JP3927700B2 - Manufacturing method of heat exchanger - Google Patents

Manufacturing method of heat exchanger Download PDF

Info

Publication number
JP3927700B2
JP3927700B2 JP25169298A JP25169298A JP3927700B2 JP 3927700 B2 JP3927700 B2 JP 3927700B2 JP 25169298 A JP25169298 A JP 25169298A JP 25169298 A JP25169298 A JP 25169298A JP 3927700 B2 JP3927700 B2 JP 3927700B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
heat exchanger
inner tube
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25169298A
Other languages
Japanese (ja)
Other versions
JP2000079431A (en
Inventor
正治 安藤
忠夫 北原
康文 榊原
Original Assignee
マルヤス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルヤス工業株式会社 filed Critical マルヤス工業株式会社
Priority to JP25169298A priority Critical patent/JP3927700B2/en
Publication of JP2000079431A publication Critical patent/JP2000079431A/en
Application granted granted Critical
Publication of JP3927700B2 publication Critical patent/JP3927700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/105Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being corrugated elements extending around the tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換器の製造方法に関する。特に、内管に高速の高温ガス(気体)を、外管に冷却水(液体)を通過させて熱交換を行う熱交換器、例えば、内燃機関の排気ガスを冷却水により冷却する排気冷却器(高度の熱交換能が要求される)等を製造するのに好適な発明である。
【0002】
【背景技術】
二重管式熱交換器としては、図1・2に示す如く、内管12を外管14に挿通させ、外管14の両端部を内管12の外壁に溶接したものがある。外管14の両端部には、冷却水の入口ノズル16及び出口ノズル18を向流/並流使用できるように形成されている(図例では向流)。なお、20は管フランジである。
【0003】
図1・2に示すような構成では、熱交換が内管12の壁面だけであり、伝熱面積が小さく、かつ、内管12の中心部側を流れる流体の熱交換が行い難く熱交換効率が低い。即ち、全体として大きな熱交換能を得難かった。
【0004】
このため、図3・4に示すような、複数本(図例では4本)の細径の内管12Aを外管14の内側に挿通させた多管式タイプが、通常、使用されている。この構成では、伝熱面積が増大するとともに、中心部側を流れる流体に対しても熱交換を行うことができ、大きな熱交換能を得易い。
【0005】
しかし、図3・4に示す多管式タイプのものでは、製造工数がかさみ、かつ、重量も増大する傾向にある。
【0006】
このため、本願発明者らは、先に、図1・2に示す構成の二重管式熱交換器において、図5に示す如く、内管28に、横断面放射状の波形チューブで形成された伝熱フィン22を、内管28の管壁内側に接して配した熱交換器を提案した(特願平9−182571号(平成9年7月8日出願):特開平11−23181号公報参照、出願時未公開)。伝熱面積の増大と内管28の中心部を流れる流体の熱交換も可能として、熱交換能を増大させる。
【0007】
図5に示す熱交換器において、伝熱フィン22は、図6に示すような所定ピッチPおよび所定高さHで所定長さに裁断された波板24を巻き成形して有端管状にしたものを、内管28の管壁に波頂部25外側を接触させて配し、該波頂部外側をロウ付けして固着していた。
【0008】
そして、上記ロウ付けは、波頂部25の外側に、ロウ材を塗布して、伝熱フィン22を内管28に挿入した熱交換管器半製品を、ロウ付け加熱炉に投入し、所定時間経過後、取り出して行っていた。
【0009】
【発明が解決しようとする課題】
しかし、上記ロウ付け方法の場合、伝熱フィン22の波頂部25と内管28の管壁との間に、安定したロウ付け性・強度が得られないことが分かった。
【0010】
特に、今回本発明者らが、図7に示す如く、ロウ付け性の見地から、ロウ付け面側(外周面都なる側)をU字曲げ部U(第一曲げ形状)とV字曲げ部(第二曲げ形状)Vとを交互に形成した波板26の場合、よりロウ付け性・強度の安定性が低下することが分かった。
【0011】
本発明は、上記にかんがみて、伝熱フィンのロウ付け性・強度が安定して得られる熱交換器の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意開発に努力をする過程で、上記製造方法では、巻き成形した伝熱フィンに歪みバラツキがあり内管に挿入したとき、真円状態にスプリングバックせず、ロウ付けされる各波頂部が均等な隙間を有して当接しないためであることを見出して、下記構成の熱交換器の製造方法に想到した。
【0013】
内管と外管とを備え、前記内管に横断面放射状の波形チューブで形成された伝熱フィンが、内管の管壁内側に接して配された二重管式熱交換器を製造する方法において、
所定高さ・所定ピッチで所定長さの波板を波方向に巻いて有端管状に巻き成形した伝熱フィンを、内管に挿入した後、内管の管壁に前記伝熱フィンの波頂部外側を接触させて配し、該波頂部外側ロウ付けをするに際して、
巻き成形後の伝熱フィンを、矯正カラーに巻き回して挿入後、前記ロウ付けを行うことを特徴とする。
【0014】
上記に熱交換器の製造方法おいて、矯正カラーとして前記伝熱フィンの波部内側に嵌合する位置決めリブを複数本備えたものを使用することが望ましい。
【0015】
また、上記いずれかの熱交換器の製造方法において、伝熱フィンの曲げ形状が相互に異なる第一曲げ形状と第二曲げ形状が交互に形成されているものであることが、本発明の効果が顕著となり望ましい。
【0016】
【発明の作用・効果】
本発明の二重管式熱交換器の製造方法は、上記構成により、下記のような作用・効果を奏する。
【0017】
巻き成形後の伝熱フィンを矯正カラーに巻き回して内管に挿入するため、伝熱フィンがスプリングバックした際の外周真円度が確保し易い。
【0018】
このため、伝熱フィンの波頂部と内管の管壁との間の当接度合いが略均一化されて、伝熱フィンのロウ付け性・強度が安定して得られる。
【0019】
また、矯正カラーとして前記伝熱フィンの波部内側に嵌合する位置決めリブを複数備えたものを使用することにより、内管内でスプリングバックした際真円度をより確保し易いとともに、波間隔(波ピッチ)も制御できる。したがって、伝熱フィンのロウ付け性・強度がより確保し易くなるとともに、伝熱フィンの波頂部の間隔のバラツキを抑制できて、結果的に熱交換効率の向上した熱交換器を製造し易くなる。
【0020】
更に、波板の波形状が、曲げ形状が相互に異なる第一曲げ形状と第二曲げ形状が交互に形成されているものを、本発明の製造方法に適用することにより、前述の如く、本発明の効果がより顕著となる。
【0021】
【発明の実施の形態】
以下、本発明の実施形態を図例に基づいて説明をする。
【0022】
(1) 図7に示すような波板26を、図8に示すような内管28にロウ付け固定して伝熱フィン30とする場合を例に採り説明する。図8の断面では、外管を省略してある。
【0023】
波板26は、ロウ付け面側(外周面となる側)となる波頂部27の両側に曲げ部を備えたU字曲げ部(第一曲げ形状)Uとされ、内周面側となる面側がV字曲げ部(第二曲げ形状)Vとされている。
【0024】
当該波板26の調製方法は、特に限定されず、慣用の方法で調製できる。引き抜き等、波型のダイ上を歯車状ポンチを転がして成形してもよいが、通常、図9に示す如く、上型(押し型)32と下型(受け型)34とを、プレス機にセットして、金属帯板(素材)36を順送り(シリンダ等で一段づつ持ち上げて定尺送りする)して成形することが、所定ピッチの波板が正確に成形できて望ましい。
【0025】
ここでは、ロウ付け面側がU字曲げ部としたが、通常の、図6に示すようなV字曲げ部のみの波板またはU字曲げ部のみの波板でも同様である。
【0026】
上記のようにしてプレス成形した波板26は、通常、波方向に巻いて有端管状とする、即ち、巻き成形(癖付け)を行う。そして、癖付けの方法は、特に限定されず、通常、ロールフォーミング等により行う。
【0027】
次に、上記巻き成形した伝熱フィン30の波頂部(U字曲げ部Uの外側面)27にロウ材36、36Aを、塗布ないしセットする。即ち、このとき、波頂部27には、ロウ材保持溝29を形成しておいて、該保持溝29に、ペースト状ロウ材36を図10に示す如く充填するか、又は、棒状ロウ材(例えば銅線)36Aを図11に示す如く嵌着することがロウ付け安定性の見地から望ましい。
【0028】
こうしたロウ材36、36Aがセットされた有端管状の伝熱フィン30を、矯正カラー38に巻き回して挿入後、ロウ付けを行う。
【0029】
即ち、図12に示す如く、巻き成形後の半開き状態の伝熱フィン30を矯正カラー38に巻き回して端部相互を略接触した状態にして、内管28に挿入する。このとき、矯正カラー38の外径dは、内管28の内径Dから波板の高さHの2倍を引いたもの(D−2H)と同じ又は若干小さめとする。内管28の内径にもよるが、通常、d=D−2H+(−0〜−0.6mm)、望ましくは、(−0.1〜−0.3mm)とする。矯正カラー38の外径dがD−2Hより大きいと、挿入作業性が悪くなるとともに、波頂部27にロウ材保持溝29が存在しないとき、ロウ塗布(セット)したロウ材が離脱して、ロウ付け安定性・強度を阻害するおそれがある。逆に、上記矯正カラー38の外形が小さすぎると、本発明の作用(伝熱フィンの真円化)を奏し難い。
【0030】
なお、矯正カラー38は、連続的であってもよいが、図13に示す如く、複数個からなるものであってもよい。そして、矯正カラー38は、通常、重量軽減の見地から中空とするが、この場合は、少なくとも、矯正カラー38の挿入方向側は、盲体であることが望ましい。なお、矯正カラー38を中空としたときの、肉厚は、矯正カラーの径にもよるが、通常、0.1〜1.0mm、望ましくは、0.5mm前後とする。
【0031】
更に、矯正カラー38は、図8の二点鎖線で示す如く、伝熱フィン30の各波部内側に嵌合する位置決めリブ39を複数備えたものを使用することが望ましい。位置決めリブ39の存在により、ずれた波ピッチの矯正ができて望ましい。なお、位置決めリブ39の数は、伝熱フィン30の波数に対応させてもよいが、一つおき乃至二つおき等に設けてもよい。
【0032】
そして、伝熱フィン30はスプリングバックにより、内管28の内側に密接状態となる。このとき、伝熱フィン30の内周側には、矯正カラー38が存在するため、伝熱フィン30のスプリングバックの歪み等による伝熱フィンの波頂部27の偏在が矯正され、伝熱フィンの外周が真円化される。この状態で、ロウ付け加熱炉を通過させることにより、熱交換器のロウ付け工程が完了する。
【0033】
伝熱フィンの各波頂部が内管の内周面に均一に接触した状態でロウ付けされるため、結果的に、安定したロウ付け性・強度が得られる。
【0034】
上記において、矯正カラー38は、通常、ロウ付け工程後、取り出すが、内管流体の流れに悪影響を与えない場合は、そのまま抜き出さずに入れたままでもよい。なお、矯正カラー38の材質は、通常、内管28と金属系(通常、鉄、鋼)とするが、ロウ付け加熱時に、ロウ溶融温度の直前温度で、消失ないし縮小する有機系ないし無機系材料であってもよい。
【0035】
なお、上記伝熱フィン30となる波板26の板厚は、材質により異なるが、鋼製の場合、通常、0.01〜0.8mm、望ましくは、0.05〜0.5mmとする。薄くしすぎると、形態保持性とともに伝熱抵抗が大きくなり、また、厚いと重量増大につながり望ましくない。
【0036】
また、内管28の内半径rと波板24の高さHとの関係は、内管28の内径にもよるが、内管28の内径10〜50mmの範囲で、通常H/r=0.1〜0.8、望ましくは、H/r=0.2〜0.7とする。そして内径の範囲に対応して、波の山の高さはH=4〜20mmとする。
【0037】
また、波板26の波ピッチPは、要求伝熱面積に対応して2〜6mmとする。
【0038】
また、内管28等の肉厚は、伝熱性の見地から可及的に薄い方が望ましいが、伝熱フィン30に比して剛性が要求されるため、伝熱フィン30より厚肉とする。例えば、内管28の内径が上記範囲の場合、通常0.1〜1.0mm、望ましくは0.3〜0.8mmとする。
【図面の簡単な説明】
【図1】 従来の二重管式熱交換器を示す正面図
【図2】 図1の2−2線拡大断面図
【図3】 従来の多管式熱交換器の一例を示す正面図
【図4】 図3の4−4線断面図
【図5】 図1において内管に波形チューブの伝熱フィンを設けた図2に対応する拡大端面図
【図6】 波板の一例を示す斜視図
【図7】 本発明の適用すると好適な波板の一例を示す端面図
【図8】 図7の波板を内管に装着した状態を示す端面図
【図9】 図7の波板をプレス成形する場合の成形型を示す断面図
【図10】 本発明の伝熱フィンにおける波頂部へのロウ材セットの一態様を示す斜視図
【図11】 同じく他のロウ材セット態様を示す斜視図
【図12】 本発明の矯正カラーを伝熱フィンにセットする態様を示す説明図
【図13】 不連続の矯正カラーをセットした伝熱フィンを熱交換管体に挿入した状態を示す概略斜視図
【符号の説明】
12 内管
14 外管
22 伝熱フィン
24 波板
25 波頂部
26 波板
27 波頂部
28 内管
29 ロウ材保持溝
30 伝熱フィン
36、36A ロウ材
38 矯正カラー
V V字形曲げ部
U U字形曲げ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a heat exchanger. In particular, a heat exchanger that exchanges heat by passing a high-speed high-temperature gas (gas) through the inner pipe and cooling water (liquid) through the outer pipe, for example, an exhaust cooler that cools the exhaust gas of an internal combustion engine with the cooling water (A high heat exchange capacity is required) and the like.
[0002]
[Background]
As a double-pipe heat exchanger, as shown in FIGS. 1 and 2, there is one in which the inner tube 12 is inserted into the outer tube 14 and both ends of the outer tube 14 are welded to the outer wall of the inner tube 12. At both ends of the outer tube 14, the cooling water inlet nozzle 16 and outlet nozzle 18 are formed so as to be able to use countercurrent / cocurrent flow (counterflow in the illustrated example). Reference numeral 20 denotes a pipe flange.
[0003]
In the configuration as shown in FIGS. 1 and 2, heat exchange is performed only on the wall surface of the inner tube 12, the heat transfer area is small, and heat exchange of the fluid flowing through the central portion of the inner tube 12 is difficult to perform. Is low. That is, it was difficult to obtain a large heat exchange capacity as a whole.
[0004]
For this reason, as shown in FIGS. 3 and 4, a multi-tube type in which a plurality of (four in the illustrated example) small-diameter inner tube 12A is inserted inside the outer tube 14 is normally used. . In this configuration, the heat transfer area is increased, heat can be exchanged with respect to the fluid flowing in the center portion side, and a large heat exchange capability is easily obtained.
[0005]
However, the multi-tube type shown in FIGS. 3 and 4 tends to increase the number of manufacturing steps and increase the weight.
[0006]
For this reason, the inventors of the present application previously formed a double-tube heat exchanger having the configuration shown in FIGS. 1 and 2 on the inner tube 28 with a corrugated tube having a radial cross section as shown in FIG. A heat exchanger in which the heat transfer fins 22 are arranged in contact with the inner wall of the inner tube 28 has been proposed (Japanese Patent Application No. 9-182571 (filed on July 8, 1997 ): Japanese Patent Application Laid- Open No. 11-23181 Reference, unpublished at the time of application). The heat transfer area can be increased and the heat exchange of the fluid flowing through the central portion of the inner tube 28 can be performed, thereby increasing the heat exchange capacity.
[0007]
In the heat exchanger shown in FIG. 5, the heat transfer fins 22 are formed into end tubes by winding a corrugated sheet 24 cut into a predetermined length at a predetermined pitch P and a predetermined height H as shown in FIG. 6. This was placed in contact with the outside of the crest 25 on the tube wall of the inner tube 28, and the outside of the crest was brazed and fixed.
[0008]
Then, the brazing is performed by applying a brazing material to the outside of the wave crest portion 25 and placing the heat exchange tube semi-finished product in which the heat transfer fins 22 are inserted into the inner tube 28 into a brazing heating furnace for a predetermined time. After the lapse, it was taken out.
[0009]
[Problems to be solved by the invention]
However, in the case of the brazing method described above, it has been found that stable brazing properties and strength cannot be obtained between the wave crest portion 25 of the heat transfer fin 22 and the tube wall of the inner tube 28 .
[0010]
In particular, as shown in FIG. 7, the present inventors, from the standpoint of brazing, this time, the brazing surface side (the outer peripheral surface side) is divided into a U-shaped bent portion U (first bent shape) and a V-shaped bent portion. In the case of the corrugated sheet 26 in which (second bent shape) V is alternately formed, it has been found that the brazing property and the stability of the strength are further lowered.
[0011]
In view of the above, an object of the present invention is to provide a method of manufacturing a heat exchanger that can stably obtain brazing properties and strength of heat transfer fins.
[0012]
[Means for Solving the Problems]
In the process of diligently developing in order to solve the above problems, the present inventors have found that in the above manufacturing method, when the wound heat transfer fin has distortion variation and is inserted into the inner tube , The inventors found out that the wave crest portions to be brazed do not come into contact with each other with a uniform gap, and came up with a method for manufacturing a heat exchanger having the following configuration.
[0013]
A double-tube heat exchanger having an inner tube and an outer tube, in which heat transfer fins formed of corrugated tubes having a radial cross section in the inner tube are disposed in contact with the inner wall of the inner tube is manufactured. In the method
Predetermined height-shaped heat transfer fins winding a predetermined length corrugated sheet at a predetermined pitch in a closed-end tubular wound in a wave direction, after insertion into the inner tube, the wave of the heat transfer fins on the tube wall of the inner tube When placing the outer side of the top in contact and brazing the outer side of the wave top ,
The heat transfer fin after winding is wound around a correction collar and inserted, and then the brazing is performed.
[0014]
In the heat exchanger manufacturing method described above, it is preferable to use a straightening collar provided with a plurality of positioning ribs fitted inside the wave portion of the heat transfer fin.
[0015]
Further, in any one of the above heat exchanger manufacturing methods, the first bent shape and the second bent shape, in which the bent shapes of the heat transfer fins are different from each other, are alternately formed. Is desirable.
[0016]
[Operation and effect of the invention]
The method for manufacturing a double-pipe heat exchanger of the present invention has the following operations and effects with the above-described configuration.
[0017]
Since the heat transfer fin after winding is wound around the correction collar and inserted into the inner tube , it is easy to ensure the roundness of the outer periphery when the heat transfer fin is spring-backed.
[0018]
For this reason, the contact degree between the wave crest portion of the heat transfer fin and the tube wall of the inner tube is made substantially uniform, and the brazing property and strength of the heat transfer fin can be stably obtained.
[0019]
Further, by using a material having a plurality of positioning ribs for fitting the wave portion inside of the heat transfer fins as corrective color, with easy to secure more roundness when the spring back in the inner pipe, waves The interval (wave pitch) can also be controlled. Therefore, it is easier to secure the brazing property and strength of the heat transfer fins, and also can suppress variations in the gaps between the wave crest portions of the heat transfer fins, thereby making it easier to manufacture a heat exchanger with improved heat exchange efficiency. Become.
[0020]
Further, as described above, the corrugated plate is formed by alternately applying the first bent shape and the second bent shape having different bent shapes to the manufacturing method of the present invention. The effect of the invention becomes more remarkable.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
(1) The case where the corrugated plate 26 as shown in FIG. 7 is brazed and fixed to the inner tube 28 as shown in FIG. In the cross section of FIG. 8, the outer tube is omitted.
[0023]
The corrugated plate 26 is a U-shaped bent portion (first bent shape) U provided with bent portions on both sides of the wave crest portion 27 on the brazing surface side (the outer peripheral surface side), and is a surface on the inner peripheral surface side. The side is a V-shaped bent portion (second bent shape) V.
[0024]
The method for preparing the corrugated plate 26 is not particularly limited, and can be prepared by a conventional method. For example, as shown in FIG. 9, an upper die (push die) 32 and a lower die (receiver die) 34 are formed by a press machine. It is desirable that the metal strips (materials) 36 are formed by progressively feeding (lifting them one step at a time by a cylinder or the like and feeding them at a fixed length) so that corrugated sheets with a predetermined pitch can be accurately formed.
[0025]
Here, the brazing surface side is a U-shaped bent portion, but the same applies to a corrugated sheet having only a V-shaped bent portion or a U-shaped bent portion as shown in FIG.
[0026]
The corrugated sheet 26 press-molded as described above is usually wound in the wave direction to have a tubular shape, that is, is wound (braded). And the method of brazing is not specifically limited, Usually, it performs by roll forming etc.
[0027]
Next, brazing materials 36 and 36 </ b> A are applied or set on the wave crest portion (outer surface of the U-shaped bent portion U) 27 of the wound heat transfer fin 30. That is, at this time, a brazing material holding groove 29 is formed in the wave crest portion 27, and the holding groove 29 is filled with a paste-like brazing material 36 as shown in FIG. For example, copper wire) 36A is preferably fitted as shown in FIG. 11 from the viewpoint of brazing stability.
[0028]
The end-shaped tubular heat transfer fins 30 on which the brazing materials 36 and 36A are set are wound around the correction collar 38 and inserted, and then brazed.
[0029]
That is, as shown in FIG. 12, the heat-transfer fin 30 in a half-open state after winding is wound around the correction collar 38 so that the ends are substantially in contact with each other and inserted into the inner tube 28. At this time, the outer diameter d of the correction collar 38 is the same as or slightly smaller than the inner diameter D of the inner tube 28 minus two times the height H of the corrugated plate (D-2H). Although it depends on the inner diameter of the inner tube 28 , d = D−2H + (− 0 to −0.6 mm), preferably (−0.1 to −0.3 mm). When the outer diameter d of the correction collar 38 is larger than D-2H, the insertion workability deteriorates, and when the brazing material retaining groove 29 is not present in the wave crest 27, the brazing material that has been brazed (set) is detached, There is a risk of inhibiting brazing stability and strength. On the contrary, if the outer shape of the correction collar 38 is too small, it is difficult to achieve the effect of the present invention (rounding of the heat transfer fin).
[0030]
The correction collar 38 may be continuous, but may be composed of a plurality as shown in FIG. The correction collar 38 is usually hollow from the viewpoint of weight reduction. In this case, it is desirable that at least the insertion direction side of the correction collar 38 is a blind body. The thickness when the correction collar 38 is hollow depends on the diameter of the correction collar, but is usually 0.1 to 1.0 mm, preferably about 0.5 mm.
[0031]
Furthermore, it is desirable to use a straightening collar 38 having a plurality of positioning ribs 39 that fit inside the wave portions of the heat transfer fins 30 as indicated by a two-dot chain line in FIG. The presence of the positioning rib 39 is desirable because it can correct the shifted wave pitch. The number of positioning ribs 39 may correspond to the wave number of the heat transfer fins 30, but may be provided every other or every second.
[0032]
The heat transfer fins 30 are brought into close contact with the inside of the inner tube 28 by the spring back. At this time, since the correction collar 38 exists on the inner peripheral side of the heat transfer fin 30, the uneven distribution of the wave crest portion 27 of the heat transfer fin due to the spring back distortion of the heat transfer fin 30 is corrected, and the heat transfer fin 30 The outer circumference is rounded. In this state, the heat exchanger brazing process is completed by passing through the brazing furnace.
[0033]
Since the wave crests of the heat transfer fins are brazed in a state where they are uniformly in contact with the inner peripheral surface of the inner tube , stable brazing properties and strength can be obtained as a result.
[0034]
In the above description, the correction collar 38 is usually removed after the brazing process, but may be left without being extracted as long as it does not adversely affect the flow of the inner pipe fluid . The material of the straightening collar 38 is usually the inner tube 28 and metal (usually iron, steel), but it disappears or shrinks at the temperature just before the brazing melting temperature when brazing is heated. It may be a material.
[0035]
In addition, although the plate | board thickness of the corrugated sheet 26 used as the said heat-transfer fin 30 changes with materials, when steel, it is 0.01-0.8 mm normally, It is 0.05-0.5 mm desirably. If the thickness is too thin, the heat transfer resistance increases as well as the form retainability. On the other hand, if it is too thick, the weight increases, which is not desirable.
[0036]
The relationship between the height H of the inner radius r and corrugated 24 of the inner tube 28 depends on the inner diameter of the inner tube 28, in the range of the inside diameter 10~50mm of the inner tube 28, typically H / r = 0 0.1 to 0.8, preferably H / r = 0.2 to 0.7. Corresponding to the range of the inner diameter, the height of the wave peak is H = 4 to 20 mm.
[0037]
The wave pitch P of the corrugated plate 26 is 2 to 6 mm corresponding to the required heat transfer area.
[0038]
Further, the thickness of the inner tube 28 and the like is preferably as thin as possible from the viewpoint of heat transfer properties, but since rigidity is required as compared with the heat transfer fins 30, it is thicker than the heat transfer fins 30. . For example, when the inner diameter of the inner tube 28 is in the above range, it is usually 0.1 to 1.0 mm, preferably 0.3 to 0.8 mm.
[Brief description of the drawings]
FIG. 1 is a front view showing a conventional double-tube heat exchanger. FIG. 2 is an enlarged sectional view taken along line 2-2 in FIG. 1. FIG. 3 is a front view showing an example of a conventional multi-tube heat exchanger. 4 is a cross-sectional view taken along line 4-4 in FIG. 3. FIG. 5 is an enlarged end view corresponding to FIG. 2 in which a heat transfer fin of a corrugated tube is provided on the inner tube. FIG. 7 is an end view showing an example of a corrugated plate suitable for application of the present invention. FIG. 8 is an end view showing a state in which the corrugated plate of FIG. 7 is attached to the inner tube . FIG. 10 is a perspective view showing one embodiment of a brazing material set on the wave crest in the heat transfer fin of the present invention. FIG. 11 is a perspective view showing another brazing material setting manner. FIG. 12 is an explanatory view showing a mode in which the correction collar of the present invention is set on the heat transfer fin. FIG. 13 is a diagram showing how the discontinuous correction collar is set. Schematic perspective view showing the state where the heat fin is inserted into the heat exchange tube body [Explanation of symbols]
12 Inner tube 14 Outer tube 22 Heat transfer fin 24 Corrugated plate 25 Wave crest 26 Wave plate 27 Wave crest 28 Inner tube 29 Brazing material retaining groove 30 Heat transfer fin 36, 36A Brazing material 38 Straightening collar V V-shaped bending portion U U shape Bending part

Claims (5)

内管と外管とを備え、前記内管に横断面放射状の波形チューブで形成された伝熱フィンが、内管の管壁内側に接して配された二重管式熱交換器を製造する方法において、
所定高さ・所定ピッチで所定長さの波板を波方向に巻いて有端管状に巻き成形した伝熱フィンを、前記内管に挿入した後、該内管の管壁に前記伝熱フィンの波頂部外側を接触させて配し、該波頂部外側ロウ付けをするに際して、
前記巻き成形後の伝熱フィンを矯正カラーに巻き回して挿入後、前記ロウ付けを行うことを特徴とする熱交換器の製造方法。
A double-tube heat exchanger having an inner tube and an outer tube, in which heat transfer fins formed of corrugated tubes having a radial cross section in the inner tube are disposed in contact with the inner wall of the inner tube is manufactured. In the method
Predetermined height-shaped heat transfer fins at a predetermined pitch winding a corrugated plate having a predetermined length in a closed-end tubular wound in a wave direction, after insertion into said tube, the heat transfer fins on the tube wall of the inner tube placed in contact with the crest portion outside when the brazing said corrugated top outside,
Method of manufacturing a heat exchanger for the heat transfer fins after the take-molding, after insertion wound to correct color, and performs the braze.
前記矯正カラーとして前記伝熱フィンの波部内側に嵌合する位置決めリブを複数備えたものを使用することを特徴とする請求項1記載の熱交換器の製造方法。  2. The method of manufacturing a heat exchanger according to claim 1, wherein the straightening collar includes a plurality of positioning ribs fitted inside the wave portion of the heat transfer fin. 前記波板の波形状が、曲げ形状が相互に異なる第一曲げ形状と第二曲げ形状が交互に形成されているものであることを特徴とする請求項1又は2記載の熱交換器の製造方法。  3. The heat exchanger according to claim 1, wherein the corrugated plate has a wave shape in which a first bent shape and a second bent shape having different bent shapes are alternately formed. Method. 前記伝熱フィンの前記管壁と接触する波頂部外側にロウ材保持溝が形成されていることを特徴とする請求項3記載の熱交換器の製造方法。  4. The method of manufacturing a heat exchanger according to claim 3, wherein a brazing material holding groove is formed outside the wave crest that contacts the tube wall of the heat transfer fin. 前記伝熱フィンの前記管壁と接触する波頂部外側にロウ材保持溝が形成されていることを特徴とする請求項1記載の熱交換器の製造方法。  The method for manufacturing a heat exchanger according to claim 1, wherein a brazing material holding groove is formed outside the wave crest that contacts the tube wall of the heat transfer fin.
JP25169298A 1998-09-07 1998-09-07 Manufacturing method of heat exchanger Expired - Fee Related JP3927700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25169298A JP3927700B2 (en) 1998-09-07 1998-09-07 Manufacturing method of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25169298A JP3927700B2 (en) 1998-09-07 1998-09-07 Manufacturing method of heat exchanger

Publications (2)

Publication Number Publication Date
JP2000079431A JP2000079431A (en) 2000-03-21
JP3927700B2 true JP3927700B2 (en) 2007-06-13

Family

ID=17226600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25169298A Expired - Fee Related JP3927700B2 (en) 1998-09-07 1998-09-07 Manufacturing method of heat exchanger

Country Status (1)

Country Link
JP (1) JP3927700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782011A (en) * 2011-08-30 2014-05-07 西门子公司 Cooling device for a fluid flow machine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040178765A1 (en) * 2003-03-12 2004-09-16 O'brien John F. Integrated fuel reformer and heat exchanger
KR101003191B1 (en) 2008-05-22 2010-12-22 주식회사 아모그린텍 Tubes for a reformer for hydrogen production or a heat exchanger
AT507422B1 (en) * 2008-10-20 2010-05-15 Ebner Ind Ofenbau HEAT EXCHANGER FOR A HEAT EXCHANGER FOR HEAT EXCHANGE BETWEEN TWO FLUIDS
CN102032827A (en) * 2010-11-30 2011-04-27 上海科米钢管有限公司 Process for processing heating jacket of heat exchange pipe
JP5504394B2 (en) * 2011-01-31 2014-05-28 株式会社Kita Engineering Fuel oil heating supply system using exhaust heat of diesel engine
US10995998B2 (en) 2015-07-30 2021-05-04 Senior Uk Limited Finned coaxial cooler
CN106969562A (en) * 2016-01-13 2017-07-21 珠海格力电器股份有限公司 Oil eliminator and the air-conditioning system with it
GB2559182B (en) * 2017-01-30 2021-01-06 Senior Uk Ltd Finned heat exchangers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782011A (en) * 2011-08-30 2014-05-07 西门子公司 Cooling device for a fluid flow machine

Also Published As

Publication number Publication date
JP2000079431A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US4730669A (en) Heat exchanger core construction utilizing a diamond-shaped tube-to-header joint configuration
US6213158B1 (en) Flat turbulator for a tube and method of making same
EP0030072B1 (en) Heat exchanger and method of fabricating it
JPH09506161A (en) Radiator tube and method / device for manufacturing the same
JPH06159986A (en) Tube for heat exchnager and manufacture thereof
JP3927700B2 (en) Manufacturing method of heat exchanger
KR101562090B1 (en) Heat Exchanger Tube, heat exchanger Tube Assembly, and methods of making the same
CN100402182C (en) Semiprocessed flat tube and its manufacturing method, flat tube, heat-exchanger using flat tube and its manufacturing method
KR20140020699A (en) Heat exchanger tube, heat exchanger tube assembly, and methods of making the same
JP2001241872A (en) Multitubular heat exchanger
JP4926972B2 (en) Pipe manufactured from profile-rolled metal product and manufacturing method thereof
US20020074109A1 (en) Turbulator with offset louvers and method of making same
JP5561928B2 (en) Double tube heat exchanger
JP6140986B2 (en) Tube for heat exchanger, tube assembly for heat exchanger and method for manufacturing the same
JP2000079462A (en) Heat exchanger
JPH10170172A (en) Double tube type heat exchanger
JP2017506320A (en) Heat exchanger tube assembly and method of manufacturing heat exchanger tube assembly
JP3939090B2 (en) Multi-tube heat exchanger
US20050279488A1 (en) Multiple-channel conduit with separate wall elements
JP4412795B2 (en) Heat exchanger
JP2000079430A (en) Method for winding and forming heat transmitting fin
JP3855853B2 (en) Flat tube and roll forming method and apparatus thereof
JP3947833B2 (en) Heat exchanger
JP2004069209A (en) Element tube for heat exchanger
US3688372A (en) The method of making a heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees