JP5504394B2 - Fuel oil heating supply system using exhaust heat of diesel engine - Google Patents

Fuel oil heating supply system using exhaust heat of diesel engine Download PDF

Info

Publication number
JP5504394B2
JP5504394B2 JP2011032592A JP2011032592A JP5504394B2 JP 5504394 B2 JP5504394 B2 JP 5504394B2 JP 2011032592 A JP2011032592 A JP 2011032592A JP 2011032592 A JP2011032592 A JP 2011032592A JP 5504394 B2 JP5504394 B2 JP 5504394B2
Authority
JP
Japan
Prior art keywords
oil
heat
pipe
fuel oil
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011032592A
Other languages
Japanese (ja)
Other versions
JP2012159074A (en
Inventor
宏司 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kita Engineering
Original Assignee
Kita Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kita Engineering filed Critical Kita Engineering
Priority to JP2011032592A priority Critical patent/JP5504394B2/en
Publication of JP2012159074A publication Critical patent/JP2012159074A/en
Application granted granted Critical
Publication of JP5504394B2 publication Critical patent/JP5504394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)

Description

この発明は、ディーゼル機関の燃料油としてC重油を使用場合には、適正粘度に調整するためのC重油を加熱を、ディーゼル機関の排気ガス及び高温冷却水の排熱を利用した燃料油加熱供給システムに関する。  In the present invention, when C heavy oil is used as a fuel oil for a diesel engine, the C heavy oil for heating to an appropriate viscosity is heated, and the fuel oil is heated and supplied using exhaust heat from the exhaust gas and high-temperature cooling water of the diesel engine. About the system.

小型船舶では、推進機関にはディーゼル機関が主流で、燃料油としてはC重油が多く使用されている。C重油を燃料として使用するには、適正な粘度と適正な性状で供給することが必要で、適正な粘度と性状を維持するには、C重油を加熱して適正粘度に調整が必要で、適正な性状には、加熱して粘度を低くして清浄機で清浄する必要がある。  In small vessels, diesel engines are the mainstream propulsion engine, and C heavy oil is often used as fuel oil. In order to use C heavy oil as a fuel, it is necessary to supply it with an appropriate viscosity and an appropriate property. To maintain an appropriate viscosity and property, it is necessary to heat the C heavy oil and adjust it to an appropriate viscosity. For proper properties, it is necessary to reduce the viscosity by heating and clean it with a cleaner.

小型船舶に採用されるディーゼル機関に使用されるC重油は、良好な燃料噴射、燃焼を得るためには、機関によって幾分異なるが一般には、燃料噴射時の粘度を16〜18mm2/s(50℃)程度に調整する必要があり、適正粘度にするには112℃〜108℃の範囲で温度管理が必要で、熱源には、蒸気ボイラー、熱媒体ボイラー、及び、電気ヒーター等が使用されている。  In order to obtain good fuel injection and combustion, C heavy oil used in a diesel engine adopted in a small vessel is generally somewhat different depending on the engine, but generally has a viscosity at the time of fuel injection of 16 to 18 mm 2 / s (50 In order to obtain an appropriate viscosity, temperature control is required in the range of 112 ° C. to 108 ° C., and a steam boiler, a heat medium boiler, and an electric heater are used as the heat source. Yes.

大型船舶では、C重油を加熱するのに蒸気が一般に使用されている。しかし、蒸気を発生するには、補助ボイラー、排ガスエコノマイザー、給水ポンプ、カスケードタンク、ドレンクーラー等の機器、および、蒸気管、蒸気ドレン管の配管が必要で、大きな場所と費用が必要である。  In large ships, steam is generally used to heat C heavy oil. However, in order to generate steam, auxiliary boilers, exhaust gas economizers, feed water pumps, cascade tanks, drain coolers, etc., and pipes for steam pipes and steam drain pipes are required, and a large space and cost are required. .

小型船舶では乗組員も少なく、省人化と省スペース化からC重油を加熱する熱源として、発電機の容量を大きくした電気ヒーター加熱方式が多く採用され、加熱に必要な電力量は、航海電力の中で大きな部分を占めている。また、この加熱方式では、C重油の高粘度化が進むと、電気ヒーターの消費電力が益々多く必要で、現存船では対応できない状況も生ずる。  Small boats have few crew members, and as a heat source for heating C heavy oil due to labor saving and space saving, many electric heater heating methods with larger generator capacity are adopted, and the amount of power required for heating is nautical power It occupies a big part in. Further, in this heating system, when the viscosity of C heavy oil is increased, more and more power is consumed by the electric heater, and there is a situation that cannot be handled by existing ships.

国内で運行されている内航船は、ディーゼル機関の燃料油にC重油を使用されている船舶は約4000隻といわれているが、その中でも、機関室が狭く電気ヒーター加熱方式が採用された総トン数499トン〜総トン数749トン型貨物船は、約1000隻が運航されているが、内航船全体隻数の30%を占める。  Domestic ships operating in Japan are said to have about 4000 ships that use C heavy oil as fuel oil for diesel engines. Among them, the engine room is small and the total tonnage that employs the electric heater heating method is adopted. About 1,000 ships are operating from 499 tons to a gross tonnage of 749 tons, accounting for 30% of the total number of domestic ships.

従来の小型船舶における燃料油温度管理については、機関の種類、製造メーカーで幾分異なるので、「内航船4サイクル主機関の燃料油及び潤滑油に関するガイドライン」に沿って、図1、図2の概略系統により説明する。
図において、縦軸1はC重油の加熱温度を、横軸2は加熱過程を示し、燃料油澄タンク3では65℃、清浄機加熱器4では95℃、燃料油常用タンク5では90℃、燃料油加熱器6では113℃で機関入口7では108℃と燃料油澄タンク3から始まり機関入口7までと順次加熱され8,9は配管途中の放熱による温度低下を表している。
Since the fuel oil temperature management in conventional small vessels is somewhat different depending on the type of engine and the manufacturer, it follows the “Guidelines on Fuel Oil and Lubricating Oil for Coastal Ship 4 Cycle Main Engine” as shown in FIGS. This will be explained using a schematic system.
In the figure, the vertical axis 1 shows the heating temperature of C heavy oil, the horizontal axis 2 shows the heating process, 65 ° C. in the fuel oil tank 3, 95 ° C. in the cleaner heater 4, 90 ° C. in the fuel oil regular tank 5, The fuel oil heater 6 is heated at 113 ° C. and 108 ° C. at the engine inlet 7 from the fuel oil tank 3 to the engine inlet 7 in sequence, and 8 and 9 indicate a temperature drop due to heat radiation in the pipe.

従来の小型船舶における燃料油加熱供給システムを、内舶船の代表船である総トン数499トン型貨物船(積載トン数1600Kt、機関1300kW)で採用されている概略系統を、図2により説明する。  A conventional system for heating and supplying fuel oil in a small ship will be described with reference to FIG. 2, which is a schematic system adopted in a 499-ton cargo ship (loading tonnage 1600 Kt, engine 1300 kW) which is a representative ship of an inner ship.

燃料油加熱供給システムは燃料油清浄系統と燃料油供給系統で構成されている。燃料油清浄系統を、図をもちいて説明すると、燃料油澄タンク10には、7Kw電気ヒーター11が設置され、設定温度65℃まで加熱されたC重油は、管14により燃料油清浄機12付移送ポンプ13に供給され、燃料油清浄機12の処理量は弁17により処理能力1/2〜1/3に調整され、処理されないC重油は余剰C重油として燃料油澄タンク10に管16経由して返される、処理するC重油は、移送ポンプ13から管15より清浄機加熱器18の10kW電気ヒーター19で95℃まで加熱し、管20経由して燃料油清浄機12に供給され、清浄したC重油は、管21を経由しで該燃料油常用タンク22に供給する。  The fuel oil heating supply system is composed of a fuel oil cleaning system and a fuel oil supply system. The fuel oil cleaning system will be described with reference to the drawings. A 7 Kw electric heater 11 is installed in the fuel oil tank 10, and C heavy oil heated to a set temperature of 65 ° C. is attached to the fuel oil purifier 12 through a pipe 14. The processing amount of the fuel oil purifier 12 supplied to the transfer pump 13 is adjusted to the processing capacity 1/2 to 1/3 by the valve 17, and the C heavy oil not processed is supplied to the fuel oil tank 10 through the pipe 16 as surplus C heavy oil. The C heavy oil to be processed is heated up to 95 ° C. from the transfer pump 13 by the 10 kW electric heater 19 of the cleaner heater 18 from the pipe 15 and supplied to the fuel oil cleaner 12 via the pipe 20 for cleaning. The C heavy oil is supplied to the fuel oil regular tank 22 via the pipe 21.

該燃料油常用タンク22には4kW電気ヒーター23が設けられ、C重油を90℃に加熱保温され、供給量が燃料油消費量より多いために該燃料油澄タンク10にオーバフロー管24を経由して戻される。  The fuel oil regular tank 22 is provided with a 4 kW electric heater 23, C heavy oil is heated and kept at 90 ° C., and the supply amount is larger than the fuel oil consumption amount. Returned.

燃料油供給系統は、該燃料油常用タンク22のC重油は、管25により燃料油供給ポンプ26に燃料消費量が供給され、さらに、該燃料油供給ポンプ26から管27により燃料油加熱器28の12kW電気ヒーター29により113℃まで加熱して管30経由して、ディーゼル機関31に接続され、適正粘度に対応した温度108℃に加熱した状態でC重油が供給される。In the fuel oil supply system, the C heavy oil in the fuel oil service tank 22 is supplied with fuel consumption to the fuel oil supply pump 26 via the pipe 25, and further, the fuel oil heater 28 via the pipe 27 from the fuel oil supply pump 26. The 12 kW electric heater 29 is heated to 113 ° C. and connected to the diesel engine 31 via the pipe 30, and C heavy oil is supplied in a state heated to a temperature of 108 ° C. corresponding to the appropriate viscosity.

ディーゼル機関31からは、該燃料油供給ポンプ26の供給量からディーゼル機関31の燃料消費量が差引かれた余剰C重油が管32を経由して、エアセパレーター33に供給される。Excess C heavy oil obtained by subtracting the fuel consumption of the diesel engine 31 from the supply amount of the fuel oil supply pump 26 is supplied from the diesel engine 31 to the air separator 33 via the pipe 32.

該エアセパレーター33では、C重油内のガスを分離し、管34は、管25に接続され、該燃料油常用タンク22からのC重油と、エアセパレーター33からのC重油と合計した量が該燃料油供給ポンプ26に至る系統である。In the air separator 33, the gas in the C heavy oil is separated, and the pipe 34 is connected to the pipe 25, and the total amount of the C heavy oil from the fuel oil regular tank 22 and the C heavy oil from the air separator 33 is This is a system leading to the fuel oil supply pump 26.

特開平09−58594 船舶の燃料供給ユニットJP-A 09-58594 Ship fuel supply unit 特許出願2006−168094 燃料油供給装置Patent application 2006-168094 Fuel oil supply device 特開平07−317614 燃料油移送装置JP-A 07-317614 Fuel oil transfer device 登録実用新案 3017366 船舶の燃料供給ポンプRegistered Utility Model 3017366 Marine Fuel Supply Pump

商船機関部設計マニュアル 配管系統 社団法人 日本舶用機関学会 研究委員会報告 No.87、 昭和53年12月Merchant Ship Engine Department Design Manual Piping System Japan Society of Marine Engineers Research Committee Report No. 87, December 1978 内航船4サイクル主機関の燃料油及び潤滑油に関する ガイドライン 社団法人 日本舶用工業会 平成21年1月Guidelines for Fuel Oil and Lubricating Oil for Coastal Ship 4 Cycle Main Engines Japan Marine Manufacturers Association January 2009

ディーゼル機関で使用するC重油は、前記に述べたように適正な粘度と適正な性状とするには加熱装置する必要がある。C重油を加熱するには、蒸気エコノマイザー、熱媒体油エコノマイザーを使用した省エネ化システムはあるが、小型船舶では非常に狭くて省エネ化を犠牲にしてもC重油を加熱するために多くの機器や配管が減少する省スペース化を考えた加熱に必要な電力量をディーゼル機関駆動の発電機容量で賄っている電気ヒーター加熱方式が主流となっている。As described above, the C heavy oil used in the diesel engine needs to be heated to have an appropriate viscosity and an appropriate property. There are energy saving systems that use steam economizers and heat medium oil economizers to heat C heavy oil. However, in small ships, it is very narrow and there are many to heat C heavy oil at the expense of energy saving. The electric heater heating method, in which the amount of electric power necessary for heating considering the space saving in which equipment and piping are reduced, is covered by the generator capacity driven by the diesel engine, has become the mainstream.

しかし、使用C重油の高粘度化が進む燃料油状況では、適正粘度にするには益々加熱温度が高く設定することになり、大きい容量の電気ヒーターが必要とする加熱する方式では、必要な電力量をディーゼル発電機容量で賄っている状況では発電機の容量も大きくする必要があり、近年の省エネを目指す状況とはかけ離れていくことが危惧される。However, in the fuel oil situation where the viscosity of C heavy oil used is increasing, the heating temperature will be set higher to obtain the proper viscosity. In the heating system that requires a large capacity electric heater, the necessary power is required. In the situation where the amount is covered by the capacity of the diesel generator, it is necessary to increase the capacity of the generator.

先に述べた船舶の例では、ディーゼル発電機で航海中消費電力量130kW/hで運転されている状況下、25%にあたる33kW/hがC重油加熱に費やしている。高粘度化する燃料油状況では発電機は大きくなり、益々燃料消費量も多大となり、現存船では対応できない状況も生ずる。しかも、世界的に環境問題が重要課題としている時代に、省エネ化に逆行するシステムでは良い方式として認められない。蒸気エコノマイザー、熱媒体油エコノマイザーを使用したシステムのように、多くの機器が増えるものでは、省エネ化システムを採用するには、貨物積載場所を犠牲にしなければならない状態では経済的にも成立しない。そこで、省スペースを保ちながらC重油の加熱に対応出来る省エネ化システムが課題である。In the example of the ship described above, 33 kW / h, which is 25%, is consumed for heating C heavy oil under the condition that the diesel generator is operated at a power consumption of 130 kW / h during the voyage. In the fuel oil situation where the viscosity is increased, the generator becomes larger, the fuel consumption becomes more and more, and there is a situation that the existing ship cannot cope with. Moreover, in an era when environmental issues are an important issue worldwide, a system that goes against energy conservation is not recognized as a good method. If a large number of devices are used, such as a system using a steam economizer or heat medium oil economizer, in order to adopt an energy-saving system, it is economically feasible if the cargo loading location must be sacrificed. do not do. Therefore, an energy saving system that can cope with heating of C heavy oil while keeping a space saving is an issue.

ディーゼル機関の排ガス管途中に装備された排ガス熱交換器内部を熱媒油は、流れ、排ガス熱により加熱されて、管により熱媒油循環ポンプを経由して熱媒油熱加熱器1次側入口に管で供給され、1次側出口から管により該排ガス熱交換器入口に供給され、循環する第1系統。  The heat transfer oil flows inside the exhaust gas heat exchanger installed in the exhaust gas pipe of the diesel engine, is heated by the exhaust gas heat, and is heated by the exhaust gas through the heat transfer oil circulation pump to the primary side of the heat transfer oil heat heater. A first system which is supplied to the inlet by a pipe and is supplied from the primary outlet to the exhaust gas heat exchanger inlet through a pipe and circulates.

燃料油常用タンク内のC重油は、管で燃料油供給ポンプに供給され、管により該熱媒油熱交換器2次側入口に供給され、該熱媒油熱交換器内部で1次側の該熱媒油との間で熱交換され加熱されて、2次側出口より管により清浄機燃料加熱器1次側入口に供給され、1次側出口から、管によりディーゼル機関にC重油が供給され、該ディーゼル機関で消費された残りの余剰C重油は、管によりエアセパレーター入口に接続され、出口から管により該燃料油供給ポンプ入口に供給された燃料油供給系統と、燃料油澄タンクのC重油は、管を経由して清浄機移送ポンプに供給され、管により該清浄機燃料加熱器2次側入口に供給され、該熱媒油熱交換器内部で1次側の該C重油との間で熱交換され加熱された2次側C重油は、2次側出口より管により燃料油清浄機に供給され、清浄されて、管により燃料油常用タンクに供給する燃料油清浄系統の第2系統。C heavy oil in the fuel oil regular tank is supplied to the fuel oil supply pump through a pipe, and is supplied to the secondary side inlet of the heat transfer oil heat exchanger through the pipe, and the primary side inside the heat transfer oil heat exchanger Heat exchanged with the heat transfer oil is heated and supplied from the secondary outlet to the primary inlet of the purifier fuel heater through the pipe, and C heavy oil is supplied from the primary outlet to the diesel engine through the pipe. The remaining surplus C heavy oil consumed in the diesel engine is connected to the air separator inlet by a pipe, and is supplied to the fuel oil supply pump inlet from the outlet to the fuel oil supply pump inlet, C heavy oil is supplied to the purifier transfer pump via a pipe, and is supplied to the secondary side inlet of the purifier fuel heater via the pipe, and the C heavy oil on the primary side inside the heat transfer medium heat exchanger The secondary C heavy oil heated and exchanged between the Is supplied to the fuel oil purifier, the cleaned, the second system of fuel oil cleaning system for supplying the fuel oil commonly used tank by a pipe.

デーゼル機関の高温冷却水出口より該燃料油澄タンク内に装備した温水加熱器及び燃料油常用タンク内に装備した温水加熱器に並列に配管し、温水を給水し、それぞれの該温水加熱器から配管を高温冷却水冷却器に接続した第3系統。第1系統、第2系統、第3系統から構成されるディーゼル機関の排熱で燃料油を加熱する燃料油加熱供給システム。Piping in parallel to the hot water heater equipped in the fuel oil tank and the hot water heater equipped in the fuel oil regular tank from the outlet of the high-temperature cooling water of the diesel engine, supplying hot water, from each of the hot water heaters 3rd system which connected piping to the high temperature cooling water cooler. A fuel oil heating and supplying system for heating fuel oil by exhaust heat of a diesel engine composed of a first system, a second system, and a third system.

排ガス熱交換器では、機関排気管の内周壁に排気ガスの流れ方向に放射線状に全周にリブを配置し溶接固着し、排気管外周側と間隙を保った管筒の両端部に壁を設け、排気管、両端部壁、管筒に囲まれた内部は油蜜とした区画内には、放射線状に全周、等間隔に配置したリブを排気ガスの流れ方向に配置し、両端部が壁に接した油蜜壁を設け、油蜜壁を対象にして、管筒の両端部に熱媒油入口及び熱媒油出口を設け、交互に開口を有するリブを放射線状に全周に配置し、熱媒油の流れを交互に反転した状態で該熱媒油入口から該熱媒油出口までに至る間を熱媒油が流れる通路を形成する構造とすることで、熱媒油が通路で反転を繰り返し乱流とすることで熱伝達効率を上げる。In the exhaust gas heat exchanger, ribs are radially arranged on the inner peripheral wall of the engine exhaust pipe in the exhaust gas flow direction and welded to the exhaust pipe, and walls are attached to both ends of the tube that keeps a gap from the outer peripheral side of the exhaust pipe. Provided with exhaust pipe, both end walls, the inside surrounded by the tube is made of nectar, radially arranged ribs arranged at equal intervals around the circumference, in the exhaust gas flow direction, both ends Provide an oil nectar wall in contact with the wall, and for the oil nectar wall, provide heat medium oil inlet and heat medium oil outlet at both ends of the tube, and ribs with openings alternately on the entire circumference in a radial pattern The heat medium oil has a structure that forms a passage through which the heat medium oil flows from the heat medium oil inlet to the heat medium oil outlet in a state where the flow of the heat medium oil is alternately reversed. Heat transfer efficiency is increased by repeatedly turning the turbulent flow in the passage.

該燃料油供給ポンプでは、ディーゼル機関の燃料消費量の2倍以上の容量としたことで、清浄機燃料加熱器で2次側のC重油を必要熱量加熱する時に、1次C重油の高温化を防ぐように循環燃料油を多くする  The fuel oil supply pump has a capacity that is at least twice the fuel consumption of the diesel engine, so that when the C heavy oil on the secondary side is heated with the required amount of heat by the purifier fuel heater, the temperature of the primary C heavy oil is increased. Increase circulating fuel oil to prevent

この燃料油加熱供給システムでは、C重油の加熱処理をディーゼル機関の排熱を利用することで、従来の電気ヒーターで使用していた電力が必要としない、航海中の発電機の燃料油消費量が大きく減少する。また、C重油加熱過程で燃料油澄タンク内C重油は、該燃料油澄タンク内に温水加熱器を設け、ディーゼル機関の高温冷却水を通し、排水熱で加熱し、燃料油澄タンクから出たC重油の加熱には、ディーゼル機関の排ガス熱を利用することで分担加熱することで、排ガス熱媒体加熱器での設備が少なくてよく、装置として機械的稼動部も少なく、排気管の外周に設備していることで内部ガスから隔離され、排ガス熱媒油加熱器では熱媒油を使用しているために高温排ガスの接触部は排ガス温度に対応した熱媒油を選択することで、熱媒油の寿命も長くなる。熱媒油循環ポンプが停止した場合でも安全で、メンテナンスが簡単で、操作も容易である。In this fuel oil heating and supply system, the fuel oil consumption of the generator during the voyage does not require the power used by the conventional electric heater by using the exhaust heat of diesel engine for the heat treatment of C heavy oil Is greatly reduced. In addition, in the process of heating C heavy oil, C heavy oil in the fuel oil tank is provided with a hot water heater in the fuel oil tank, passed through the high-temperature cooling water of the diesel engine, heated with waste heat, and discharged from the fuel oil tank. Heating of C heavy oil can be performed by using the exhaust gas heat of the diesel engine, so that there are few facilities in the exhaust gas heat medium heater, there are few mechanical working parts, and the outer periphery of the exhaust pipe Because it is isolated from the internal gas by using the heat medium oil in the exhaust gas heat medium oil heater, the contact part of the high temperature exhaust gas selects the heat medium oil corresponding to the exhaust gas temperature, The life of the heat transfer oil is also extended. Even when the heat transfer oil circulation pump stops, it is safe, easy to maintain, and easy to operate.

ディーゼル機関から得た熱エネルギーは熱媒油を燃料油熱交換器を介して、燃料油のC重油を加熱し、熱媒体油として使用することで、高い加熱温度を必要とする機器から順に通過させ、低い加熱温度でよい機器は末端に配管を行い、加熱の仕事を終わったC重油は燃料油供給ポンプに戻り、循環を行う、配管は、前記で説明した熱媒油回路である第1系統を陸上でモジュール化すれば、船内で熱媒油配管も必要でなく、従来の電気ヒーター加熱方式と配管もほとんど同じ燃料油配管となる。The heat energy obtained from the diesel engine passes through the fuel oil heat exchanger through the fuel oil heat exchanger, heating the C heavy oil of the fuel oil and using it as the heat medium oil in order from the equipment that requires a high heating temperature. The equipment that requires a low heating temperature is provided with piping at the end, and the C heavy oil that has finished the heating work returns to the fuel oil supply pump and circulates. The piping is the heat transfer oil circuit described above. If the system is modularized on land, no heat transfer oil piping is required on the ship, and the conventional electric heater heating system and piping are almost the same fuel oil piping.

従来の電気ヒーター加熱方式で発電機の出力を高くして燃料油を加熱した方式に比べ発電機の出力も小さくすることが可能で発電機に費やしていた燃料油の消費量も減少省エネ化が進み、電気設備も減少し、設備費用も削減できる。また、装置も単純で、省スペース、低コスト、省エネルギーなシステムが提供できる。Compared to the method of heating the fuel oil by increasing the output of the generator with the conventional electric heater heating method, the output of the generator can be reduced and the consumption of fuel oil spent on the generator is also reduced. As a result, the electrical equipment is reduced and the equipment costs can be reduced. In addition, the apparatus is simple, and a space-saving, low-cost, energy-saving system can be provided.

従来の小型船舶における燃料油の温度管理図である。It is a temperature control chart of the fuel oil in the conventional small ship. 従来の小型船舶における燃料油加熱供給システムの概略系統図であるIt is a schematic system diagram of the fuel oil heating supply system in the conventional small ship 本発明の実施形態に係る燃料油加熱供給システムの燃料油の温度管理図である。It is a temperature control chart of the fuel oil of the fuel oil heating supply system according to the embodiment of the present invention. 本発明の実施形態に係る燃料油加熱供給システムの概略系統図である。1 is a schematic system diagram of a fuel oil heating and supplying system according to an embodiment of the present invention. 本発明の実施形態に係る排ガス熱交換器の長さの中央断面図である。It is a center sectional view of the length of the exhaust gas heat exchanger concerning the embodiment of the present invention. 本発明の実施形態に係る排ガス熱交換器の正面図である。1 is a front view of an exhaust gas heat exchanger according to an embodiment of the present invention. 本発明の実施形態に係る排ガス熱交換器のリブ79の配置を示す縦断面である。It is a longitudinal section which shows arrangement of rib 79 of an exhaust gas heat exchanger concerning an embodiment of the present invention. 本発明の実施形態に係る排ガス熱交換器内での熱媒油の流れ表した排気管の部分展開図である。It is a partial expanded view of the exhaust pipe which represented the flow of the heat transfer oil in the exhaust gas heat exchanger which concerns on embodiment of this invention.

本発明の燃料油加熱供給システムのポイントは、燃料油であるC重油を、燃料油澄タンクの設定温度までの加熱を高温冷却水で行い、燃料油澄タンクの設定温度から敵正粘度までに至る加熱とC重油を清浄可能とする粘度に加熱をディーゼル機関からの排熱を利用して行うシステムである。The point of the fuel oil heating supply system of the present invention is that the C heavy oil, which is fuel oil, is heated to the set temperature of the fuel oil tank with high-temperature cooling water, and from the set temperature of the fuel oil tank to the enemy's positive viscosity. This is a system that uses the exhaust heat from the diesel engine to reach the viscosity that allows the C heavy oil to be cleaned and the viscosity that enables the C heavy oil to be cleaned.

以下、本発明の実施の形態として、一実施例を図3〜図6に基づいて説明するHereinafter, as an embodiment of the present invention, an example will be described with reference to FIGS.

図3、図4により加熱過程を説明すると、縦紬1bはC重油の加熱温度を、横軸2bは加熱過程を示し、温度設定の基準は、ディーゼル機関35入口温度108℃が基準点から加熱過程を逆算すると、清浄機燃料加熱器52の温度降下量T0は、燃料油供給ポンプ47の容量を燃料消費量の2.5倍とした750L/hとして、清浄機処理量を燃料消費量の1.2倍360L/hで、加熱温度は燃料油澄タンク設定温度75℃から清浄機加熱温度95℃迄、熱交換効率を0.9で計算すると、
T0=360×20/750/0.9=10.7≒11
清浄機燃料油加熱器59の入口53の温度a3は基準点温度+管放熱温度+T0は、基準点a5は108℃と管放熱を5℃で、T0が11℃で、合計124℃となり、a2は129℃で、a1は燃料油常用タンク57の設定温度90℃となる。
The heating process will be described with reference to FIGS. 3 and 4. The vertical rod 1b indicates the heating temperature of C heavy oil, the horizontal axis 2b indicates the heating process, and the temperature setting standard is that the diesel engine 35 inlet temperature of 108 ° C. is heated from the reference point. When the process is calculated backwards, the temperature drop T0 of the purifier fuel heater 52 is 750 L / h, where the capacity of the fuel oil supply pump 47 is 2.5 times the fuel consumption, and the purifier throughput is the fuel consumption. 1.2 times 360L / h, heating temperature is calculated from fuel oil tank setting temperature 75 ° C to cleaner heating temperature 95 ° C, heat exchange efficiency is 0.9,
T0 = 360 × 20/750 / 0.9 = 10.7≈11
The temperature a3 of the inlet 53 of the purifier fuel oil heater 59 is the reference point temperature + the tube heat radiation temperature + T0, the reference point a5 is 108 ° C. and the tube heat radiation is 5 ° C., and T0 is 11 ° C. Is 129 ° C., and a 1 is the set temperature 90 ° C. of the fuel oil regular tank 57.

基準点から燃料油供給ポンプまでは、過程でエアセパレーター58入口の温度a6は103℃であり、燃料油常用タンク57の設定温度より高く、エアセパレータ58を燃料油常用タンク57の中に貫通して設ければ、エアセパレーター58の放熱で、燃料油常用タンク57の設定温度90℃は保つことが出来る。From the reference point to the fuel oil supply pump, in the process, the temperature a6 at the inlet of the air separator 58 is 103 ° C., which is higher than the set temperature of the fuel oil regular tank 57, and penetrates the air separator 58 into the fuel oil regular tank 57. If provided, the set temperature 90 ° C. of the fuel oil regular tank 57 can be maintained by the heat radiation of the air separator 58.

C重油はa7では燃料油常用タンク57の設定温度90℃で燃料供給ポンプでは管放熱を考えてa8は85℃となる。a8=a1である。排ガス熱交換器での能力は750L/hのC重油を85℃から129℃まで加熱できればよいことになる。デーセル機関35での排ガスでの熱回収は燃料油熱交換器41での2次回路での出力は750L/hのC重油を85℃から129℃まで加熱容量となる。The C heavy oil has a set temperature 90 ° C. of the fuel oil regular tank 57 at a7, and a8 at the fuel supply pump is 85 ° C. in consideration of heat radiation from the pipe. a8 = a1. The capacity of the exhaust gas heat exchanger is only required to heat 750 L / h C heavy oil from 85 ° C. to 129 ° C. In the heat recovery of the exhaust gas in the daycel engine 35, the output in the secondary circuit of the fuel oil heat exchanger 41 is a heating capacity of 750 L / h C heavy oil from 85 ° C. to 129 ° C.

燃料油供給ポンプ47の供給量を300L/hとした場合 T0は、
T0=360×20/300/0.9=26.7℃≒27℃
a2の温度は145℃となる。
ディーゼル機関の排気ガス温度は350℃から250℃と近年温度低下傾向にあるので、C重油加熱温度が低くて容量多くして熱回収する方が効率的である。
When the supply amount of the fuel oil supply pump 47 is 300 L / h, T0 is
T0 = 360 × 20/300 / 0.9 = 26.7 ° C.≈27 ° C.
The temperature of a2 is 145 ° C.
Since the exhaust gas temperature of a diesel engine has been in a tendency to decrease from 350 ° C. to 250 ° C. in recent years, it is more efficient to recover heat by lowering the C heavy oil heating temperature and increasing the capacity.

図4に従い、小型船舶の燃料油加熱供給システムの概略系統図を説明する。
燃料油加熱供給システムでは、次の3系統から構成され、第1系統は、排気ガスの熱で熱媒油を加熱する回路で、ディーゼル機関35の排気ガスが通過する排気管36の途中に排ガス熱交換器37を設け、排気ガスにより加熱された熱媒油は、該排ガス熱交換器37から管38で熱媒油循環ポンプ39に供給され、管40にて燃料油熱交換器41の1次熱媒油入口42に接続し、1次熱媒油出口43から該排ガス熱交換器37まで管44にて熱媒油を供給、循環する回路である。
A schematic system diagram of a fuel oil heating and supplying system for a small vessel will be described with reference to FIG.
The fuel oil heating and supply system includes the following three systems. The first system is a circuit that heats the heat transfer oil with the heat of the exhaust gas, and the exhaust gas is exhausted in the middle of the exhaust pipe 36 through which the exhaust gas of the diesel engine 35 passes. The heat medium oil provided with the heat exchanger 37 and heated by the exhaust gas is supplied from the exhaust gas heat exchanger 37 to the heat medium oil circulation pump 39 through the pipe 38, and 1 of the fuel oil heat exchanger 41 is supplied through the pipe 40. It is a circuit that is connected to the secondary heat medium oil inlet 42 and supplies and circulates the heat medium oil through the pipe 44 from the primary heat medium oil outlet 43 to the exhaust gas heat exchanger 37.

第2系統は、燃料油常用タンク57のC重油は、管46にて燃料消費量を燃料油供給ポンプ47に供給され、管48で該燃料油熱交換器41の2次側入口49に接続供給され、加熱されたC重油は、2次側出口50より管51を通り清浄機燃料加熱器52の1次側入口53に供給され、1次出口54から管55によりディーゼル機関35に供給され、消費されて、管56により燃料油常用タンク57を貫通して設けられたエアセパレータ58供給され、管59により管46に接続して該燃料油給油ポンプ47に至る燃料油供給回路と、  In the second system, the C heavy oil in the fuel oil service tank 57 is supplied to the fuel oil supply pump 47 through the pipe 46 and is connected to the secondary inlet 49 of the fuel oil heat exchanger 41 through the pipe 48. The supplied and heated C heavy oil passes through the pipe 51 from the secondary outlet 50 and is supplied to the primary inlet 53 of the purifier fuel heater 52, and is supplied from the primary outlet 54 to the diesel engine 35 through the pipe 55. A fuel oil supply circuit which is consumed and supplied to an air separator 58 provided through a fuel oil service tank 57 by a pipe 56 and connected to the pipe 46 by a pipe 59 to the fuel oil feed pump 47;

燃料油澄タンク60内のC重油は、管61により清浄機移送ポンプ62に供給され、管63により、該清浄機燃料加熱器52の2次入口64から供給され、1次側C重油との間で熱交換し加熱されたC重油は、2次側出口65からC重油は管66にて燃料油清浄機67に送られ、清浄後、管68を経由して燃料油常用タンク60に供給される燃料油清浄回路から成る。The C heavy oil in the fuel oil tank 60 is supplied to the cleaner transfer pump 62 through the pipe 61, and is supplied from the secondary inlet 64 of the cleaner fuel heater 52 through the pipe 63 to the primary C heavy oil. C heavy oil heated and exchanged between the two is sent from the secondary outlet 65 to the fuel oil purifier 67 through the pipe 66, and after cleaning, supplied to the fuel oil regular tank 60 through the pipe 68. Fuel oil cleaning circuit.

第3系統は、低温部の加熱する回路で、ディーゼル機関35の高温冷却水出口69から該燃料油澄タンク60の温水加熱器71と、該燃料油常用タンク57の温水加熱器70と並列に管72により接続され、温水加熱器70、71からの温水は管73にて高温冷却水クーラ(図示無)に接続する回路である。The third system is a circuit for heating the low temperature part, and is connected in parallel with the hot water heater 71 of the fuel oil tank 60 and the hot water heater 70 of the fuel oil regular tank 57 from the high temperature cooling water outlet 69 of the diesel engine 35. The hot water from the hot water heaters 70 and 71 is connected by a pipe 72 and is a circuit that is connected to a high-temperature cooling water cooler (not shown) by a pipe 73.

ディーゼル機関35の高温冷却水は、出口温度約80℃で制御され、この排水熱を燃料油常用タンク57と燃料油澄タンク60のC重油の加熱、保温に使用することで、特に、燃料油澄タンク60の設定温度は排気ガスによるC重油の加熱のスタート点であり、清浄機燃料加熱器52の加熱量が少なくなることは燃料油熱交換器の能力が少なくてよい。排ガス熱から回収装置がコンパクトとすることが出来る。ディーゼル機関35の高温冷却水は利用はコストが少なくて熱回収も容易である。The high-temperature cooling water of the diesel engine 35 is controlled at an outlet temperature of about 80 ° C., and this waste heat is used to heat and keep the C heavy oil in the fuel oil regular tank 57 and the fuel oil clarifier tank 60. The set temperature of the clear tank 60 is a starting point for heating C heavy oil by exhaust gas, and the amount of heating of the purifier fuel heater 52 can be reduced because the capacity of the fuel oil heat exchanger can be reduced. The recovery device can be made compact from the exhaust gas heat. The use of the high-temperature cooling water of the diesel engine 35 is low in cost and easy to recover heat.

図を用いて排ガス熱交換器37を説明をすると、図5に示すように、排気管36の内面に、排気ガス流れ方向に放射線状にリブ96を全周に等間隔で配置する。Exhaust gas heat exchanger 37 will be described with reference to the drawings. As shown in FIG. 5, ribs 96 are radially arranged on the inner surface of exhaust pipe 36 in the exhaust gas flow direction at equal intervals around the entire circumference.

図5、図6に示すように、排気管36外周に間隙を保った管筒75の端部に壁76を、その反対の端部に壁77を設け、排気管36、壁76を、壁77及び管筒75に囲まれた内部は油蜜とした区画78内には、放射線状に全周に、等間隔に配置したリブ79を排気ガス流れ方向90に配置した。As shown in FIGS. 5 and 6, a wall 76 is provided at the end of the tube 75 having a gap around the outer periphery of the exhaust pipe 36, and a wall 77 is provided at the opposite end, and the exhaust pipe 36 and the wall 76 are connected to the wall. The ribs 79 arranged radially at equal intervals are arranged in the exhaust gas flow direction 90 in the section 78 in which the inside surrounded by 77 and the tube cylinder 75 is made of nectar.

図7、図8に示すように、リブ79は、aa断面に、示すように、一端は壁76に接し、壁77側に開口91したリブ79aとbb断面に示すように、一端は壁77に接し、壁76側が開口91したリブ79bを交互に円周方向配置し、cc断面に示すように、両端部が壁76と壁77に接した油蜜壁80を設け、油蜜壁80を対象配置し、管筒75の両端部に熱媒油入口78及び熱媒油出口79を設け、熱媒油の流れを交互に反転を繰り替えしをする状態で該熱媒油入口81から該熱媒油出口82までに至る間を熱媒油が流れる通路83を形成する構造とする。熱媒油が通路83で反転を繰り返し乱流とすることで熱伝達効率を上げた。As shown in FIGS. 7 and 8, the rib 79 has an aa cross section, and, as shown, one end is in contact with the wall 76 and the rib 79 has an opening 91 on the wall 77 side. The ribs 79b having openings 91 on the wall 76 side are alternately arranged in the circumferential direction, and as shown in the cc cross section, an oil nectar wall 80 having both ends in contact with the wall 76 and the wall 77 is provided. The heat medium oil inlet 78 and the heat medium oil outlet 79 are provided at both ends of the tube cylinder 75, and the heat medium oil inlet 81 is used to heat the heat medium oil in a state where the flow of the heat medium oil is alternately reversed. A path 83 through which the heat medium oil flows is formed in the space up to the medium oil outlet 82. Heat transfer efficiency was increased by repeatedly reversing the heat transfer oil in the passage 83 to form a turbulent flow.

35 ディーゼル機関
36 排気管
37 排ガス熱交換器
38、40、44 熱媒管、
46、48、51、55、56、59 C重油
61、63、66、68、C重油
72,73、高温冷却水管
47 燃料油供給ポンプ
58 エアセパレータ
57 熱媒油常用タンク
60 燃料油澄タンク
62 清浄機移送ポンプ
52 清浄機燃料加熱器
67 燃料油清浄機
70、71、温水加熱器
75 管筒
76、77 壁
81 熱媒油入口
82 熱媒油出口
79、79a、79b リブ
80 油密壁
83 通路(熱媒油通路)
35 Diesel engine 36 Exhaust pipe 37 Exhaust gas heat exchanger 38, 40, 44 Heat medium pipe,
46, 48, 51, 55, 56, 59 C heavy oil 61, 63, 66, 68, C heavy oil 72, 73, high temperature cooling water pipe 47 fuel oil supply pump 58 air separator 57 heat medium oil regular tank 60 fuel oil tank 62 Cleaner transfer pump 52 Purifier fuel heater 67 Fuel oil purifiers 70 and 71, Hot water heater 75 Tube 76, 77 Wall 81 Heat transfer oil inlet 82 Heat transfer oil outlet 79, 79a, 79b Rib 80 Oil tight wall 83 Passage (heat transfer oil passage)

Claims (3)

ディーゼル機関の排ガス管途中に装備された排ガス熱交換器内部を熱媒油は、流れ、排ガス熱により加熱されて、管により熱媒油循環ポンプを経由して熱媒油熱交換器1次側入口に管で供給され、1次側出口から管により該排ガス熱交換器入口に供給され、循環する第1系統と、燃料油常用タンク内のC重油は、管で燃料油供給ポンプに供給され、管により該熱媒油熱交換器2次側入口に供給され、該熱媒油熱交換器内部で1次側の該熱媒油との間で熱交換され加熱されて、2次側出口より管により清浄機燃料加熱器1次側入口に供給され、1次側出口から、管によりディーゼル機関にC重油が供給され、該ディーゼル機関で消費された残りの余剰C重油は、管によりエアセパレーター入口に接続され、出口より管により該燃料油供給ポンプ入口に供給された燃料油供給系統と、燃料油澄タンクのC重油は、管を経由して清浄機移送ポンプに供給され、清浄機移送ポンプから管により該清浄機燃料加熱器2次側入口に供給され、1次側のC重油との間で熱交換され加熱された2次側C重油は、2次側出口より管により燃料油清浄機に供給され、清浄されて、管により燃料油常用タンクに供給する燃料油清浄系統の第2系統から構成され、C重油をディーゼル機関の使用できる最適粘度に至る温度に加熱するのに排熱を利用することを特徴とした燃料油加熱供給システム。The heat transfer oil flows inside the exhaust gas heat exchanger installed in the exhaust gas pipe of the diesel engine and is heated by the exhaust gas heat, and the heat medium oil heat exchanger primary side through the heat medium oil circulation pump by the pipe The first system that is supplied to the inlet by a pipe and supplied from the primary side outlet to the exhaust gas heat exchanger inlet through the pipe and circulates the C heavy oil in the fuel oil service tank is supplied to the fuel oil supply pump by the pipe. The heat medium oil heat exchanger is supplied to the secondary side inlet of the heat exchanger through the pipe, and heat is exchanged and heated with the heat medium oil on the primary side inside the heat medium oil heat exchanger. From the primary outlet, the C heavy oil is supplied to the diesel engine through the pipe, and the remaining surplus C heavy oil consumed in the diesel engine is supplied to the air through the pipe. The fuel oil supply pump is connected to the separator inlet and connected from the outlet through a pipe. And fuel oil supply system is supplied to the mouth, C heavy fuel oil Kiyoshi tank, via the tube supplied to the purifier transfer pump, the cleaner fuel heater secondary side by the tube from the cleaner transfer pump The secondary C heavy oil supplied to the inlet, heat-exchanged with the C heavy oil on the primary side and heated is supplied from the secondary outlet to the fuel oil purifier through a pipe, cleaned, and A fuel oil heating system comprising a second system of fuel oil cleaning system that supplies fuel oil service tanks, and uses exhaust heat to heat C heavy oil to a temperature that reaches the optimum viscosity that can be used by a diesel engine Supply system. 前記排ガス熱交換器では、機関排気管の内周壁に排気ガスの流れ方向に放射線状に全周にリブを配置し溶接固着し、排気管外周側と間隙を保った管筒の両端部に壁を設け、排気管、両端部壁、管筒に囲まれた内部は油蜜とした区画内には、放射線状に全周、等間隔に配置したリブを排気ガスの流れ方向に配置し、両端部が壁に接した油蜜壁を設け、油蜜壁を対象にして、管筒の両端部に熱媒油入口及び熱媒油出口を設け、交互に開口を有するリブを放射線状に全周に配置し、熱媒油の流れを交互に反転した状態で該熱媒油入口から該熱媒油出口までに至る間を熱媒油が流れる通路を形成する構造とすることで、熱媒油が通路で反転を繰り返し乱流とすることで熱伝達効率を上げることで熱伝達効率を上げる請求項1記載のディーゼル機関の排熱を利用した燃料油加熱供給システム。  In the exhaust gas heat exchanger, ribs are radially arranged on the inner peripheral wall of the engine exhaust pipe in the flow direction of the exhaust gas and welded and fixed, and walls are provided at both ends of the pipe tube that keeps a gap from the outer peripheral side of the exhaust pipe. In the compartment surrounded by the exhaust pipe, both end walls, and the tube tube is made of nectar, radially arranged ribs arranged at equal intervals around the circumference are arranged in the flow direction of the exhaust gas. An oil honey wall that is in contact with the wall is provided, and for the oil honey wall, a heat medium oil inlet and a heat medium oil outlet are provided at both ends of the tube, and ribs having openings alternately are radially arranged around the circumference. The flow of the heat medium oil is configured so as to form a passage through which the heat medium oil flows from the heat medium oil inlet to the heat medium oil outlet in a state where the flow of the heat medium oil is alternately reversed. The exhaust of a diesel engine according to claim 1, wherein the heat transfer efficiency is increased by increasing the heat transfer efficiency by repeatedly inverting and reversing in the passage. Fuel oil heating supply system using. 前記燃料油供給ポンプでは、ディーゼル機関の燃料消費量の2倍以上の容量としたことで、清浄機燃料加熱器で2次側のC重油を必要熱量加熱する時に、1次C重油の高温化を防ぐように循環燃料油を多くする請求項1記載のディーゼル機関の排熱を利用した燃料油加熱供給システム。  In the fuel oil supply pump, the capacity of the primary C heavy oil is increased when the C heavy oil on the secondary side is heated with a necessary amount of heat by the purifier fuel heater by setting the capacity to more than twice the fuel consumption of the diesel engine. The fuel oil heating and supplying system using the exhaust heat of the diesel engine according to claim 1, wherein the circulating fuel oil is increased so as to prevent fuel from flowing.
JP2011032592A 2011-01-31 2011-01-31 Fuel oil heating supply system using exhaust heat of diesel engine Expired - Fee Related JP5504394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032592A JP5504394B2 (en) 2011-01-31 2011-01-31 Fuel oil heating supply system using exhaust heat of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032592A JP5504394B2 (en) 2011-01-31 2011-01-31 Fuel oil heating supply system using exhaust heat of diesel engine

Publications (2)

Publication Number Publication Date
JP2012159074A JP2012159074A (en) 2012-08-23
JP5504394B2 true JP5504394B2 (en) 2014-05-28

Family

ID=46839802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032592A Expired - Fee Related JP5504394B2 (en) 2011-01-31 2011-01-31 Fuel oil heating supply system using exhaust heat of diesel engine

Country Status (1)

Country Link
JP (1) JP5504394B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107339186A (en) * 2017-08-11 2017-11-10 徐州东力锻压机械有限公司 A kind of engineering machinery low-temperature preheating system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002876B2 (en) * 2014-07-31 2016-10-05 株式会社Kita Engineering Marine fuel oil heating system
JP6447618B2 (en) 2016-12-16 2019-01-09 ホクシン産業株式会社 Fuel oil transfer device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047470B2 (en) * 1979-08-30 1985-10-22 三菱重工業株式会社 Diesel engine fuel oil supply system
JPS58155263A (en) * 1982-03-09 1983-09-14 Hitachi Zosen Corp Device for processing and supplying fuel oil in diesel engine
JPS62162765A (en) * 1986-01-14 1987-07-18 Mitsubishi Heavy Ind Ltd Fuel oil feeder for internal combustion engine of marine vessel
JP3927700B2 (en) * 1998-09-07 2007-06-13 マルヤス工業株式会社 Manufacturing method of heat exchanger
JP2008019848A (en) * 2006-06-15 2008-01-31 Honda Motor Co Ltd Internal combustion engine system
JP2010121809A (en) * 2008-11-18 2010-06-03 Iceman Corp Fuel supply device and grinder mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107339186A (en) * 2017-08-11 2017-11-10 徐州东力锻压机械有限公司 A kind of engineering machinery low-temperature preheating system

Also Published As

Publication number Publication date
JP2012159074A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP2011025878A (en) Fuel oil heating supply system of small ship
WO2017185403A1 (en) Method and device for washing and purifying ocean engineering engine tail gas by means of seawater with zero energy consumption
KR101707191B1 (en) Heating and circulation system for engine cooling water of a ship using electric heater
CN206954482U (en) A kind of Central Cooling Water System of LNG fuel ship
KR20140025943A (en) Central cooling system
JP5504394B2 (en) Fuel oil heating supply system using exhaust heat of diesel engine
CN107891963A (en) A kind of Ship Waste Heat utilizes system
JP5407093B2 (en) Fuel oil heating supply system.
CN109695512A (en) A kind of marine vehicle diesel residual heat utilizes multi-function device
JP5629341B2 (en) Tank heating system for ship engine room
CN208907384U (en) A kind of host afterheat utilizing system for air conditioner coolant water
RU2742730C1 (en) Steam-generating plant of double-circuit nuclear reactor with blowdown and drainage system
CN113264618B (en) Electrolytic ballast water treatment system for low-temperature seawater
CN206071749U (en) A kind of marine generator waste heat cyclic utilization system
CN105179104A (en) Comprehensive heat source system applied to fields of ships and ocean engineering
CN209621560U (en) A kind of residual heat of air compressor recycling supplying hot water circulating water saving system
CN218510861U (en) Waste water and waste heat recovery system for waste heat furnace
CN102322624A (en) System utilizing organic heat carrier furnace flue gas waste heat to produce low-pressure steam
CN215292713U (en) Ship waste heat recovery system
CN206175050U (en) Marine diesel fuel engine cooling system
CN213574428U (en) Online main engine cylinder sleeve water heating device and heating system thereof
CN2087606U (en) Artesian water cooling device for ship body
CN104295366B (en) The utilization system of high-power diesel generating set and boiler
CN210089452U (en) Demineralized water step heating device
CN218296865U (en) Cooling water waste heat recovery and reuse system of water-cooling air compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5504394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees