JP3927797B2 - Vibration damper device - Google Patents

Vibration damper device Download PDF

Info

Publication number
JP3927797B2
JP3927797B2 JP2001366782A JP2001366782A JP3927797B2 JP 3927797 B2 JP3927797 B2 JP 3927797B2 JP 2001366782 A JP2001366782 A JP 2001366782A JP 2001366782 A JP2001366782 A JP 2001366782A JP 3927797 B2 JP3927797 B2 JP 3927797B2
Authority
JP
Japan
Prior art keywords
rigid member
damper
damper device
surface portion
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001366782A
Other languages
Japanese (ja)
Other versions
JP2003166588A (en
Inventor
岳史 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2001366782A priority Critical patent/JP3927797B2/en
Publication of JP2003166588A publication Critical patent/JP2003166588A/en
Application granted granted Critical
Publication of JP3927797B2 publication Critical patent/JP3927797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は制振ダンパー装置に関する。詳しくは、ビル等の建造物に風圧や地震等による層間変位力が働いたとき、その変位(振動)エネルギーを吸収させて建造物の揺れ動きや振動を減衰させるように、既存あるいは新築の建造物における構造用骨組内にブレースや方杖等として組み込んで用いられる制振ダンパー装置に関するものである。
【0002】
【従来の技術】
この種の制振ダンパー装置は、一般的に互いに間隔を隔てて平行に配置された複数の鋼板等の第1剛性部材と、これら複数の第1剛性部材の隣接部材間の中間位置にそれら第1剛性部材に対し平行に配置された少なくとも一つの鋼板等の第2剛性部材との対向面間にそれぞれ粘弾性体等のエネルギー吸収材を層状に介在させてなり、地震等によって構造用骨組に層間変位力が働いて第1剛性部材と第2剛性部材が相対変位したとき、その変位エネルギーを層状のエネルギー吸収材のせん断変形で吸収させることにより、建造物の揺れ動きや振動を減衰する制振性能を発揮するように構成されている。
【0003】
ところで、上記のごとくエネルギー吸収材のせん断変形特性を利用して制振性能を発揮する制振ダンパー装置においては、所期の制振性能を安定維持する上で、エネルギー吸収材が本来有するエネルギー吸収性能を低下させないようにすることが重要である。そうするためには、エネルギー吸収材に過度な圧縮や曲げ、ねじれ等のせん断以外の変形力が加わらないようにすること、つまり、ブレースや方杖等としての実使用状態で多大な引張り力や圧縮力を負担する第1,第2剛性部材が座屈変形したり、曲がり変形したりしないような十分な座屈強度を持たせることが要求される。
【0004】
このような高い座屈強度を持つ制振ダンパー装置30として、従来、例えば図11に示すように、互いに間隔を隔ててダンパー長手方向に沿って平行に対向位置する左右両側板20,20及びこれら左右両側板20,20間の中間位置に配置される中間板21を共に偏平な鋼板(第1剛性部材)から構成するとともに、左右両側板20,20のダンパー長手方向に対して直交する方向の両端部間に亘って溝形鋼22,22をボルト・ナット等により固定連結する一方、左右両側板20,20と中間板21との間にこれら各板20,20,21に対して平行に配置された摺動板23,23も偏平な鋼板(第2剛性部材)から構成し、かつ、左右両側板20,20及び中間板21と各摺動板23,23との間に形成される隙間にそれぞれエネルギー吸収材の一例となる粘弾性体24,24を介在して構成されたものが提案されていた。
【0005】
【発明が解決しようとする課題】
上記構成の従来の制振ダンパー装置は、溝形鋼22,22と左右両側板20,20とにより中空直方体が形成されることから、高い座屈強度を確保することが可能であり、実使用状態で多大な引張り力や圧縮力を負担しても、第1及び第2剛性部材である偏平鋼板20,21及び23が座屈変形したり、曲がり変形したりすることがなくなり、そのため、粘弾性体24,24本来のエネルギー吸収性能を低下させることなく、所期の制振性能を長期間に亘り安定維持することができるという利点を有する反面、溝形鋼と寸法及び厚みが異なる三種の偏平鋼板との組み合わせであるから、構成部材の点数及び種類数が多く、それだけボルト・ナット等の固定具の使用個数及び組立工数も多くなり、加えて、各構成部材毎の寸法公差が相乗じて、組立時における位置合わせ精度に狂いを生じやすく、その結果、組立作業が煩雑になりコストアップを招くばかりでなく、製品(ダンパー装置)の仕上がり品質にもばらつきを発生しやすいという問題があった。
【0006】
本発明は上記のような実情に鑑みてなされたもので、第1及び第2剛性部材の単純な積重ね構造で組立工数の低減と組立作業効率及び組立精度の向上によりコストダウンと仕上がり品質の一定化を図りながら、非常に高い座屈強度を確保して所期の制振性能を長期間に亘り安定維持することができる制振ダンパー装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る制振ダンパー装置は、第1剛性部材とこの第1剛性部材に対して平行に配置された第2剛性部材との対向面間にエネルギー吸収材を挟在させてなる制振ダンパー装置であって、上記第1剛性部材が少なくとも二段に積重ね固定したT形鋼から構成されているとともに、第2剛性部材がダンパー横幅方向で左右に分割されて同一平面内に配置された二組の左右一対の不等辺山形鋼から構成され、第2剛性部材を構成する二組の左右一対の不等辺山形鋼の長辺面部と第1剛性部材を構成する積重ねT形鋼のフランジ辺面部との対向面間にそれぞれエネルギー吸収材が挟在され、かつ、第2剛性部材を構成する二組の左右一対の不等辺山形鋼同士はダンパー長手方向の端部において、異なる組の不等辺山形鋼の長辺面部の間にウェブ部を配置したH形鋼の両端フ ランジ部に各短辺面部を固定することにより、互いに固定一体化されていることを特徴とするものである。
【0008】
上記構成の本発明によれば、T形鋼からなる第1剛性部材と不等辺山形鋼からなる第2剛性部材という二種類の形鋼のみを使用して、T形鋼のフランジ辺面部と不等辺山形鋼の長辺面部とが互いに平行に配置されるような単純な積重ね構造に組立てればよく、それに伴いボルト・ナット等の固定具の使用種類、使用総数も少なくなるために、組立作業が容易化されるとともに、組立工数の低減も図れて、製品全体の製作コストの低減が可能である。それでいながら、第1及び第2剛性部材が共に機械的強度の大きい形鋼であることから、それらの位置合わせ精度を高く保つことが可能であり、組立作業効率及び組立精度の向上が図れるとともに、仕上がり寸法及び品質にばらつきを発生せず、外観寸法及び品質の一定化したダンパー装置を得ることが可能である。加えて、第1及び第2剛性部材それぞれの単独座屈強度が大きく、実使用状態で多大な引張り力や圧縮力を負担したとしても、各剛性部材が座屈変形したり、曲がり変形したりすることがなく、ダンパー装置全体として非常に高い座屈強度を発揮させて、エネルギー吸収材に過度の圧縮や曲げ、ねじれ等のせん断以外の変形力を加えず、このエネルギー吸収材が本来有するエネルギー吸収性能を保持して所期の制振性能を長期間に亘り安定よく維持することが可能である。
【0009】
上記構成の制振ダンパー装置において、請求項2に記載のように、第1剛性部材を構成するT形鋼のフランジ辺面部と第2剛性部材を構成する左右一対の不等辺山形鋼の長辺面部との対向面間に、エネルギー吸収材の厚み方向に付加される圧縮荷重を受け止めて該エネルギー吸収材の肉厚を層全域に亘って一定に保持する間隔維持部材が介在させる構成を採用することによって、ダンパー装置の実使用状態での無負荷時や実負荷動作時にエネルギー吸収材の厚み方向に圧縮荷重が付加されたとしても、その荷重を間隔維持部材で受け止めてエネルギー吸収材のせん断厚みをそれの層全域に亘って一定に保持することが可能であり、これによって、エネルギー吸収材の応力緩和や永久歪みの発生を防ぎ、エネルギー吸収性能を良好に保持して長期間使用後においても所定の制振性能を最大限に発揮させることができる。
【0010】
また、上記構成の制振ダンパー装置において、請求項3に記載のように、第1剛性部材を構成するT形鋼のフランジ辺面部と第2剛性部材を構成する左右一対の不等辺山形鋼の短辺面部との間に、第1剛性部材と第2剛性部材とのダンパー横幅方向の相対変位を規制する、もしくは、タンパー横幅方向の相対変位を一定範囲内に制限する変位規制部材を介在させる構成を採用することによって、実使用状態において本来の制振作用方向(ダンパー長手方向)とは異なるダンパー横幅方向の荷重が働いたとしても、その荷重によって第1剛性部材と第2剛性部材とがダンパー横幅方向に一定範囲以上に大きく相対変位し、その大きな相対変位に伴ってエネルギー吸収材に余分な歪みが発生したり、応力緩和したりすることを防止して、所定の制振性能を長期間に亘り安定よく維持することができる。
【0011】
また、上記請求項2における間隔維持部材としては、請求項4に記載のように、焼付け防止処理された金属部材、又は、摺接面であるT形鋼のフランジ辺面部若しくは不等辺山形鋼の長辺面部との間で焼付けを生じさせない程度に上記フランジ辺面部若しくは上記長辺面部との間の摩擦係数が低い部材を用いることが望ましい。また、この間隔維持部材を、請求項5に記載のように、エネルギー吸収材の周辺全域を囲む状態に配置することによって、エネルギー吸収材として、流動性及び温度依存性の高い粘弾性体や熱可塑性エラストマーを用いる場合でも、そのエネルギー吸収材の流出や温度変化に伴う性能劣化を間隔維持部材で防いで、エネルギー吸収材の性能を安定維持することができる。
【0012】
さらに、上記間隔維持部材として、請求項6に記載のように、第1剛性部材と第2剛性部材とのダンパー横幅方向の相対変位を規制する変位規制部材を兼用する状態に介在させることによって、一種の部材のみを用いて構造の簡単化を図りながら、エネルギー吸収材厚み方向の圧縮荷重及びダンパー横幅方向の荷重のいずれが付加されても、エネルギー吸収材の応力緩和や永久歪みの発生を防いで所定の制振性能を長期間に亘り一層安定よく維持することができる。
【0013】
なお、本発明に係る制振ダンパー装置におけるエネルギー吸収材としては、ウレタンアスファルト系もしくはゴム系粘弾性体が最も好ましいが、これ以外に、天然あるいは合成ゴム等の弾性体や熱可塑性エラストマー、高減衰ゴムを用いてもよい。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面にもとづいて説明する。図1は本発明に係るブレースタイプの制振ダンパー装置の第1実施例を示す全体側面図、図2及び図3は図1のX−X線及びY−Y線に沿った拡大縦断面図であり、この制振ダンパー装置10は、三つのT形鋼1A…をそれらのウェブ辺面部1b…が同軸状に位置するように三段に積重ね、かつ、その同軸状のウェブ辺面部1b…をボルト・ナット4により締付け固定してなる第1剛性部材1と、ダンパー横幅方向(図2の矢印Z方向)で左右に分割されて同一平面内に配置された左右一対の不等辺山形鋼2A,2Aの二組をそれらの長辺面部2a,2aがダンパー厚み方向(図2の矢印T方向)で隣接するT形鋼1A,1A…のフランジ辺面部1a,1a…間の中間で各フランジ辺面部1a,1a…に平行に位置する状態でダンパー厚み方向に二段に配置してなる第2剛性部材2と、この第2剛性部材2を構成する二組の左右一対の不等辺山形鋼2A,2Aの長辺面部2a,2aとこれに平行に位置するT形鋼1A…のフランジ辺面部1a…の各対向面間に層状に挟在された粘弾性体(エネルギー吸収材の一例)3…とから構成されている。
【0015】
上記第2剛性部材2を構成する二組の左右一対の不等辺山形鋼2A,2A同士は、ダンパー長手方向(図1の矢印S方向)の一端部において、図3に明示するように、それらの短辺面部2b,2bをH形鋼5の両端フランジ部5a,5aにボルト・ナット6,6を介して締付け固定することにより互いに固定一体化されており、これら固定一体化された左右一対の不等辺山形鋼2A,2Aの長辺面部2a,2aで制振作用領域Lよりもダンパー長手方向外方へ突出する部分及びH形鋼5のウェブ部5bのそれぞれに、建造物における構造用骨組の四隅部に固着されたガゼットプレートの一つにボルト接合可能なボルト孔7…を形成することで、上記固定一体化部分を制振ダンパー装置10の長手方向一端の接合部8Aに構成する一方、ダンパー長手方向の他端部側には、二組の左右一対の不等辺山形鋼2A,2Aを第1剛性部材1を構成するT形鋼1A,1A…よりもダンパー長手方向外方へ突出させ、その突出部分にボルト孔7…を形成することで、制振ダンパー装置10の長手方向他端の接合部8Bを構成している。
【0016】
上記のように構成された制振ダンパー装置10は、図4に示すように、ダンパー長手方向両端の接合部8A,8Bを、建造物における鉄骨柱11と鉄骨梁12とからなる構造用骨組13の対角線方向に位置するガゼットプレート14,14にそれぞれボルト接合することで、構造用骨組13の耐震補強用のブレースあるいは耐震補強用の方杖として用いられる。そして、このような使用態様で、建造物に風圧や地震等による層間変位力が働いて構造用骨組13の鉄骨柱11と鉄骨梁12間に相対変位を生じたとき、制振ダンパー装置10の第1剛性部材1を構成するT形鋼1A…と第2剛性部材2を構成する左右一対の不等辺山形鋼2A,2Aとがダンパー長手方向Sに相対的に摺動変位して、その変位エネルギーが粘弾性体3…のせん断変形によって吸収されることになり、建造物の揺れ動きや振動を減衰するといった制振性能を発揮することになる。
【0017】
このような制振ダンパー装置10は、第1剛性部材1を構成するT形鋼1A…のフランジ辺面部1a…と第2剛性部材2を構成する左右一対の不等辺山形鋼2A,2Aの長辺面部2a,2aとが互いに平行に配置されるように単に積重ね状態に組立るだけでよく、また、各部材1,2の全てが機械的強度の大きい形鋼であるから、それらの位置合わせ精度も高く保ちながらの組立作業が容易となり、かつ、組立工数も少なくてよいために、製作コストの低減が図れる。それでいながら、組立後は、各剛性部材1,2それぞれの単独座屈強度が大きく、実使用状態で多大な引張り力や圧縮力を負担したとしても、各剛性部材1,2が座屈変形したり、曲がり変形したりすることがなく、ダンパー装置10全体として非常に高い座屈強度を発揮して、粘弾性体3…に過度の圧縮や曲げ、ねじれ等のせん断以外の変形力を加えることがないので、粘弾性体3…が本来有するエネルギー吸収性能の低下がなく、所期の制振性能を長期間に亘り安定よく維持することが可能である。
【0018】
なお、上記第1実施例では、第2剛性部材2を構成する二組の左右一対の不等辺山形鋼2A,2Aの長辺面部2a,2aとこれに平行に位置する第1剛性部材1を構成するT形鋼1A…のフランジ辺面部1a…の各対向面間に粘弾性体3…を層状に挟在させただけであるが、図5に示す第2実施例のように、左右一対の不等辺山形鋼2A,2Aの長辺面部2a,2aの端縁部とT形鋼1A…のウェブ辺面部1b…との間の隙間も塞ぐ状態で粘弾性体3…を略コ字形状に介在させることによって、エネルギー吸収性能をより高めることが可能である。
【0019】
図6は本発明に係るブレースタイプの制振ダンパー装置の第3実施例を示す要部の拡大縦断面図である。この第3実施例の制振ダンパー装置10では、第1剛性部材1を構成するT形鋼1A…のフランジ辺面部1a…と第2剛性部材2を構成する左右一対の不等辺山形鋼2A,2Aの長辺面部2a,2aとの対向面間に、粘弾性体3…の肉厚を一定に保持するように、例えば焼付け防止処理が施された鋼製部材あるいはMCナイロン等の低摩擦部材からなる間隔維持部材9…を介在したものである。その他の構成は第1実施例と同一であるため、該当部分に同一の符号を付して、それらの説明を省略する。
【0020】
図7は本発明に係るブレースタイプの制振ダンパー装置の第4実施例を示す要部の拡大縦断面図である。この第4実施例の制振ダンパー装置10では、第1剛性部材1を構成するT形鋼1A…のフランジ辺面部1a…と第2剛性部材2を構成する左右一対の不等辺山形鋼2A,2Aの長辺面部2a,2aとの対向面間に層状に挟在させた粘弾性体3…内に、この粘弾性体3…の層厚を保持するように間隔維持部材用の鋼球11…を埋め込み保持させたものである。その他の構成は第1実施例と同一であるため、該当部分に同一の符号を付して、それらの説明を省略する。
【0021】
上記のように構成された第3実施例及び第4実施例の制振ダンパー装置10においては、第1実施例の場合と同等な制振性能が発揮されるだけでなく、制振作用時において、相対的に摺動変位する第1剛性部材1のT形鋼1A…と第2剛性部材2の不等辺山形鋼2A,2Aとの間に間隔維持部材9…あるいは鋼球11…による摩擦抵抗力が発生し、この摩擦抵抗による減衰作用の働きが加わることにより変位エネルギーの吸収能が一層高められて制振性能が著しく向上されることになる。また、間隔維持部材9…あるいは鋼球11…の存在により、制振ダンパー装置10の無負荷時や実負荷動作時に粘弾性体3…に厚み方向の圧縮荷重が付加されることがあったとしても、その荷重を間隔維持部材9…あるいは鋼球11…で受け止めて粘弾性体3…の層厚を層全域に亘って一定に保持することが可能であり、これによって、粘弾性体3…の応力緩和(流れ出し)や永久歪みの発生等を防ぎ、粘弾性体3…のエネルギー吸収性能を良好に保持して長期間使用後においても所定の制振性能を最大限に発揮させることができる。
【0022】
図8は本発明に係るブレースタイプの制振ダンパー装置の第5実施例を示す要部の拡大縦断面図である。この第5実施例の制振ダンパー装置10では、第2剛性部材2を構成する左右一対の不等辺山形鋼2A,2Aの短辺面部2b,2bに固定した変位規制部材12の他端面を第1剛性部材1を構成するT形鋼1A…のフランジ辺面部1a…のダンパー横幅方向の両端面に当接させることにより、第1剛性部材1と第2剛性部材1,2とのダンパー横幅方向Zでの相対変位を規制するように構成したものである。その他の構成は第1実施例と同一であるため、該当部分に同一の符号を付して、それらの説明を省略する。
【0023】
この第5実施例の制振ダンパー装置10においては、第1実施例の場合と同等な制振性能が発揮されるのはもとより、実使用状態において本来の制振作用方向(ダンパー長手方向S)とは異なるダンパー横幅方向Zの荷重が働いたとしても、その荷重によって第1剛性部材1と第2剛性部材2とがダンパー横幅方向Zに相対変位し、その相対変位に伴って粘弾性体3…に余分な歪みが発生することを防止して、所定の制振性能を長期間に亘り安定よく維持することができる。
【0024】
図9は本発明に係るブレースタイプの制振ダンパー装置の第6実施例を示す要部の拡大縦断面図である。この第6実施例の制振ダンパー装置10では、第1剛性部材1を構成するT形鋼1A…のフランジ辺面部1a…のダンパー横幅方向両端部にそれぞれダンパー横幅方向の外方へ突出するボルト(変位規制部材の一例となる)12A,12A…を螺合固定するとともに、これらボルト12A,12A…の軸部が貫通しダンパー長手方向(せん断変位方向)Sに沿って長い孔2c,2cを第2剛性部材2を構成する左右一対の不等辺山形鋼2A,2Aの短辺面部2b,2bに形成し、これら不等辺山形鋼2A,2Aの短辺面部2b,2bの両面とT形鋼1A…のフランジ辺面部1a…のダンパー横幅方向両端面との間及びボルト12A,12A…の頭部との間にそれぞれ小さなクリアランスl,lを設けることにより、第2剛性部材2を構成する左右一対の不等辺山形鋼2A,2Aと第1剛性部材1を構成するT形鋼1A…とのダンパー横幅方向Zでの相対変位を上記クリアランスl,lで決定される一定範囲内に制限するように構成したものである。
【0025】
この第6実施例の制振ダンパー装置10においても、第1実施例の場合と同等な制振性能が発揮されるのはもとより、実使用状態において本来の制振作用方向(ダンパー長手方向S)とは異なるダンパー横幅方向Zの荷重が働いたとしても、その荷重によって第1剛性部材1と第2剛性部材2とがダンパー横幅方向Zに一定範囲以上に大きく相対変位することを規制することが可能であり、したがって、第1剛性部材1と第2剛性部材2とがダンパー横幅方向Zに大きく相対変位することに起因して粘弾性体3…に余分な歪みが発生したり、応力緩和したりすることを防止して、所定の制振性能を長期間に亘り安定よく維持することができる。
【0026】
図10は本発明に係るブレースタイプの制振ダンパー装置の第7実施例を示す要部の拡大縦断面図である。この第7実施例の制振ダンパー装置10では、第1剛性部材1を構成するT形鋼1A…のフランジ辺面部1a…のダンパー横幅方向両端縁部と第2剛性部材2を構成する左右一対の不等辺山形鋼2A,2Aの短辺面部2b,2b及び長辺面部2a,2aとの各間並びにT形鋼1A…のウェブ辺面部1b…と左右一対の不等辺山形鋼2A,2Aの長辺面部2a,2aのダンパー横幅方向両端縁部との間に、粘弾性体3…の肉厚を一定に保持する二種の間隔維持部材13…、14…を、第1及び第2剛性部材1,2のダンパー横幅方向Zでの相対変位を規制する変位規制部材を兼用するように介在させたものである。その構成は第1実施例と同一であるため、該当部分に同一の符号を付して、それらの説明を省略する。
【0027】
このような第7実施例の制振ダンパー装置10においても、第1実施例の場合と同等な制振性能が発揮されるのはもとより、実使用状態で粘弾性体3…の厚み方向の圧縮荷重及びダンパー横幅方向Zの荷重のいずれが付加されても、それら荷重を変位規制部材兼用の間隔維持部材13…,14…が受け止めることで、粘弾性体3…の応力緩和や永久歪みの発生を防いで所定の制振性能を長期間に亘り一層安定よく維持することができる。
【0028】
【0029】
また、上記各実施例では、ブレースタイプの制振タンパー装置への適用例について説明したが、制振壁タイプや間柱タイプなどあらゆる制振ダンパー装置に適用することも可能である。
【0030】
【発明の効果】
以上要するに、本発明によれば、ダンパー装置の実使用状態で多大な引張り力や圧縮力を負担することになる第1剛性部材及び第2剛性部材として、単独の座屈強度が大きく二段以上に積重ね固定したT形鋼及び少なくとも一段で左右一対に分割された不等辺山形鋼という二種類の形鋼のみを組合せ使用し、それらを単に積重ね構造に組立てればよく、組立作業の容易化及び組立工数の低減が図れて製品全体の製作コストを著しく低減することができる。しかも、第1及び第2剛性部材が共に機械的強度の大きい形鋼であることから、それらの位置合わせ精度を高く保ちやすく、組立作業効率及び組立精度を向上することができて仕上がり寸法及び品質にばらつきがなく、品質の安定したダンパー装置を得ることができる。加えて、装置全体が非常に高い座屈強度を有することから、エネルギー吸収材に過度の圧縮や曲げ、ねじれ等のせん断以外の変形力を加えることがなく、エネルギー吸収材が本来有するエネルギー吸収性能を保持して所期の制振性能を長期間に亘り安定よく維持することができるという効果を奏する。
【0031】
特に、請求項2及び4のように、第1及び第2剛性部材用のT形鋼と不等辺山形鋼の対向面間に、焼付け防止処理された金属部材もしくは低摩擦部材といったエネルギー吸収材の肉厚を保持する間隔維持部材を介在させる構成を採用することにより、ダンパー装置の実使用状態での無負荷時や実負荷動作時にエネルギー吸収材の厚み方向に圧縮荷重が付加されたとしても、その荷重を間隔維持部材で受け止めてエネルギー吸収材のせん断厚みをそれの層全域に亘って一定に保持することができ、エネルギー吸収材の応力緩和や永久歪みの発生を防いでエネルギー吸収性能を良好に保持して長期間使用後においても所定の制振性能を最大限に発揮させることができる。
【0032】
また、請求項3のように、第1剛性部材と第2剛性部材とのダンパー横幅方向の相対変位を規制もしくは一定範囲内に制限する変位規制部材を介在させる構成を採用することにより、実使用状態において本来の制振作用方向(ダンパー長手方向)とは異なるダンパー横幅方向の荷重が働いたとしても、その荷重によって第1剛性部材と第2剛性部材とがダンパー横幅方向に一定範囲以上に大きく相対変位し、その大きな相対変位に伴ってエネルギー吸収材に余分な歪み等が発生することを防止して、所定の制振性能を長期間に亘り安定よく維持することができる。
【0033】
また、請求項5のように、間隔維持部材を、エネルギー吸収材の周辺全域を囲む状態に配置する構成とすることによって、エネルギー吸収材として、流動性及び温度依存性の高い粘弾性体や熱可塑性エラストマーを用いる場合でも、そのエネルギー吸収材の流出や温度変化に伴う性能劣化を間隔維持部材で防いで、エネルギー吸収材の性能を安定維持することができる。
【図面の簡単な説明】
【図1】本発明に係るブレースタイプの制振ダンパー装置の第1実施例を示す全体側面図である。
【図2】図1のX−X線に沿った拡大縦断面図である。
【図3】図1のY−Y線に沿った拡大縦断面図である。
【図4】本発明に係るブレースタイプの制振ダンパー装置の使用状態を示す側面図である。
【図5】本発明に係るブレースタイプの制振ダンパー装置の第2実施例を示す要部の拡大縦断面図である。
【図6】本発明に係るブレースタイプの制振ダンパー装置の第3実施例を示す要部の拡大縦断面図である。
【図7】本発明に係るブレースタイプの制振ダンパー装置の第4実施例を示す要部の拡大縦断面図である。
【図8】本発明に係るブレースタイプの制振ダンパー装置の第5実施例を示す要部の拡大縦断面図である。
【図9】本発明に係るブレースタイプの制振ダンパー装置の第6実施例を示す要部の拡大縦断面図である。
【図10】本発明に係るブレースタイプの制振ダンパー装置の第6実施例を示す要部の拡大縦断面図である。
【図11】従来の制振ダンパー装置の縦断正面図である。
【符号の説明】
1 第1剛性部材
1A T形鋼
1a フランジ辺面部
2 第2剛性部材
2A 不等辺山形鋼
2a 長辺面部
2b 短辺面部
3 粘弾性体(エネルギー吸収材の一例)
9 間隔維持部材
10 制振ダンパー装置
11 鋼球
12,12A 変位規制部材
13,14 変位規制部材兼用の間隔維持部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration damper device. Specifically, when an interlaminar displacement force due to wind pressure, earthquake, etc. is applied to a building, such as a building, the displacement (vibration) energy is absorbed to attenuate the shaking motion and vibration of the building. The present invention relates to a vibration damper device that is used as a brace, a cane, or the like in a structural framework.
[0002]
[Prior art]
In general, this type of vibration damper device includes a plurality of first rigid members such as a plurality of steel plates arranged parallel to each other at intervals, and intermediate positions between adjacent members of the plurality of first rigid members. An energy absorbing material such as a viscoelastic body is interposed between the opposing surfaces of the second rigid member such as at least one steel plate arranged in parallel to the one rigid member, and the structural framework is formed by an earthquake or the like. When the first and second rigid members are displaced relative to each other due to the interlaminar displacement force, the displacement energy is absorbed by the shear deformation of the layered energy absorber, thereby damping the vibration and vibration of the building. It is configured to demonstrate performance.
[0003]
By the way, in the damping damper device that exhibits the damping performance by utilizing the shear deformation characteristics of the energy absorbing material as described above, the energy absorbing material inherently has the energy absorption in order to stably maintain the desired damping performance. It is important not to degrade the performance. In order to do so, the energy absorbing material should not be subjected to deformation force other than shear such as excessive compression, bending, torsion, etc., that is, a large tensile force or The first and second rigid members bearing the compressive force are required to have sufficient buckling strength so that they do not buckle or deform.
[0004]
As the vibration damper device 30 having such a high buckling strength, as shown in FIG. 11, for example, as shown in FIG. 11, the left and right side plates 20 and 20 that are opposed to each other in parallel in the longitudinal direction of the damper and spaced apart from each other. The intermediate plate 21 disposed at an intermediate position between the left and right side plates 20 and 20 is composed of a flat steel plate (first rigid member), and is perpendicular to the damper longitudinal direction of the left and right side plates 20 and 20. Between the two ends, the channel steels 22 and 22 are fixedly connected by bolts and nuts, etc., while the left and right side plates 20 and 20 and the intermediate plate 21 are parallel to these plates 20, 20 and 21. The arranged sliding plates 23 and 23 are also formed of flat steel plates (second rigid members), and are formed between the left and right side plates 20 and 20 and the intermediate plate 21 and the sliding plates 23 and 23. Energy in each gap The viscoelastic material 24, 24 as an example of the absorbent material that is configured by interposing has been proposed.
[0005]
[Problems to be solved by the invention]
The conventional vibration damper device having the above-described configuration is able to ensure high buckling strength because a hollow rectangular parallelepiped is formed by the channel steels 22 and 22 and the left and right side plates 20 and 20, and can be used in actual use. Even if a large tensile force or compressive force is borne in the state, the flat steel plates 20, 21 and 23, which are the first and second rigid members, do not buckle or bend. The elastic bodies 24, 24 have the advantage that the desired vibration damping performance can be stably maintained over a long period of time without degrading the original energy absorption performance. Because it is a combination with flat steel plates, the number of components and the number of types of components are large, and the number of fixtures such as bolts and nuts used and the number of assembly steps are also increased. In addition, the dimensional tolerance of each component is synergistic. And Prone to deviation in alignment accuracy during standing, as a result, not only assembling work increases the cost becomes complicated, there products problem of variation in the finished quality likely to occur (the damper device).
[0006]
The present invention has been made in view of the above circumstances, and has a simple stacked structure of the first and second rigid members, which reduces the number of assembly steps, improves the assembly work efficiency and the assembly accuracy, and reduces the cost and makes the finished quality constant. An object of the present invention is to provide a vibration damping damper device that can secure a very high buckling strength and can stably maintain a desired vibration damping performance over a long period of time.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a vibration damper device according to the present invention provides an energy absorbing material between opposing surfaces of a first rigid member and a second rigid member arranged in parallel to the first rigid member. A damping damper device sandwiched between the first rigid member is composed of T-shaped steel stacked and fixed in at least two stages, and the second rigid member is divided into left and right in the damper lateral width direction. A pair of left and right pairs of unequal crested angle steels arranged in the same plane constitutes a second rigid member, and a pair of left and right pairs of unequal crested angle steels constituting the second rigid member constitutes a first rigid member. The energy absorbing material is sandwiched between the opposed surfaces of the stacked T-shaped steels to the flange side surfaces, and the two pairs of left and right unequal angle irons constituting the second rigid member are end portions in the longitudinal direction of the damper. in part, a different set of scalene mountain By fixing the short side surface portions at both end flange portions of the H-beam placing the web portion between the long side surface portion of the steel, it is characterized in that it is integrally fixed to each other.
[0008]
According to the present invention having the above-described configuration, the flange side surface portion of the T-shaped steel and the non-circular side surface portion of the T-shaped steel are used by using only two types of shape steel, that is, a first rigid member made of T-shaped steel and a second rigid member made of unequal angle mountain shaped steel. It is only necessary to assemble it into a simple stacking structure in which the long side surfaces of equilateral angle steel are arranged in parallel with each other, and as a result, the number of types of fasteners such as bolts and nuts used and the total number used are reduced. As a result, the number of assembling steps can be reduced and the production cost of the entire product can be reduced. Nevertheless, since both the first and second rigid members are shaped steel with high mechanical strength, it is possible to keep their alignment accuracy high, and to improve assembly work efficiency and assembly accuracy. In addition, it is possible to obtain a damper device having a constant appearance size and quality without causing variations in finished dimensions and quality. In addition, the individual buckling strength of each of the first and second rigid members is large, and even if a large tensile force or compressive force is borne in actual use, each rigid member is buckled or bent and deformed. The energy of the energy absorber is inherently high, without exerting any deformation force other than shearing, such as excessive compression, bending, and twisting. It is possible to maintain the absorption performance and maintain the desired vibration control performance stably over a long period of time.
[0009]
In the vibration damper device having the above-described configuration, as described in claim 2, the long side of the pair of left and right unequal angle irons constituting the second rigid member and the flange side surface portion of the T-shaped steel constituting the first rigid member Adopting a configuration in which a gap maintaining member is interposed between the surface facing the surface portion to receive a compressive load applied in the thickness direction of the energy absorbing material and to keep the thickness of the energy absorbing material constant over the entire layer. Therefore, even if a compressive load is applied in the thickness direction of the energy absorber during no load or actual load operation in the actual use state of the damper device, the load is received by the interval maintaining member and the shear thickness of the energy absorber is Can be kept constant throughout the entire layer, thereby preventing stress relaxation and permanent distortion of the energy absorbing material, and maintaining a good energy absorption performance for a long time. A predetermined damping performance can be maximized even after between use.
[0010]
Further, in the vibration damper device having the above-described configuration, as described in claim 3, the flange side surface portion of the T-shaped steel constituting the first rigid member and the pair of left and right unequal angle irons constituting the second rigid member. Between the short side surface portion, a displacement restricting member for restricting the relative displacement in the damper transverse width direction of the first rigid member and the second rigid member or restricting the relative displacement in the tamper transverse width direction within a certain range is interposed. By adopting the configuration, even if a load in the damper lateral width direction that is different from the original vibration damping direction (damper longitudinal direction) is applied in the actual use state, the first rigid member and the second rigid member are caused by the load. The relative displacement of the damper in the lateral width direction is more than a certain range, and it is possible to prevent the energy absorbing material from being excessively distorted or relieving the stress due to the large relative displacement. It is possible to maintain good stability over the performance in a long period of time.
[0011]
Further, as the gap maintaining member in claim 2, as described in claim 4, a seizure-prevented metal member , or a flange side surface portion or unequal side angle steel of a T-shaped steel which is a sliding surface is used. It is desirable to use a member having a low coefficient of friction between the flange side surface part or the long side surface part to such an extent that no seizure occurs with the long side surface part . Further, as described in claim 5, by disposing the gap maintaining member so as to surround the entire periphery of the energy absorbing material, a viscoelastic body or heat having high fluidity and temperature dependency can be used as the energy absorbing material. Even when a plastic elastomer is used, the performance of the energy absorbing material can be stably maintained by preventing the energy absorbing material from flowing out and deteriorating the performance due to temperature changes with the interval maintaining member.
[0012]
Furthermore, as the gap maintaining member, as described in claim 6, by interposing in a state that also serves as a displacement regulating member that regulates the relative displacement of the first rigid member and the second rigid member in the damper lateral width direction, While simplifying the structure using only one kind of member, it prevents stress relaxation and permanent deformation of the energy absorbing material, regardless of whether the compressive load in the thickness direction of the energy absorbing material or the load in the width direction of the damper is applied. Thus, the predetermined damping performance can be maintained more stably over a long period of time.
[0013]
The energy absorbing material in the vibration damper device according to the present invention is most preferably a urethane asphalt-based or rubber-based viscoelastic body, but other than this, an elastic body such as natural or synthetic rubber, a thermoplastic elastomer, a high damping Rubber may be used.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall side view showing a first embodiment of a brace-type damping damper device according to the present invention, and FIGS. 2 and 3 are enlarged longitudinal sectional views taken along lines XX and YY in FIG. The damping damper device 10 includes three T-shaped steels 1A, which are stacked in three stages so that the web side surface portions 1b are positioned coaxially, and the coaxial web side surface portion 1b ... Are fastened with bolts and nuts 4 and a pair of left and right unequal angle irons 2A that are divided in the lateral direction of the damper (arrow Z direction in FIG. 2) and arranged in the same plane. , 2A, each of the flanges in the middle between the flange side surface portions 1a, 1a ... of the T-section steels 1A, 1A ... adjacent to each other in the damper thickness direction (arrow T direction in Fig. 2). How to thicken the damper in a state of being parallel to the side face parts 1a, 1a ... The second rigid member 2 arranged in two stages, and the two pairs of left and right unequal angle irons 2A, 2A constituting the second rigid member 2 and the long side surface portions 2a, 2a are positioned in parallel with this Are formed of viscoelastic bodies (an example of an energy absorbing material) 3 sandwiched between the opposing surfaces of the flange side surface portions 1a of the T-shaped steel 1A.
[0015]
As shown clearly in FIG. 3, two pairs of left and right unequal angle steels 2A, 2A constituting the second rigid member 2 are arranged at one end in the damper longitudinal direction (arrow S direction in FIG. 1). Are fixed and integrated with each other by tightening and fixing the short side surface portions 2b and 2b to both end flange portions 5a and 5a of the H-shaped steel 5 via bolts and nuts 6 and 6, respectively. Of the unequal side angle steels 2A, 2A of the long side surface portions 2a, 2a projecting outwardly in the longitudinal direction of the damper from the damping region L and the web portion 5b of the H-section steel 5 By forming bolt holes 7 that can be bolted to one of the gusset plates fixed to the four corners of the frame, the fixed integrated portion is configured as a joint 8A at one end in the longitudinal direction of the vibration damper device 10. Meanwhile, the damper On the other end side in the longitudinal direction, two sets of left and right pair of unequal angle irons 2A, 2A are protruded outward in the longitudinal direction of the damper from the T-shaped steels 1A, 1A ... constituting the first rigid member 1, By forming bolt holes 7 in the protruding portion, a joint 8B at the other end in the longitudinal direction of the vibration damper device 10 is formed.
[0016]
As shown in FIG. 4, the vibration damper device 10 configured as described above includes a structural frame 13 composed of a steel column 11 and a steel beam 12 in a building, with joints 8A and 8B at both ends in the longitudinal direction of the damper. Are used as a brace for seismic reinforcement of the structural framework 13 or a wand for seismic reinforcement. And in such a use mode, when relative displacement occurs between the steel column 11 and the steel beam 12 of the structural framework 13 due to interlaminar displacement force due to wind pressure, earthquake, or the like on the building, the damping damper device 10 The T-shaped steel 1A... Constituting the first rigid member 1 and the pair of left and right unequal angle irons 2A, 2A constituting the second rigid member 2 are relatively slid and displaced in the longitudinal direction S of the damper. Energy is absorbed by the shear deformation of the viscoelastic bodies 3... And exhibits damping performance such as damping the vibration and vibration of the building.
[0017]
Such a vibration damper device 10 includes a pair of left and right unequal angle irons 2A, 2A constituting the flange side face 1a ... of the T-shaped steel 1A ... constituting the first rigid member 1 and the second rigid member 2. Since the side surfaces 2a and 2a are simply assembled in a stacked state so that the side surfaces 2a and 2a are arranged in parallel with each other, and since all the members 1 and 2 are shaped steels having high mechanical strength, their alignment The assembly work can be facilitated while maintaining high accuracy and the number of assembly steps can be reduced, so that the production cost can be reduced. Nevertheless, after assembling, the individual buckling strength of each of the rigid members 1 and 2 is large, and the rigid members 1 and 2 are buckled and deformed even if they bear a large amount of tensile force or compressive force in actual use. The damper device 10 as a whole exhibits a very high buckling strength and applies a deformation force other than shear such as excessive compression, bending, and twisting to the viscoelastic body 3. Therefore, the energy absorption performance inherently possessed by the viscoelastic bodies 3 is not lowered, and the desired vibration damping performance can be stably maintained over a long period of time.
[0018]
In the first embodiment, the pair of left and right unequal angle irons 2A, 2A constituting the second rigid member 2 and the long side surface portions 2a, 2a and the first rigid member 1 positioned in parallel therewith are provided. The viscoelastic bodies 3 are merely sandwiched between the opposing surfaces of the flange side surface portions 1a of the T-shaped steel 1A to be configured, but a pair of right and left is provided as in the second embodiment shown in FIG. The viscoelastic body 3 is substantially U-shaped with the gap between the edge portions of the long side surface portions 2a, 2a of the unequal side angle steels 2A, 2A and the web side surface portion 1b of the T-shaped steel 1A being closed. By interposing in, energy absorption performance can be further enhanced.
[0019]
FIG. 6 is an enlarged longitudinal sectional view of a main part showing a third embodiment of the brace-type damping damper device according to the present invention. In the vibration damping damper device 10 of the third embodiment, a pair of left and right unequal angle irons 2A constituting a flange side face 1a ... of the T-shaped steel 1A ... constituting the first rigid member 1 and a second rigid member 2; A steel member or a low friction member such as MC nylon that has been subjected to an anti-seize treatment, for example, so as to keep the thickness of the viscoelastic bodies 3 constant between the opposing surfaces of the long side surfaces 2a, 2a of 2A. The gap maintaining members 9 are made of. Since the other configuration is the same as that of the first embodiment, the same reference numerals are given to the corresponding portions, and description thereof is omitted.
[0020]
FIG. 7 is an enlarged vertical cross-sectional view of the main part showing a fourth embodiment of the brace-type damping damper device according to the present invention. In the damping damper device 10 of the fourth embodiment, a pair of left and right unequal angle irons 2A constituting the flange side surface 1a ... of the T-shaped steel 1A ... constituting the first rigid member 1 and the second rigid member 2; A steel ball 11 for a distance maintaining member so as to maintain the layer thickness of the viscoelastic body 3 in the viscoelastic body 3... Sandwiched in layers between the opposing surfaces of the long side surface portions 2a and 2a of 2A. ... embedded and held. Since the other configuration is the same as that of the first embodiment, the same reference numerals are given to the corresponding portions, and description thereof is omitted.
[0021]
In the vibration damper device 10 of the third embodiment and the fourth embodiment configured as described above, not only the vibration damping performance equivalent to the case of the first embodiment is exhibited, but also during the vibration damping action. Friction resistance caused by the distance maintaining member 9 or the steel ball 11 between the T-shaped steel 1A of the first rigid member 1 that is relatively slid and the unequal angle-shaped steel 2A and 2A of the second rigid member 2. A force is generated, and the action of damping action due to this frictional resistance is added, so that the ability to absorb displacement energy is further enhanced, and the vibration damping performance is remarkably improved. Also, due to the presence of the gap maintaining members 9 or the steel balls 11, it is assumed that a compressive load in the thickness direction may be applied to the viscoelastic bodies 3 when the vibration damper device 10 is not loaded or is actually loaded. However, the load can be received by the interval maintaining member 9 or the steel ball 11 and the layer thickness of the viscoelastic body 3 can be kept constant over the entire layer, thereby the viscoelastic body 3. Stress relaxation (flow out) and permanent deformation can be prevented, and the energy absorption performance of the viscoelastic body 3 can be maintained well so that the predetermined vibration damping performance can be maximized even after long-term use. .
[0022]
FIG. 8 is an enlarged longitudinal sectional view of a main part showing a fifth embodiment of the brace-type damping damper device according to the present invention. In the vibration damper device 10 of the fifth embodiment, the other end face of the displacement restricting member 12 fixed to the short side face portions 2b, 2b of the pair of left and right unequal angle irons 2A, 2A constituting the second rigid member 2 is used as the first end face. The damper lateral width direction of the first rigid member 1 and the second rigid members 1 and 2 is brought into contact with both end surfaces in the damper lateral width direction of the flange side surface portion 1a of the T-shaped steel 1A constituting the one rigid member 1. The relative displacement at Z is configured to be restricted. Since the other configuration is the same as that of the first embodiment, the same reference numerals are given to the corresponding portions, and description thereof is omitted.
[0023]
In the vibration damper device 10 of the fifth embodiment, the vibration damping performance equivalent to that in the first embodiment is exhibited, and the original vibration damping action direction (damper longitudinal direction S) in the actual use state. Even if a load in the damper transverse width direction Z different from that is applied, the first rigid member 1 and the second rigid member 2 are relatively displaced in the damper transverse width direction Z by the load, and the viscoelastic body 3 is accompanied by the relative displacement. It is possible to prevent excessive distortion from occurring in the ... and to maintain a predetermined damping performance stably over a long period of time.
[0024]
FIG. 9 is an enlarged vertical cross-sectional view of a main part showing a sixth embodiment of the brace-type damping damper device according to the present invention. In the damping damper device 10 of the sixth embodiment, bolts projecting outward in the damper lateral width direction at both ends of the damper side width direction of the flange side surface portions 1a of the T-shaped steel 1A constituting the first rigid member 1 respectively. .. Are screwed and fixed, and the shafts of these bolts 12A, 12A... Penetrate through the long holes 2c and 2c along the damper longitudinal direction (shear displacement direction) S. Formed on the short side surface portions 2b, 2b of the pair of left and right unequal angle irons 2A, 2A constituting the second rigid member 2, both sides of the short side surface portions 2b, 2b of the unequal angle angle steels 2A, 2A and the T shape steel The second rigid member 2 is configured by providing small clearances 1 and 1 between the flange side surface portions 1a of the flanges 1A and the both ends of the damper in the lateral width direction and between the heads of the bolts 12A and 12A. The relative displacement in the damper transverse direction Z between the right pair of unequal angle irons 2A, 2A and the T-section steel 1A constituting the first rigid member 1 is limited within a certain range determined by the clearances l, l. It is comprised as follows.
[0025]
Also in the vibration damper device 10 of the sixth embodiment, the vibration damping performance equivalent to that of the first embodiment is exhibited, and the original vibration damping action direction (damper longitudinal direction S) in the actual use state. Even if a load in the damper lateral width direction Z different from that is applied, the first rigid member 1 and the second rigid member 2 can be prevented from being relatively displaced in the damper lateral width direction Z by a large amount beyond a certain range. Therefore, the first rigid member 1 and the second rigid member 2 are greatly displaced relative to each other in the damper transverse width direction Z, so that excessive distortion occurs in the viscoelastic bodies 3. The predetermined vibration damping performance can be stably maintained over a long period of time.
[0026]
FIG. 10 is an enlarged vertical cross-sectional view of the main part showing a seventh embodiment of the brace-type damping damper device according to the present invention. In the vibration damping damper device 10 of the seventh embodiment, a pair of left and right dampers constituting the second rigid member 2 and the damper lateral width direction both ends of the flange side surface portion 1a of the T-shaped steel 1A constituting the first rigid member 1 are used. Between the short side surface portions 2b, 2b and the long side surface portions 2a, 2a of the unequal side angle steels 2A, 2A and the web side surface portion 1b ... of the T-shaped steel 1A ... Two types of spacing maintaining members 13..., 14... For maintaining the thickness of the viscoelastic bodies 3. The members 1 and 2 are interposed so as to also serve as a displacement regulating member that regulates the relative displacement in the damper transverse width direction Z. Since the configuration is the same as that of the first embodiment, the same reference numerals are given to the corresponding portions, and the description thereof is omitted.
[0027]
Even in the vibration damper device 10 of the seventh embodiment, the vibration damping performance equivalent to that of the first embodiment is exhibited, and the compression in the thickness direction of the viscoelastic body 3 is actually used. Regardless of whether a load or a load in the damper transverse width direction Z is applied, the distance maintaining members 13, 14, which are also used as displacement regulating members, receive the load, thereby generating stress relaxation and permanent deformation of the viscoelastic body 3. The predetermined damping performance can be maintained more stably over a long period of time.
[0028]
[0029]
Further, in each of the above-described embodiments, the application example to the brace type vibration damping tamper device has been described. However, the present invention can be applied to any vibration damping damper device such as a vibration damping wall type and a stud type.
[0030]
【The invention's effect】
In short, according to the present invention, as the first rigid member and the second rigid member that bear a great tensile force or compressive force in the actual use state of the damper device, the single buckling strength is large and two or more steps are required. It is only necessary to use only two types of shape steel, the T-shape steel stacked and fixed, and the unequal angle mountain-shaped steel divided into a pair of left and right at least in one stage, and simply assemble them into a stacked structure. The number of assembly steps can be reduced, and the manufacturing cost of the entire product can be significantly reduced. Moreover, since both the first and second rigid members are shaped steels having high mechanical strength, it is easy to keep their alignment accuracy high, and the assembly work efficiency and assembly accuracy can be improved, resulting in finished dimensions and quality. Therefore, a damper device having a stable quality can be obtained. In addition, since the entire device has a very high buckling strength, it does not apply any deformation force other than shear such as excessive compression, bending, and twisting to the energy absorbing material, and the energy absorbing performance inherent to the energy absorbing material. And the desired vibration damping performance can be stably maintained over a long period of time.
[0031]
In particular, as in claims 2 and 4, an energy absorbing material such as a metal member or a low friction member subjected to anti-seizing treatment is provided between the opposing surfaces of the T-shaped steel and the unequal side angle steel for the first and second rigid members. Even if a compressive load is added in the thickness direction of the energy absorbing material at the time of no load or actual load operation in the actual use state of the damper device by adopting a configuration that interposes an interval maintaining member that maintains the thickness, The load is received by the interval maintaining member, and the shear thickness of the energy absorbing material can be kept constant throughout the entire layer, and the energy absorbing performance is improved by preventing stress relaxation and permanent deformation of the energy absorbing material. The predetermined damping performance can be exhibited to the maximum even after long-term use.
[0032]
Further, as in claim 3, by adopting a configuration in which a displacement restricting member that restricts or restricts the relative displacement in the damper transverse width direction between the first rigid member and the second rigid member is used, Even if a load in the damper lateral direction that is different from the original vibration damping direction (the longitudinal direction of the damper) is applied in the state, the first rigid member and the second rigid member are larger than a certain range in the damper lateral width direction by the load. Relative displacement is prevented, and excessive distortion or the like is prevented from occurring in the energy absorbing material due to the large relative displacement, so that predetermined vibration damping performance can be stably maintained over a long period of time.
[0033]
Further, as described in claim 5, by arranging the gap maintaining member so as to surround the entire periphery of the energy absorbing material, the energy absorbing material can be a viscoelastic body or heat having high fluidity and temperature dependency. Even when a plastic elastomer is used, the performance of the energy absorbing material can be stably maintained by preventing the energy absorbing material from flowing out and deteriorating the performance due to temperature changes with the interval maintaining member.
[Brief description of the drawings]
FIG. 1 is an overall side view showing a first embodiment of a brace-type vibration damper device according to the present invention.
FIG. 2 is an enlarged longitudinal sectional view taken along line XX in FIG.
FIG. 3 is an enlarged longitudinal sectional view taken along line YY of FIG.
FIG. 4 is a side view showing a usage state of the brace-type vibration damper device according to the present invention.
FIG. 5 is an enlarged vertical cross-sectional view of a main part showing a second embodiment of the brace-type damping damper device according to the present invention.
FIG. 6 is an enlarged vertical cross-sectional view of a main part showing a third embodiment of a brace-type damping damper device according to the present invention.
FIG. 7 is an enlarged vertical cross-sectional view of a main part showing a fourth embodiment of a brace-type damping damper device according to the present invention.
FIG. 8 is an enlarged longitudinal sectional view of a main part showing a fifth embodiment of a brace-type damping damper device according to the present invention.
FIG. 9 is an enlarged vertical cross-sectional view of a main part showing a sixth embodiment of a brace-type damping damper device according to the present invention.
FIG. 10 is an enlarged vertical sectional view of a main part showing a sixth embodiment of a brace type damping damper device according to the present invention;
FIG. 11 is a longitudinal front view of a conventional vibration damper device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st rigid member 1A T-shaped steel 1a Flange side surface part 2 2nd rigid member 2A Unequal side angle steel 2a Long side surface part 2b Short side surface part 3 Viscoelastic body (an example of energy absorbing material)
DESCRIPTION OF SYMBOLS 9 Space | interval maintenance member 10 Damping damper apparatus 11 Steel ball 12, 12A Displacement control member 13,14 Space | interval maintenance member used also as a displacement control member

Claims (7)

第1剛性部材とこの第1剛性部材に対して平行に配置された第2剛性部材との対向面間にエネルギー吸収材を挟在させてなる制振ダンパー装置であって、
上記第1剛性部材が少なくとも二段に積重ね固定したT形鋼から構成されているとともに、第2剛性部材がダンパー横幅方向で左右に分割されて同一平面内に配置された二組の左右一対の不等辺山形鋼から構成され、
第2剛性部材を構成する二組の左右一対の不等辺山形鋼の長辺面部と第1剛性部材を構成する積重ねT形鋼のフランジ辺面部との対向面間にそれぞれエネルギー吸収材が挟在され、
かつ、第2剛性部材を構成する二組の左右一対の不等辺山形鋼同士はダンパー長手方向の端部において、異なる組の不等辺山形鋼の長辺面部の間にウェブ部を配置したH形鋼の両端フランジ部に各短辺面部を固定することにより、互いに固定一体化されていることを特徴とする制振ダンパー装置。
A damping damper device in which an energy absorbing material is sandwiched between opposing surfaces of a first rigid member and a second rigid member arranged in parallel to the first rigid member,
Together with the first rigid member is made from T-beams were stacked secured to at least two stages, by the arranged two pairs in the same plane with the pair of right and left split second rigid member to the left and right at the damper width direction Consists of unequal sides angle steel,
An energy absorbing material is interposed between the opposing surfaces of the long side surface portions of the two pairs of left and right unequal angle irons constituting the second rigid member and the flange side surface portions of the stacked T shape steel constituting the first rigid member. And
In addition, the two pairs of left and right unequal angle irons that constitute the second rigid member have a web portion disposed between the long side surfaces of different sets of unequal angle irons at the end in the longitudinal direction of the damper. A damping damper device characterized by being fixed and integrated with each other by fixing each short side surface portion to both end flange portions of the shape steel .
上記第1剛性部材を構成するT形鋼のフランジ辺面部と第2剛性部材を構成する左右一対の不等辺山形鋼の長辺面部との対向面間には、エネルギー吸収材の厚み方向に付加される圧縮荷重を受け止めて該エネルギー吸収材の肉厚を層全域に亘って一定に保持する間隔維持部材が介在されている請求項1に記載の制振ダンパー装置。Between the opposing surfaces of the flange side surface portion of the T-shaped steel constituting the first rigid member and the long side surface portion of the pair of left and right unequal angle irons constituting the second rigid member, it is added in the thickness direction of the energy absorbing material. The vibration damping damper device according to claim 1, wherein an interval maintaining member is provided to receive the compressed load and keep the thickness of the energy absorbing material constant over the entire layer . 上記第1剛性部材を構成するT形鋼のフランジ辺面部と第2剛性部材を構成する左右一対の不等辺山形鋼の短辺面部との間には、第1剛性部材と第2剛性部材とのダンパー横幅方向での相対変位を規制する、もしくは、ダンパー横幅方向での相対変位を一定範囲内に制限する変位規制部材が介在されている請求項1または2に記載の制振ダンパー装置。  Between the flange side surface portion of the T-shaped steel constituting the first rigid member and the short side surface portion of the pair of left and right unequal angle irons constituting the second rigid member, the first rigid member and the second rigid member The damping damper device according to claim 1 or 2, wherein a displacement restricting member is interposed to restrict relative displacement in the damper lateral width direction or to limit relative displacement in the damper lateral width direction within a certain range. 上記間隔維持部材が、焼付け防止処理された金属部材、又は、摺接面であるT形鋼のフランジ辺面部若しくは不等辺山形鋼の長辺面部との間で焼付けを生じさせない程度に上記フランジ辺面部若しくは上記長辺面部との間の摩擦係数が低い部材である請求項2に記載の制振ダンパー装置。The flange side to the extent that the gap maintaining member does not cause seizure between the seizure-prevented metal member , or the flange side surface portion of the T-shaped steel or the long side surface portion of the unequal side angle steel that is the sliding contact surface. The vibration damper device according to claim 2, which is a member having a low coefficient of friction between the surface portion or the long side surface portion . 上記間隔維持部材が、エネルギー吸収材の周辺全域を取り囲む状態に配置されている請求項2または4に記載の制振ダンパー装置。  The vibration damping damper device according to claim 2 or 4, wherein the gap maintaining member is disposed in a state of surrounding the entire periphery of the energy absorbing material. 上記間隔維持部材が、第1剛性部材と第2剛性部材とのダンパー横幅方向での相対変位を規制する変位規制部材を兼用する状態に介在されている請求項2または4に記載の制振ダンパー装置。  5. The vibration damping damper according to claim 2, wherein the gap maintaining member is interposed in a state that also serves as a displacement regulating member that regulates relative displacement between the first rigid member and the second rigid member in the damper lateral width direction. apparatus. 上記エネルギー吸収材が、ウレタンアスファルト系もしくはゴム系粘弾性体、弾性体、高減衰ゴム、熱可塑性エラストマーの中から選択された一つである請求項1ないし6のいずれかに記載の制振ダンパー装置。  The vibration damper according to any one of claims 1 to 6, wherein the energy absorbing material is one selected from urethane asphalt or rubber viscoelastic body, elastic body, high damping rubber, and thermoplastic elastomer. apparatus.
JP2001366782A 2001-11-30 2001-11-30 Vibration damper device Expired - Fee Related JP3927797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366782A JP3927797B2 (en) 2001-11-30 2001-11-30 Vibration damper device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366782A JP3927797B2 (en) 2001-11-30 2001-11-30 Vibration damper device

Publications (2)

Publication Number Publication Date
JP2003166588A JP2003166588A (en) 2003-06-13
JP3927797B2 true JP3927797B2 (en) 2007-06-13

Family

ID=19176630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366782A Expired - Fee Related JP3927797B2 (en) 2001-11-30 2001-11-30 Vibration damper device

Country Status (1)

Country Link
JP (1) JP3927797B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174837A (en) * 2008-09-03 2011-09-07 蔡崇兴 Energy dissipation diagonal bracing device
CN105040817B (en) * 2015-07-30 2018-04-24 北京建筑大学 The prestressing force assembled intermediolateral column steel frame of recoverable function
CN105386530A (en) * 2015-11-26 2016-03-09 沈阳建筑大学 Cross four-angle-steel type bending constraint support
CN110748024A (en) * 2019-10-22 2020-02-04 武汉理工大学 Shearing type metal damper

Also Published As

Publication number Publication date
JP2003166588A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP5275230B2 (en) Damper device
JP3629638B2 (en) Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability
JP2002089077A (en) Viscoelastic brace serially connected with spring
JP2003193699A (en) Elasto-plastic, visco-elastic brace
JPH11269984A (en) Damping structure for building frame
JP3927797B2 (en) Vibration damper device
JP7132867B2 (en) friction damper
JP2001248324A (en) Friction joint type energy absorbing device for frame
US11371241B2 (en) Damper for energy dissipation
JPH10140873A (en) Vibration damping structure of building
JP3616889B2 (en) Damping damper
JP2012229572A (en) Buckling restraining brace
JP3899252B2 (en) Vibration damper device
JP2001262859A (en) Damping equipment
JPWO2006129534A1 (en) XY guidance device
JP3791132B2 (en) Damping structure using a disc spring friction damper
JP5668388B2 (en) Damping structure of joint
DE2830118A1 (en) Heavy machinery vibration damper unit - consists of corrugated spring plate with vertical stays for mounting plate and foundation rests respectively
JP2002213531A (en) Damping device
JP4484933B2 (en) Damping brace damper
JP4181680B2 (en) Damping brace damper, energy absorber used therefor, and design method thereof
JPH10220062A (en) Vibration damping structure for building
JP3750037B2 (en) Damper device
CN114809444A (en) Column base joint containing disc spring bolt assembly
JP2000274108A (en) Vibration control damper and its installation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees