JP3926447B2 - Method for producing composite magnetic material - Google Patents

Method for producing composite magnetic material Download PDF

Info

Publication number
JP3926447B2
JP3926447B2 JP31196297A JP31196297A JP3926447B2 JP 3926447 B2 JP3926447 B2 JP 3926447B2 JP 31196297 A JP31196297 A JP 31196297A JP 31196297 A JP31196297 A JP 31196297A JP 3926447 B2 JP3926447 B2 JP 3926447B2
Authority
JP
Japan
Prior art keywords
composite magnetic
slit
soft magnetic
magnetic powder
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31196297A
Other languages
Japanese (ja)
Other versions
JPH11138591A (en
Inventor
典彦 小野
由夫 粟倉
修 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP31196297A priority Critical patent/JP3926447B2/en
Publication of JPH11138591A publication Critical patent/JPH11138591A/en
Application granted granted Critical
Publication of JP3926447B2 publication Critical patent/JP3926447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波領域において不要電磁波の干渉によって生じる電磁障害を抑制するために用いられる複合磁性体の製造方法に関し、特に高周波電子回路/装置において問題となる電磁干渉の抑制に有効な複素透磁率特性の優れた複合磁性体の製造方法に関する。
【0002】
【従来の技術】
従来、過密に実装された電子部品類やプリント配線には、信号処理速度の高速化が図られているため、静電及び電磁結合による線間結合の増大化や放射ノイズによる干渉が生じ、電子機器類の正常な動作を妨げる事態が少なからず生じている。
【0003】
このようないわゆる電磁障害に対して、従来は回路の出力端子毎にローパスフィルタ等を接続し、不要な高周波電流を抑制したり、問題となる回路を遠ざけるような方策を講じる等で電磁障害の原因となる電磁結合、不要輻射や伝導ノイズ等を抑制していた。
【0004】
これら高周波電子機器のさらなる小型、軽量化を実現する具体策として、例えば、一枚のプリント配線基板に異なる回路を混在(例えば、電力回路と小信号回路)させたり、回路ごとに小基板化し、それらを重ね合わせて実装するといった手段が取られることが多くなってきている。
【0005】
しかし、特に、複数の配線基板を重ね合わせて実装する場合においては、部品間や配線基板間の電磁干渉に由来する電磁障害の起こりうる可能性が極めて高くなり、何等かの対策が不可欠となる。これらの配線基板間における干渉の対策手段としては、一般に、導電性のシールド材(銅、アルミニウム等)を配線基板間に挿入することが行われている。上記した配線基板では、部品実装密度が高くなっているために、高周波磁界波はノイズ源に対して低インピーダンスとなっている。
【0006】
しかし、上述した配線基板では、ノイズ源となる一方の配線基板に対向する他方の配線基板に対しての遮蔽効果は期待できるものの、同じ基板面に対しては、不要輻射の反射が生じてしまい、ノイズ源側の同一配線基板内での二次的な電磁結合が助長される。
【0007】
そこで、電磁波の透過に対しては、導電性のシールド材と同等の遮蔽効果をもち、電磁波の反射に対しては、少なくとも反射による電磁結合を助長させることのない複合磁性体を用いた電磁干渉抑制体が特開平7−212079号公報によって提案されている。この種の電磁干渉抑制体は、主に軟磁性体粉末を有機結合材中に混合してなる複合磁性体から構成されており、それに到来した電磁波を複合磁性体で吸収することによって不要電磁波の干渉を抑制する。すなわち、不要電磁波の干渉によって生じる電磁波障害を抑制するために使用される。
【0008】
以下、特開平7−212079号公報によって開示されている従来の複合磁性体を用いた電磁干渉抑制体の一例を説明する。電磁干渉抑制体を構成している複合磁性体は、扁平状(もしくは針状)の軟磁性粉末と有機結合剤を含んで構成されている。
【0009】
複合磁性体を構成する有機結合溶剤としては、ポリエステル系樹脂、ポリ塩化ビニル系樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、セルロース系樹脂、ニトリル−ブタジエン系ゴム、スチレン−ブタジエン系ゴム等の熱可塑性樹脂或いはそれらの共重合体、エポキシ樹脂、フェノール樹脂、アミド系樹脂、イミド系樹脂等の熱硬化性樹脂等を採用している。
【0010】
軟磁性粉末としては、高周波透磁率の大きな鉄アルミ珪素合金(センダスト)、鉄ニッケル合金(パーマロイ)をその代表的素材として挙げることができ、粉末のアスペクト比は十分に大きい(おおよそ10:1以上)ことが望ましい。
【0011】
本発明者らは、扁平状軟磁性粉末を複合磁性体の面内方向に配向する程度、すなわち軟磁性粉末の並び具合を定量的に把握するための有効なパラメータについて、軟磁性体の高周波透磁率が反磁界の大きさに強く依存することに着目した。前記反磁界の大きさを定量的に把握できるパラメータとして、磁化困難軸方向の反磁界Hddと磁化容易軸方向の反磁界Hdeとの比Hdd/Hdeを求めることによって、複合磁性体試料中の磁性粉末の充填率や、粉末その者の反磁界係数が変化した場合でも実効的な反磁界の大きさが把握できるようにし、さらに、その比率を試料形状を立方体としたときに4以上とすることで、優れた透磁率特性が得られることを見出した。また、この比Hdd/Hdeの制御は、上のように複合磁性体の製造方法によって行える。
【0012】
尚、ここで、「反磁界」Hdについて、図5を参照して説明する。複合磁性体試料に、その磁性粒子配向方向がわかるように、印を付して、立方体形状に加工する。この立方体試料についてVSM(振動型磁力計)を用いて、磁性粒子の配向方向(磁化容易軸方向)および配向方向に直行する方向(磁化困難軸方向)の各々のM−H曲線(磁化曲線)を求める。M−H曲線を図5に示す。得られたM−H曲線の線形の領域部分に平行に原点を通る直線(図5に点線で示す)を引き、この直線とMs線(飽和磁化線)との交点に対応する磁界を「反磁界」Hdとする。尚、「磁化容易軸方向」の反磁界をHdeで表し、「磁化困難軸方向」の反磁界をHddで表すものとする。
【0013】
【発明が解決しようとする課題】
上記した複合磁性体の製造として射出成形による方法がよく知られている。その射出成形において、ただ射出成形を行なうと、偏平磁性粉の配向が射出される速度、原料の流れによって制限され、所望の配向度が得られない。
【0014】
また、例えばパーソナルコンピュータ等、低周波ノイズと、高周波ノイズの隣接するものについては、それらの隣接部に、各々対応した複合磁性体を用いることで対応も可能であるが、管理上部品点数が増えることになり、コストもかかるという問題が生じる。
【0015】
それ故に本発明の課題は、上記問題点を解消し、所望の配向度を簡単な構造で得ることができ、低周波ノイズ及び高周波ノイズの隣接するものについても低コストで対応できる複合磁性体の製造方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明によれば、射出成形にて少なくとも偏平状軟磁性体粉末と有機結合剤からなる複合磁性体を製造する方法において、前記射出成形に用いられる金型における偏平状軟磁性体粉末と有機結合剤を含む射出材料の流入口の直後にスリットを設けると共に、該スリットに隣接して電磁石を配置し、射出材料を該スリットに通過させると共に、該スリットを通過する扁平状軟磁性体粉末に磁場配向を加えることにより、前記複合磁性体における偏平状軟磁性体粉末を配向・配列させることを特徴とする複合磁性体の製造方法が得られる。
【0018】
また、本発明によれば、前記複合磁性体が低周波対応部と高周波対応部を有するように成形するために、前記金型における前記流入口として、低周波ノイズ用の偏平状軟磁性体粉末を含む射出材料の第1の流入口と、高周波ノイズ用の偏平状軟磁性体粉末を含む射出材料の第2の流入口とを設けることを特徴とする複合磁性体の製造方法が得られる。
【0021】
【発明の実施の形態】
以下、本発明の一実施の形態について図1乃至図3を参照して説明する。図1は本発明の製造方法によって得られた複合磁性体を示した図である。図1(a)は平面図で図1(d)は(a)の斜視図で、(b)及び(c)はそれぞれ高周波帯用及び低周波帯用の部分の拡大斜視図である。図1に示すように、複合磁性体1には低周波帯用の低周波部2と高周波帯用の高周波部3とに分けて構成されている。これによって、一つの製品で低周波ノイズ及び高周波ノイズの隣接するものについても対応できる。
【0022】
次に、射出成型に用いられる金型にスリットが無い場合、その配向は原料の流れ性のみにより左右され、磁化困難軸方向の反磁界Hddと磁化容易軸方向の反磁界Hdeとの比Hdd/Hde(以下、配向度と呼ぶ)は2.9未満でさほど得られない。そこで図2に示すように射出成型に用いられる金型11にスリット14を設けることによって配向度が3.6前後にまで改善される。
【0023】
ここで、図1に示した複合磁性体1を製造するためには図3(a)に示すような金型11を用いる。実際には図3(a)に示す金型11の上方から蓋(図示せず)を被せた後に、ノズル21から複合磁性体を構成する材料を金型11の溝に流し込む。図中の矢印は流し込んだときの流れる範囲を示している。図3(b)は(a)のA−A′線断面図である。金型11の下側の低周波部2の周囲と高周波部3の周囲にそれぞれ図4に示すように磁場配向をかけるための電磁石12と電磁石13を配置する。電磁石12と電磁石13は具体的には、図3(b)に示すように金型11の下側の低周波部2の周囲と高周波部3の周囲に電磁石を埋め込めるような形状の溝が形成されている。さらに金型11の下側の低周波部2と高周波部3形成用の溝には、図3(c)に示すようなスリット31が形成されている。この磁場配向を用いると、配向度3.9前後の高い配向度が得られる。
【0024】
また図1に示すように部分的に、高周波帯用と低周波帯用の2つの特性を分けた成形体を製造する場合、原料を分けて射出できるようにして射出を行なえば所要の成形体ができる。加えて前述のスリットを入れて射出する方法又は電磁石を用いた磁場配向にて配向を得ることができ、部分的に異なる機能を持つ一体物として成形することができる。
【0025】
【発明の効果】
本発明によれば、金型にスリットを設け、その部分を通過させることで磁性粉の配向が得られる。
【0026】
又、本発明によれば、部分的に更に配向を必要とする場合、その部分に対応した金型の所定部分にあらかじめ電磁石を配置させることにより、磁場による配向を限定的に行わせることができる。
【0027】
又、本発明によれば、低周波及び高周波ノイズの発生源が隣接するような場合にも部分的に分けた成形を行なうことで一つの複合磁性体で対処できる。
【図面の簡単な説明】
【図1】(a)は本発明の製造方法で得られた複合磁性体の一実施の形態を示した上面図であり、(b)は(a)の斜視図であり、(c)は低周波部の拡大斜視図であり、(d)は高周波部の拡大斜視図である。
【図2】(a)はスリットを設けた金型の一部を示す図であり、(b)は成形後のスリット部側面図である。
【図3】(a)は図1の複合磁性体を製造するための金型の構造を示した図であり、(b)は(a)のA−A´線断面図であり、(c)は(b)のB−B´線断面図である。
【図4】(a)は磁場配向を印加するための電磁石を金型に組み込んだ状態を示した図であり、(b)は電磁石の一実施の形態を示した図であり、(c)は電磁石の他の実施の形態を示した図である。
【図5】本発明の説明で用いる「反磁界」を説明するための図である。
【符号の説明】
1 複合磁性体
2 低周波部
3 高周波部
11 金型
12,13 電磁石
14,31 スリット
21 ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a composite magnetic body used for suppressing electromagnetic interference caused by interference of unwanted electromagnetic waves in a high frequency region, and more particularly, a complex magnetic permeability effective for suppressing electromagnetic interference which is a problem in high frequency electronic circuits / devices. The present invention relates to a method for producing a composite magnetic body having excellent characteristics.
[0002]
[Prior art]
Conventionally, electronic components and printed wiring that are densely mounted have been improved in signal processing speed. Therefore, there is an increase in line-to-line coupling due to electrostatic and electromagnetic coupling and interference due to radiation noise. There are not a few situations that hinder the normal operation of equipment.
[0003]
For such so-called electromagnetic interference, conventionally, a low-pass filter or the like is connected to each output terminal of the circuit to suppress unnecessary high-frequency current or take measures to keep the problematic circuit away. The causative electromagnetic coupling, unwanted radiation and conduction noise were suppressed.
[0004]
As specific measures to realize further miniaturization and weight reduction of these high-frequency electronic devices, for example, different circuits are mixed in one printed wiring board (for example, a power circuit and a small signal circuit), or each circuit is made smaller. In many cases, measures such as mounting them in a superimposed manner are taken.
[0005]
However, especially when multiple wiring boards are stacked and mounted, the possibility of electromagnetic interference due to electromagnetic interference between components and wiring boards is extremely high, and some countermeasures are indispensable. . As a countermeasure against interference between these wiring boards, generally, a conductive shield material (copper, aluminum, etc.) is inserted between the wiring boards. In the wiring board described above, since the component mounting density is high, the high frequency magnetic field wave has a low impedance with respect to the noise source.
[0006]
However, although the wiring board described above can be expected to have a shielding effect against the other wiring board that faces one wiring board that is a noise source, reflection of unnecessary radiation occurs on the same board surface. Secondary electromagnetic coupling in the same wiring board on the noise source side is promoted.
[0007]
Therefore, electromagnetic interference using a composite magnetic material that has the same shielding effect as the conductive shield material for transmission of electromagnetic waves, and at least does not promote electromagnetic coupling by reflection, for reflection of electromagnetic waves. A suppressor is proposed in Japanese Patent Laid-Open No. 7-212079. This type of electromagnetic interference suppressor is mainly composed of a composite magnetic material in which soft magnetic powder is mixed in an organic binder, and by absorbing the electromagnetic wave that arrives at the composite magnetic material, unwanted electromagnetic waves can be generated. Suppress interference. That is, it is used for suppressing electromagnetic interference caused by interference of unnecessary electromagnetic waves.
[0008]
Hereinafter, an example of the electromagnetic interference suppression body using the conventional composite magnetic body disclosed by Unexamined-Japanese-Patent No. 7-212079 is demonstrated. The composite magnetic body constituting the electromagnetic interference suppressing body includes a flat (or needle-like) soft magnetic powder and an organic binder.
[0009]
Examples of the organic binding solvent constituting the composite magnetic material include thermoplastic resins such as polyester resins, polyvinyl chloride resins, polyvinyl butyral resins, polyurethane resins, cellulose resins, nitrile-butadiene rubbers, and styrene-butadiene rubbers. These copolymers, thermosetting resins such as epoxy resins, phenol resins, amide resins, imide resins and the like are employed.
[0010]
Examples of soft magnetic powders include iron-aluminum-silicon alloys (Sendust) and iron-nickel alloys (Permalloy) with high high-frequency magnetic permeability, and the aspect ratio of the powder is sufficiently large (approximately 10: 1 or more). Is desirable.
[0011]
The present inventors have determined the high-frequency transmission of the soft magnetic material with respect to an effective parameter for quantitatively grasping the degree of orientation of the flat soft magnetic powder in the in-plane direction of the composite magnetic material, that is, the arrangement of the soft magnetic powder. We focused on the fact that the magnetic susceptibility strongly depends on the magnitude of the demagnetizing field. By obtaining a ratio H dd / H de between the demagnetizing field H dd in the hard axis direction and the demagnetizing field H de in the easy axis direction as a parameter that can quantitatively grasp the magnitude of the demagnetizing field, a composite magnetic body Even when the filling rate of the magnetic powder in the sample and the demagnetizing factor of the powder itself change, the effective demagnetizing field size can be grasped, and the ratio is 4 when the sample shape is a cube. It has been found that excellent permeability characteristics can be obtained by the above. Further, the ratio H dd / H de can be controlled by the method for producing a composite magnetic material as described above.
[0012]
Here, the “demagnetizing field” Hd will be described with reference to FIG. The composite magnetic material sample is marked so as to know the orientation direction of the magnetic particles, and processed into a cubic shape. Using this VSM (vibration magnetometer), the MH curve (magnetization curve) of each of the orientation direction (magnetization easy axis direction) and the direction perpendicular to the orientation direction (hard magnetization axis direction) of this cubic sample Ask for. The MH curve is shown in FIG. A straight line (shown by a dotted line in FIG. 5) passing through the origin in parallel with the linear region portion of the obtained MH curve is drawn, and the magnetic field corresponding to the intersection of this straight line and the Ms line (saturated magnetization line) is expressed as “reverse”. Magnetic field “Hd”. The demagnetizing field in the “easy axis direction” is represented by H de and the demagnetizing field in the “magnetization axis direction” is represented by H dd .
[0013]
[Problems to be solved by the invention]
A method by injection molding is well known for producing the above-described composite magnetic body. In the injection molding, if only injection molding is performed, the orientation of the flat magnetic powder is limited by the injection speed and the flow of raw materials, and a desired degree of orientation cannot be obtained.
[0014]
In addition, for example, personal computers and the like that are adjacent to low-frequency noise and high-frequency noise can be dealt with by using corresponding composite magnetic bodies in their adjacent portions, but the number of parts increases for management purposes. As a result, there arises a problem that costs are increased.
[0015]
Therefore, the problem of the present invention is to solve the above-mentioned problems, obtain a desired degree of orientation with a simple structure, and to provide a composite magnetic body that can cope with low frequency noise and adjacent high frequency noise at low cost. It is to provide a manufacturing method.
[0016]
[Means for Solving the Problems]
According to the present invention, in a method for producing a composite magnetic body comprising at least a flat soft magnetic powder and an organic binder by injection molding, the flat soft magnetic powder and organic bond in the mold used for the injection molding are provided. Rutotomoni a slit immediately after the inlet of the injection materials containing agent, to place the electromagnet adjacent the slit, an injection material with passing into the slit, the flat soft magnetic powder that passes through the slit by applying a magnetic field orientation, method of manufacturing a composite magnetic body characterized by orienting, arranged flat soft magnetic powder definitive in the composite magnetic body is obtained.
[0018]
Further, according to the present invention, the to the composite magnetic body is shaped to have a low frequency corresponding portion and a high frequency corresponding portion, as the inlet of the mold, flat soft magnetic powder for low-frequency noise And a second inlet for the injection material containing the flat soft magnetic powder for high-frequency noise is provided .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a view showing a composite magnetic body obtained by the production method of the present invention. 1A is a plan view, FIG. 1D is a perspective view of FIG. 1A, and FIGS. 1B and 1C are enlarged perspective views of portions for a high frequency band and a low frequency band, respectively. As shown in FIG. 1, the composite magnetic body 1 is divided into a low frequency part 2 for a low frequency band and a high frequency part 3 for a high frequency band. Accordingly, it is possible to deal with low frequency noise and adjacent high frequency noise in one product.
[0022]
Then, when the slit is not in a mold used in injection molding, the ratio of the orientation is dependent only by the flow of the raw material, the demagnetizing field H de easy axis direction and the demagnetizing field H dd hard axis magnetic H dd / H de (hereinafter referred to as “orientation degree”) is less than 2.9 and is not so obtained. Therefore, as shown in FIG. 2, the degree of orientation is improved to around 3.6 by providing a slit 14 in a mold 11 used for injection molding.
[0023]
Here, in order to manufacture the composite magnetic body 1 shown in FIG. 1, the metal mold | die 11 as shown to Fig.3 (a) is used. Actually, after covering a lid (not shown) from above the mold 11 shown in FIG. 3A, the material constituting the composite magnetic material is poured from the nozzle 21 into the groove of the mold 11. The arrows in the figure indicate the range of flow when pouring. FIG. 3B is a sectional view taken along line AA ′ in FIG. As shown in FIG. 4, an electromagnet 12 and an electromagnet 13 for applying a magnetic field orientation are arranged around the low frequency part 2 and the high frequency part 3 below the mold 11. Specifically, as shown in FIG. 3B, the electromagnet 12 and the electromagnet 13 have grooves that are shaped so that the electromagnet can be embedded in the periphery of the low frequency portion 2 on the lower side of the mold 11 and the periphery of the high frequency portion 3. Is formed. Further, slits 31 as shown in FIG. 3C are formed in the grooves for forming the low frequency part 2 and the high frequency part 3 below the mold 11. When this magnetic field orientation is used, a high orientation degree of about 3.9 is obtained.
[0024]
In addition, as shown in FIG. 1, in the case of manufacturing a molded body partially divided into two characteristics for the high frequency band and the low frequency band, if the injection is performed so that the raw materials can be separately injected, the required molded body is obtained. Can do. In addition, the orientation can be obtained by the above-described slit injection method or magnetic field orientation using an electromagnet, and can be molded as an integral part having partially different functions.
[0025]
【The invention's effect】
According to the present invention, the orientation of the magnetic powder can be obtained by providing a slit in the mold and allowing the slit to pass therethrough.
[0026]
Further, according to the present invention, when partial orientation is required, the orientation by the magnetic field can be limitedly performed by arranging the electromagnet in advance in a predetermined part of the mold corresponding to the part. .
[0027]
Further, according to the present invention, even when low-frequency and high-frequency noise sources are adjacent to each other, it is possible to cope with a single composite magnetic body by performing partial molding.
[Brief description of the drawings]
FIG. 1A is a top view showing an embodiment of a composite magnetic body obtained by the manufacturing method of the present invention, FIG. 1B is a perspective view of FIG. 1A, and FIG. It is an expansion perspective view of a low frequency part, (d) is an expansion perspective view of a high frequency part.
FIG. 2A is a view showing a part of a mold provided with a slit, and FIG. 2B is a side view of a slit portion after molding.
3A is a view showing a structure of a mold for manufacturing the composite magnetic body of FIG. 1, and FIG. 3B is a sectional view taken along line AA ′ of FIG. ) Is a sectional view taken along line BB ′ in FIG.
4A is a view showing a state in which an electromagnet for applying magnetic field orientation is incorporated in a mold, FIG. 4B is a view showing an embodiment of an electromagnet, and FIG. FIG. 5 is a diagram showing another embodiment of an electromagnet.
FIG. 5 is a diagram for explaining a “demagnetizing field” used in the description of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Composite magnetic body 2 Low frequency part 3 High frequency part 11 Mold 12, 13 Electromagnet 14, 31 Slit 21 Nozzle

Claims (2)

射出成形にて少なくとも偏平状軟磁性体粉末と有機結合剤からなる複合磁性体を製造する方法において、
前記射出成形に用いられる金型における偏平状軟磁性体粉末と有機結合剤を含む射出材料の流入口の直後にスリットを設けると共に、該スリットに隣接して電磁石を配置し、射出材料を該スリットに通過させると共に、該スリットを通過する扁平状軟磁性体粉末に磁場配向を加えることにより、前記複合磁性体における偏平状軟磁性体粉末を配向・配列させることを特徴とする複合磁性体の製造方法。
In a method for producing a composite magnetic body comprising at least a flat soft magnetic powder and an organic binder by injection molding,
The injection molding is used comprising a flat soft magnetic powder and an organic binder in a mold provided with a slit immediately after the inlet of the injection material Rutotomoni, to place the electromagnet adjacent the slit, the injection material together are passed through a slit, by applying a magnetic field oriented in a flat soft magnetic powder that passes through the slit, the composite magnetic body characterized by orienting, arranged flat soft magnetic powder definitive in the composite magnetic body Manufacturing method.
前記複合磁性体が低周波対応部と高周波対応部を有するように成形するために、前記金型における前記流入口として、低周波ノイズ用の偏平状軟磁性体粉末を含む射出材料の第1の流入口と、高周波ノイズ用の偏平状軟磁性体粉末を含む射出材料の第2の流入口とを設けることを特徴とする請求項1記載の複合磁性体の製造方法。 Wherein in order to composite magnetic body is shaped to have a low frequency corresponding portion and a high frequency corresponding portion, as the inlet of the mold, a first injection material comprising flat soft magnetic powder for low-frequency noise 2. The method of manufacturing a composite magnetic body according to claim 1 , further comprising an inlet and a second inlet of an injection material containing a flat soft magnetic powder for high-frequency noise .
JP31196297A 1997-11-13 1997-11-13 Method for producing composite magnetic material Expired - Fee Related JP3926447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31196297A JP3926447B2 (en) 1997-11-13 1997-11-13 Method for producing composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31196297A JP3926447B2 (en) 1997-11-13 1997-11-13 Method for producing composite magnetic material

Publications (2)

Publication Number Publication Date
JPH11138591A JPH11138591A (en) 1999-05-25
JP3926447B2 true JP3926447B2 (en) 2007-06-06

Family

ID=18023543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31196297A Expired - Fee Related JP3926447B2 (en) 1997-11-13 1997-11-13 Method for producing composite magnetic material

Country Status (1)

Country Link
JP (1) JP3926447B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185892A (en) * 1999-12-27 2001-07-06 Kitagawa Ind Co Ltd Multilayered electric wave absorber

Also Published As

Publication number Publication date
JPH11138591A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP3401650B2 (en) Electromagnetic interference suppressor
US5864088A (en) Electronic device having the electromagnetic interference suppressing body
WO1997004469A1 (en) Composite magnetic material and product for eliminating electromagnetic interference
US6362434B1 (en) Magnetic prepreg, its manufacturing method and printed wiring board employing the prepreg
US20040108486A1 (en) Composite magnetic material and electromagnetic interference suppressor member using the same
JP6478001B2 (en) Electronic components
US6310285B1 (en) EMI preventive part and active device with the same
EP0871183B1 (en) Composite magnetic sheet, method for manufacturing the same, and electromagnetic interference suppressing material
JP3926447B2 (en) Method for producing composite magnetic material
JP4065578B2 (en) Electromagnetic interference suppressor
KR100755775B1 (en) Electromagnetic noise supression film and process of production thereof
JP3800769B2 (en) Method for producing composite magnetic material
JPH1154861A (en) Wiring board
JP3712846B2 (en) communication cable
JPH0818271A (en) Electronic device and noise suppressing method
JP3528255B2 (en) Hybrid integrated circuit device and method of manufacturing the same
JP3505691B2 (en) Electronic equipment
JPS6017914Y2 (en) printed circuit board
JP4157012B2 (en) Electronic equipment
JPH0846386A (en) Printed wiring board
JPH0758487A (en) Printed wiring board having magnetic coating film and radio wave shielding layer and its manufacture
JP3979610B2 (en) Composite magnetic material
JP3259312B2 (en) Noise suppression components
JP3940188B2 (en) Method for producing sheet-like composite magnetic material
JP2006278718A (en) Multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees