulus.

本実施の形態のレーザ加工法において,コンクリートを例に実際のレーザビームによる破砕現象を実現するレーザ照射条件の一例を示す。図4に,レーザビームの移動速度を,v=50(m/min)とした際の,レーザビーム中心である加工点を原点とした際のコンクリート内の温度分布を差分法を用いたモデル計算により算出した,コンクリート内部の温度分布を示す。モデル計算に用いたコンクリートはモルタルと呼ばれ,その物性定数は,熱拡散定数κ=0.008(cm/s),密度ρ=21.8(g/cm),及び熱容量C=0.79(J/g℃)である。また,レーザビームの照射条件は,レーザ投入パワー(連続)P=500(W),レーザビーム寸法=3mm×3mmとした。この条件に於いて,各点は材料融点約1700℃,又は,軟化点1500℃に達することはない。 In the laser processing method of the present embodiment, an example of laser irradiation conditions for realizing the crushing phenomenon by an actual laser beam will be shown taking concrete as an example. Figure 4 shows the model calculation using the finite difference method for the temperature distribution in the concrete when the machining point at the center of the laser beam is the origin when the moving speed of the laser beam is v = 50 (m / min). The temperature distribution inside the concrete calculated by The concrete used for the model calculation is called mortar, and its physical constants are thermal diffusion constant κ = 0.008 (cm 2 / s), density ρ = 21.8 (g / cm 3 ), and heat capacity C = 0. 0.79 (J / g ° C.). The laser beam irradiation conditions were laser input power (continuous) P = 500 (W) and laser beam size = 3 mm × 3 mm. Under this condition, each point does not reach the material melting point of about 1700 ° C. or the softening point of 1500 ° C.

上記の昇温に伴う熱応力がコンクリート中に発生する。この熱応力は図5に示される簡単なモデルを用いて近似的に考えることができる。Disk1からDisknは,上記モデル計算において用いたモデルにおいて,ビーム移動方向に垂直な方向でDisk内が充分均一と考えられる厚さに深さ方向で分割したもので,各Disknの温度はTn℃とする。これらのDiskは温度上昇に対し,左右を強固に固定されている(ハッチング部)ので昇温に伴う膨張により圧縮応力が発生する。用いたモルタルの線膨張率を1×10−5(1/℃),ヤング率E=215×10(kg/cm)とすると圧縮強度σtが100(kg/cm)であるので,式2よりΔθが50℃で破砕が発生することがわかる。この結果,図4のモデルに於いては,約6mm幅で表面より深さ3.0mm点まで上記破砕が発生することとなる。 Thermal stress accompanying the above temperature rise occurs in the concrete. This thermal stress can be approximated using a simple model shown in FIG. Disk 1 to Diskn are divided in the depth direction into thicknesses that are considered to be sufficiently uniform in the disk in the direction perpendicular to the beam movement direction in the model used in the above model calculation, and the temperature of each Diskn is Tn ° C. To do. Since these disks are firmly fixed to the left and right with respect to the temperature rise (hatched portion), compressive stress is generated due to expansion accompanying the temperature rise. When the linear expansion coefficient of the mortar used is 1 × 10 −5 (1 / ° C.) and Young's modulus E = 215 × 10 3 (kg / cm 2 ), the compressive strength σt is 100 (kg / cm 2 ). From equation 2, it can be seen that crushing occurs when Δθ is 50 ° C. As a result, in the model shown in FIG. 4, the above-mentioned crushing occurs at a point of about 6 mm wide and a depth of 3.0 mm from the surface.

上記のコンクリートについてのモデル計算によって,レーザビームのコンクリート面上の移動速度を変化させて,破砕による除去加工量を評価した計算結果を図6に示す。図6で,横軸はレーザビーム移動速度,縦軸は移動速度に対する除去加工量または被加工物表面における最高温度を示す。この結果,ビーム移動速度を遅くし32(m/min)以下とすると,上表面の最高温度は軟化点とされる1500℃となり相変化が発生する為,加工効率が極端に悪くなることが解った。これに対しビーム移動速度を速くすると昇温深さが徐々に低下し効率が低下する。よって本加工法が有効である範囲として,表層の最高温度が融点以下で,融点マイナス300℃以上が効果的であることがわかった。   FIG. 6 shows the calculation result of evaluating the removal processing amount by crushing by changing the moving speed of the laser beam on the concrete surface by the model calculation for the above concrete. In FIG. 6, the horizontal axis indicates the laser beam moving speed, and the vertical axis indicates the removal processing amount or the maximum temperature on the workpiece surface with respect to the moving speed. As a result, when the beam moving speed is slowed down to 32 (m / min) or less, the maximum temperature of the upper surface becomes 1500 ° C., which is the softening point, and phase change occurs, so that the processing efficiency is extremely deteriorated. It was. On the other hand, when the beam moving speed is increased, the temperature rise depth is gradually lowered and the efficiency is lowered. Therefore, it was found that the effective range of this processing method is that the maximum temperature of the surface layer is below the melting point and the melting point minus 300 ° C. or above is effective.

上記のように本発明のレーザ加工法によれば,従来のレーザ加工法のように被加工点を融点まで昇温しない為,加工効率は大きく向上する。この為,被加工材の加熱に必要なレーザ装置容量も小さく,電源等の付帯設備の容量が小さい為,トラック・貨車等で移動が可能な加工装置となりうる。図3に屋外で加工する際の,装置構成略図を示す。トラック,又は貨車11には,レーザビーム生成用の,レーザ発振器,冷却装置,電源と,アシストガス等の為のコンプレッサ等10が装備されている。この発振器より光ファイバ11を通じてレーザビームは導波され高所作業車12に搭載された,レーザ集光光学系,冷却ガス又は冷却液を付与する為のノズル,加工屑を排出する為のノズル,レーザビームを操作する為のスキャニング装置を具備されたレーザ用加工ヘッド14にて加工を行うものである。   As described above, according to the laser processing method of the present invention, since the point to be processed is not heated to the melting point as in the conventional laser processing method, the processing efficiency is greatly improved. For this reason, the capacity of the laser device necessary for heating the workpiece is small, and the capacity of ancillary equipment such as a power source is small. Therefore, the processing device can be moved by a truck, a freight car, or the like. Fig. 3 shows a schematic diagram of the equipment configuration when processing outdoors. The truck or freight car 11 is equipped with a laser oscillator for generating a laser beam, a cooling device, a power source, a compressor 10 for assist gas, and the like. A laser beam is guided from this oscillator through an optical fiber 11 and mounted on an aerial work vehicle 12. A laser focusing optical system, a nozzle for applying a cooling gas or a cooling liquid, a nozzle for discharging processing waste, Processing is performed by a laser processing head 14 provided with a scanning device for operating a laser beam.

<第二の実施の形態>
また,冷却媒体を用いて被加工物表面を急冷することによっても負の温度勾配Δθを作り出すことが可能であり,被加工材を熱変形等から守ることにも工業的には大きな効果がある。この為,レーザビームをパルス化し,パルス間に冷却ガス,又は冷却液をノズルより付与しこの効果を発揮させることができる。この際,微少領域を繰り返し破砕すれば,加工形状精度向上も容易となる。
<Second Embodiment>
Also, it is possible to create a negative temperature gradient Δθ by rapidly cooling the workpiece surface using a cooling medium, and it is industrially significant to protect the workpiece from thermal deformation. . For this reason, the laser beam is pulsed, and a cooling gas or a cooling liquid is applied from the nozzle between the pulses to exert this effect. At this time, if the minute area is repeatedly crushed, the machining shape accuracy can be easily improved.

<第三の実施の形態>
本発明のレーザ加工方法および加工装置においては,レーザビームによる加熱時に加工部の最高温度が,被加工材の融点,軟化温度,熱分解温度,又は昇華点以下とすることを特徴としている。本実施の形態では図7に示したように,加工点7の温度を必要以上に上げないために加工点7近傍の二次元温度分布を放射温度計21を用いて測定し,レーザ加工時に被加工材3が融解,熱軟化,熱分解,又は昇華しないように加工点7の温度をモニタリングできるようにして,温度が高くなり過ぎたときにはレーザビーム1のパワーを下げて加工できるようにした。
<Third embodiment>
The laser processing method and the processing apparatus of the present invention are characterized in that the maximum temperature of the processed part during heating with a laser beam is lower than the melting point, softening temperature, thermal decomposition temperature, or sublimation point of the workpiece. In the present embodiment, as shown in FIG. 7, in order not to raise the temperature of the processing point 7 more than necessary, the two-dimensional temperature distribution near the processing point 7 is measured using a radiation thermometer 21 and is covered during laser processing. The temperature of the processing point 7 can be monitored so that the workpiece 3 is not melted, thermally softened, pyrolyzed, or sublimated, and when the temperature becomes too high, the power of the laser beam 1 can be lowered.

さらに,上記の二次元温度分布の測定データの画像から加工点7の温度を連続的に抽出して,融点,軟化温度,熱分解温度,又は昇華点以下に予め設定した温度になるように,レーザビーム1のパワーを制御する最高温度制御用パーソナルコンピュータ22を設けて,レーザ加工による粉砕作業を安定的かつ高速度に実行することが出来る。二次元測定用の放射温度計は市販品を利用することができる。市販の画像処理ソフトを用いて,測定データの二次元温度分布の輝度データ中の最高輝度の画素から最高温度を検出する。当該最高温度と予め設定した温度と基づいて,例えば比例制御やPI制御等でレーザビームのパワーを制御する。この計測及び制御のための信号処理やデータ処理はパーソナルコンピュータ22を用いて実行する。   Furthermore, the temperature of the processing point 7 is continuously extracted from the measurement data image of the above two-dimensional temperature distribution so that the temperature becomes a preset temperature below the melting point, softening temperature, thermal decomposition temperature, or sublimation point. A personal computer 22 for controlling the maximum temperature for controlling the power of the laser beam 1 is provided, so that the pulverization work by laser processing can be executed stably and at high speed. Commercially available products can be used as the radiation thermometer for two-dimensional measurement. Using commercially available image processing software, the highest temperature is detected from the highest luminance pixel in the luminance data of the two-dimensional temperature distribution of the measurement data. Based on the maximum temperature and a preset temperature, the power of the laser beam is controlled by, for example, proportional control or PI control. The signal processing and data processing for measurement and control are executed using the personal computer 22.

<その他の実施の形態>
なお,レーザビームを被加工物粉が遮ると加工の昇温過程に阻害が出る為,吸引ノズルを用い被加工物粉を除去を促進させることが有効である。
本加工に用いるレーザビームとしては,焦点深度が大きく取れるビーム発散パラメータM2の小さいレーザ装置の方が,厚物加工時にレンズからの位置が変化する際にもレーザエネルギーの密度変化が小さいため望ましい。このような,レーザとしては現状,ファイバレーザ,DISKレーザ等があげられる。
<Other embodiments>
It should be noted that if the work piece powder blocks the laser beam, the temperature rise process of the work is hindered, so it is effective to promote removal of the work piece powder using a suction nozzle.
As the laser beam used for this processing, a laser device with a small beam divergence parameter M 2 that allows a large depth of focus is preferable because the density change of the laser energy is small even when the position from the lens changes during processing of thick materials. . Examples of such lasers include fiber lasers and DISK lasers.

また,被加工物が一度のビーム走査で加工できる厚さより厚い場合,ビームを進行方向に揺動させ繰り返しビームを加工点に照射することで加工可能厚さを改善させることが可能である。この揺動方法の概略を図8に示す。レーザビーム1が集光レンズ2を通して,加工点に集光される過程で,微小往復回転可能なガルバノモータに取りつけられた反射ミラー(ビームスキャニング装置8)により,加工点が揺動される。この揺動により図8に示されるように繰り返し加工を行うことが可能となる。ここで往復回転角を調整し,揺動量を図中の必要揺動量9とすることで上記厚物可能が可能となる。   In addition, when the workpiece is thicker than the thickness that can be processed by a single beam scan, the workable thickness can be improved by swinging the beam in the traveling direction and repeatedly irradiating the processing point with the beam. An outline of this swinging method is shown in FIG. In the process in which the laser beam 1 is focused on the processing point through the condenser lens 2, the processing point is oscillated by a reflection mirror (beam scanning device 8) attached to a galvano motor that can be rotated in a reciprocating manner. By this swinging, it becomes possible to repeatedly perform processing as shown in FIG. Here, by adjusting the reciprocating rotation angle and setting the swing amount to the required swing amount 9 in the figure, the above-mentioned thick material can be realized.

本発明第一の実施例を記述する。用いた被加工材は,柱状のモルタル材である。サンプルサイズは幅1m,奥行き1mで100mm厚さのものである。このサンプルの厚さ方向の切断加工を行った。使用したレーザは出力パワー500W,波長1070nmの連続波ファイバレーザで,1200mmの焦点距離を持つレンズにて約5.2mm径のスポットに集光を行った。この時の焦点深度は約200mmであった。レーザは被加工材に対し30度傾けて設置されておりガルバノモータにて開先中のレーザビームがビーム揺動速度50m/minとなるように走査し加工を行った。アシストガスとして,乾燥空気を用い口径5mmのノズルより加工点付近に300L/minで吹き付けた。この際,吸引ノズルには集塵機を取り付け,粉体の除去を行った。レーザの移動速度は,50mm/minで実施したところ,破砕現象が起こり,カーフ幅約6mmで100mm厚のコンクリート切断が可能となった。   A first embodiment of the present invention will be described. The work material used was a columnar mortar material. The sample size is 1 mm wide, 1 m deep and 100 mm thick. The sample was cut in the thickness direction. The laser used was a continuous wave fiber laser with an output power of 500 W and a wavelength of 1070 nm, and was focused on a spot having a diameter of about 5.2 mm with a lens having a focal length of 1200 mm. The depth of focus at this time was about 200 mm. The laser was installed at an angle of 30 degrees with respect to the workpiece, and the galvano motor was scanned and processed so that the laser beam in the groove had a beam swing speed of 50 m / min. As assist gas, dry air was used and sprayed at a flow rate of 300 L / min from a nozzle having a diameter of 5 mm in the vicinity of the processing point. At this time, a dust collector was attached to the suction nozzle to remove the powder. When the laser was moved at a speed of 50 mm / min, a crushing phenomenon occurred, and it became possible to cut 100 mm thick concrete with a kerf width of about 6 mm.

本発明第二の実施例を記述する。用いた被加工材は,柱状のモルタル材である。サンプルサイズは幅1m,奥行き1mで100mm厚さのものである。このサンプルの厚さ方向の切断加工を行った。使用したレーザは,出力パワー500W,波長1070nmのパルス化されたファイバレーザで,ピーク出力は1000W,繰り返し速度は300Hz,パルスデュティー50%であった。1200mmの焦点距離を持つレンズにて約5.2mm径のスポットに集光を行った。この時の焦点深度は約200mmであった。レーザは被加工材に対し30度傾けて設置されておりガルバノモータにて開先中のレーザビームがビーム揺動速度50m/min,となるように走査し加工を行った。粉砕物の除去用に,水を用い5mm径のノズルより加工点付近に20L/minでレーザビームが照射されていない間に間欠的に吹き付けた。この際,吸引ノズルには集塵機を取り付け,粉体の除去を行った。レーザの移動速度は,30mm/minで実施したところ,破砕現象が起こり,カーフ幅約6mmで100mm厚のコンクリート切断が可能となった。この際,切断後の母材には蓄熱はなく切断面の性状も良好であった。   A second embodiment of the present invention will be described. The work material used was a columnar mortar material. The sample size is 1 mm wide, 1 m deep and 100 mm thick. The sample was cut in the thickness direction. The laser used was a pulsed fiber laser with an output power of 500 W and a wavelength of 1070 nm, a peak output of 1000 W, a repetition rate of 300 Hz, and a pulse duty of 50%. Condensation was performed on a spot having a diameter of about 5.2 mm with a lens having a focal length of 1200 mm. The depth of focus at this time was about 200 mm. The laser was installed at an inclination of 30 degrees with respect to the workpiece, and the galvano motor was scanned and processed so that the laser beam in the groove had a beam swing speed of 50 m / min. In order to remove the pulverized material, water was used and intermittently sprayed from a 5 mm diameter nozzle near the processing point at 20 L / min while the laser beam was not irradiated. At this time, a dust collector was attached to the suction nozzle to remove the powder. When the laser was moved at a speed of 30 mm / min, a crushing phenomenon occurred, and it became possible to cut 100 mm thick concrete with a kerf width of about 6 mm. At this time, the base metal after cutting had no heat storage and the cut surface had good properties.

本発明は,被加工材をレーザビームを用いて加工するレーザ加工技術に利用できる。   The present invention can be used in a laser processing technique for processing a workpiece using a laser beam.

本発明のレーザ加工装置の一形態の概略をレーザ加工断面に沿って示した図である。It is the figure which showed the outline of one form of the laser processing apparatus of this invention along the laser processing cross section. レーザビーム加工点近傍の温度分布の略図である。6 is a schematic diagram of a temperature distribution in the vicinity of a laser beam processing point. 本発明のレーザ加工野外で実施する際の構成略図である。1 is a schematic diagram of a configuration when implemented in the laser processing field of the present invention. モデル計算を用いた加工点近傍の内部温度分布計算結果である。It is an internal temperature distribution calculation result near the processing point using model calculation. レーザビーム加工法での昇温による破砕メカニズムを示すためのモデル略図である。It is the model schematic for showing the crushing mechanism by the temperature rising by the laser beam processing method. 加工除去効率と最高表面温度の関係を示す図である。It is a figure which shows the relationship between process removal efficiency and the maximum surface temperature. 本発明のレーザビーム加工装置の一形態例で,最高温度制御装置を含む加工装置の全体概略図である。It is one example of the laser beam processing apparatus of this invention, and is the whole schematic of the processing apparatus containing the maximum temperature control apparatus. 本発明のレーザビーム加工法の実施の一形態で,レーザビーム揺動による繰り返し加工法を説明する為の図である。It is a figure for demonstrating the repetitive processing method by laser beam rocking | fluctuation in one Embodiment of the laser beam processing method of this invention.

符号の説明Explanation of symbols

1…レーザビーム
2…集光レンズ
3…被加工物
4…噴射ノズル
5…破砕された被加工物
6…吸引ノズル
7…加工点
8…ビームスキャン装置
9…必要揺動量
10…レーザ発振器,冷却装置,コンプレッサ,電源
11…光ファイバ
12…高所作業車
13…被加工物
14…レーザ加工用ヘッド
15…トラック又は貨車
21…放射温度計
22…最高温度制御用パーソナルコンピュータ
23…レーザ発振器本体
DESCRIPTION OF SYMBOLS 1 ... Laser beam 2 ... Condensing lens 3 ... Workpiece 4 ... Injection nozzle 5 ... Crushed work piece 6 ... Suction nozzle 7 ... Processing point 8 ... Beam scanning apparatus 9 ... Necessary amount of oscillation 10 ... Laser oscillator, cooling Equipment, compressor, power source 11 ... optical fiber 12 ... work vehicle 13 ... work piece 14 ... laser processing head 15 ... truck or freight car 21 ... radiation thermometer 22 ... personal computer 23 for maximum temperature control ... laser oscillator body

Claims (7)

コンクリートまたは岩石からなる構造部材を被加工材とし,レーザビームを被加工材の所定の加工部に照射して昇温し,該加工部で熱応力起因の破砕を発生させるレーザ加工方法であって,
前記レーザビームの照射により,加工部の最高温度が被加工材の融点,軟化温度,熱分解温度,又は昇華点以下となるように,加工部の表面の二次元温度分布を放射温度計を用いて測定して、レーザビームのパワー,走査速度,又は加工部上のレーザビームスポット寸法形状を制御することを特徴とするレーザ加工方法。
A laser processing method in which a structural member made of concrete or rock is used as a workpiece , a laser beam is irradiated to a predetermined processing portion of the workpiece, the temperature is raised, and fracture due to thermal stress is generated in the processing portion. ,
Use a radiation thermometer to measure the two-dimensional temperature distribution on the surface of the processed part so that the maximum temperature of the processed part is below the melting point, softening temperature, thermal decomposition temperature, or sublimation point of the workpiece by the laser beam irradiation. And measuring a laser beam power, a scanning speed, or a laser beam spot size shape on a processing portion .
前記レーザビームがパルス光であって,冷却ガス又は冷却液を加工部に付与しながらレーザビームを照射することを特徴とする,請求項1に記載のレーザ加工方法。 The laser processing method according to claim 1, wherein the laser beam is pulsed light, and the laser beam is irradiated while applying a cooling gas or a cooling liquid to the processing portion . 前記レーザビームはパルス光又は連続光であって,
レーザビーム照射により,加工部の最高温度が被加工材の融点,軟化温度,熱分解温度,又は昇華点以下で,且つ,融点,軟化温度,熱分解温度,又は昇華点と,加工部の最高温度との温度差が300℃
以内となるようにレーザビームのパワー,走査速度,又は加工部上のレーザビーム寸法形状を制御することを特徴とする,請求項1に記載のレーザ加工方法。
The laser beam is pulsed light or continuous light,
By laser beam irradiation, the maximum temperature of the processed part is below the melting point, softening temperature, thermal decomposition temperature, or sublimation point of the workpiece, and the maximum melting point, softening temperature, thermal decomposition temperature, or sublimation point of the processed part. The temperature difference from the temperature is 300 ° C
The laser processing method according to claim 1, wherein the laser beam power, the scanning speed, or the laser beam size and shape on the processing portion are controlled so as to be within the range .
請求項1〜請求項3のうちの一項に記載のレーザ加工方法により加工された,構造部材。A structural member processed by the laser processing method according to claim 1. コンクリートまたは岩石からなる構造部材を被加工材とし,レーザ光源と,該レーザ光源から出射したレーザビームを被加工材の所定の加工部に集光照射するためのレーザ集光光学系と,前記レーザビームを被加工材上で走査する為のスキャニング装置とを具備し,前記被加工材の所定の加工部にレーザビームを集光照射して昇温し,該加工部で熱応力起因の破砕を発生させるレーザ加工装置であって,A structural member made of concrete or rock is used as a workpiece, a laser light source, a laser condensing optical system for condensing and irradiating a laser beam emitted from the laser light source onto a predetermined processing portion of the workpiece, and the laser A scanning device for scanning the beam on the workpiece, the laser beam is focused on a predetermined processing portion of the workpiece, the temperature is raised, and the processing portion is crushed due to thermal stress. A laser processing device for generating,
前記加工部の表面の二次元温度分布を検知する放射温度計を具備し,  A radiation thermometer for detecting a two-dimensional temperature distribution on the surface of the processed part;
該放射温度計の温度測定データの最高温度が前記被加工材の融点,軟化温度,熱分解温度,又は昇華点以下の温度で破砕加工できるようにしたことを特徴とする,レーザ加工装置。  A laser processing apparatus, wherein the maximum temperature of the temperature measurement data of the radiation thermometer can be crushed at a melting point, a softening temperature, a thermal decomposition temperature, or a temperature below the sublimation point of the workpiece.
請求項5に記載のレーザ加工装置であって,The laser processing apparatus according to claim 5,
前記放射温度計の温度測定データに基づいて前記レーザビームのパワーを制御する最高温度制御部を具備し,  A maximum temperature control unit for controlling the power of the laser beam based on temperature measurement data of the radiation thermometer;
前記被加工材の融点,軟化温度,熱分解温度,又は昇華点以下の温度で破砕加工できるようにしたことを特徴とする,レーザ加工装置。  A laser processing apparatus characterized in that it can be crushed at a melting point, a softening temperature, a thermal decomposition temperature, or a temperature below a sublimation point of the workpiece.
請求項5又は請求項6に記載のレーザ加工装置において,In the laser processing apparatus according to claim 5 or 6,
前記加工部で発生する加工屑を排出する為の吸引ノズルと,前記レーザビームを被加工材上で走査する為のスキャニング装置とを具備することを特徴とする,レーザ加工装置。  A laser processing apparatus, comprising: a suction nozzle for discharging processing waste generated in the processing section; and a scanning device for scanning the laser beam on a workpiece.
JP2005205541A 2005-07-14 2005-07-14 Laser processing method, laser processing apparatus, and structural member manufactured by laser processing method Active JP4709599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205541A JP4709599B2 (en) 2005-07-14 2005-07-14 Laser processing method, laser processing apparatus, and structural member manufactured by laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205541A JP4709599B2 (en) 2005-07-14 2005-07-14 Laser processing method, laser processing apparatus, and structural member manufactured by laser processing method

Publications (2)

Publication Number Publication Date
JP2007021518A JP2007021518A (en) 2007-02-01
JP4709599B2 true JP4709599B2 (en) 2011-06-22

Family

ID=37782949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205541A Active JP4709599B2 (en) 2005-07-14 2005-07-14 Laser processing method, laser processing apparatus, and structural member manufactured by laser processing method

Country Status (1)

Country Link
JP (1) JP4709599B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286459B2 (en) * 2008-03-25 2013-09-11 Towa株式会社 Processing apparatus and processing method
JP2012192420A (en) * 2011-03-15 2012-10-11 Saishin Laser Gijutsu Kenkyu Center:Kk Laser processing method and laser processing apparatus
CN102837124B (en) * 2011-06-23 2014-08-20 宝山钢铁股份有限公司 Cutting method with auxiliary laser heating for metal strip
JP5892198B2 (en) * 2014-06-26 2016-03-23 横浜ゴム株式会社 Mold cleaning system
CN113828941B (en) * 2021-10-15 2022-05-13 华中科技大学 Processing method and device based on micron-sized high-speed identification of composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864306A (en) * 1981-10-14 1983-04-16 Kawasaki Steel Corp Chipping device for tapping spout of blast furnace
JPH1018612A (en) * 1996-07-04 1998-01-20 Shimizu Corp Concrete cutting method
JP2004017120A (en) * 2002-06-18 2004-01-22 Hamamatsu Photonics Kk Laser beam working device, laser beam working temperature measuring instrument, laser beam working method and method for measuring laser beam working temperature
JP2005161362A (en) * 2003-12-02 2005-06-23 Seiko Epson Corp Joining method, joining structure and joining apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415296A (en) * 1987-07-07 1989-01-19 Fujita Corp Method for cutting reinforced concrete structural body
JPH06344162A (en) * 1993-06-11 1994-12-20 Toshiba F Ee Syst Eng Kk Method and device for laser beam machining
JP2000170473A (en) * 1998-12-08 2000-06-20 Sumitomo Heavy Ind Ltd Laser drilling method for ceramic structural body
JP2000170475A (en) * 1998-12-08 2000-06-20 Sumitomo Heavy Ind Ltd Laser boring method and device of ceramic structure
JP4228226B2 (en) * 2004-06-24 2009-02-25 株式会社Ihi Glass removal method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864306A (en) * 1981-10-14 1983-04-16 Kawasaki Steel Corp Chipping device for tapping spout of blast furnace
JPH1018612A (en) * 1996-07-04 1998-01-20 Shimizu Corp Concrete cutting method
JP2004017120A (en) * 2002-06-18 2004-01-22 Hamamatsu Photonics Kk Laser beam working device, laser beam working temperature measuring instrument, laser beam working method and method for measuring laser beam working temperature
JP2005161362A (en) * 2003-12-02 2005-06-23 Seiko Epson Corp Joining method, joining structure and joining apparatus

Also Published As

Publication number Publication date
JP2007021518A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP3908236B2 (en) Glass cutting method and apparatus
US6864459B2 (en) High precision, rapid laser hole drilling
Tsai et al. Investigation of underwater laser drilling for brittle substrates
JP2004182530A (en) Cutting method and cutting device
JP4709599B2 (en) Laser processing method, laser processing apparatus, and structural member manufactured by laser processing method
JP4256840B2 (en) Laser cutting method and apparatus
KR20120004456A (en) Precision laser scoring
JP2010150068A (en) Method for breaking brittle material substrate
JP2002241141A (en) Working method for glass by means of laser and device therefor
JP2007260749A (en) Laser beam machining method and apparatus, and machined product of brittle material
JP2010138046A (en) Method and device for working material to be cut
Ashkenasi et al. Machining of glass and quartz using nanosecond and picosecond laser pulses
JP2006159747A (en) Laser beam machining method and its apparatus
JP2008183599A (en) Method for working workpiece made of highly brittle and non-metallic material, and device therefor
CN103058508A (en) A device and a method for processing a glass ink jet sheet
WO2010092964A1 (en) Method for cutting brittle material substrate
JP2004035315A5 (en)
JP5554158B2 (en) Cleaving method of brittle material substrate
JP2004323252A (en) Tempered glass marking method and tempered glass
JP4648819B2 (en) Laser processing method
JPH1018612A (en) Concrete cutting method
Raciukaitis et al. Micro-machining of silicon and glass with picosecond lasers
JP5143222B2 (en) Laser processing method
JP6521837B2 (en) Wafer processing method
JP2007230230A (en) Laser using concrete cutting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

R151 Written notification of patent or utility model registration

Ref document number: 4709599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350