JP3979610B2 - Composite magnetic material - Google Patents
Composite magnetic material Download PDFInfo
- Publication number
- JP3979610B2 JP3979610B2 JP00034297A JP34297A JP3979610B2 JP 3979610 B2 JP3979610 B2 JP 3979610B2 JP 00034297 A JP00034297 A JP 00034297A JP 34297 A JP34297 A JP 34297A JP 3979610 B2 JP3979610 B2 JP 3979610B2
- Authority
- JP
- Japan
- Prior art keywords
- composite magnetic
- magnetic material
- active element
- lead
- magnetic body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
- H05K3/3436—Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
Landscapes
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はEMI対策部品に関し、特に、高周波領域における不要電磁波によって生じる外部への放射及び性能劣化や異常共振等の電磁波障害を抑止する複合磁性体に関する。
【0002】
【従来の技術】
近年、電子機器は高速・高周波・デジタル化が進み、小型・多機能化も加速傾向にある。機器の小型・多機能化の要求から配線基板への部品実装密度は非常に高まり、中央演算処理装置(CPU)または画像プロセッサ算術論理演算装置(IPLU)等のLSI及びICが近接して配置されている。これらLSI及びICは多数の半導体素子で構成されており、半導体素子は、外部からエネルギーの供給を受けて増幅または発振等の作用を行うため一般に能動素子と呼ばれ、誘導性ノイズを発生することが多い。この誘導性ノイズによって配線基板の素子実装面と同一面および反対面には高周波磁界が誘導される。高周波磁界が発生することにより、線間結合の増大や放射ノイズによる電磁干渉に起因する性能劣化や異常共振などが誘起される。従来このようないわゆる電磁波障害に対しては、回路にノイズフィルタを挿入したり、問題となる回路を遠ざける、或いはシールディングを行う等の手段を講じて電磁波障害の原因となる電磁結合、不要放射ノイズを抑制してきた。
【0003】
【発明が解決しようとする課題】
ところで、問題となる回路を金属板や導電メッキ等の導電体で囲むシールディングは従来から行われている手法であるが、これは内部から発生する放射ノイズの外部漏洩や外部からの放射ノイズの侵入防止には非常に有効な手段であるものの、反射による電磁結合が助長され、シールド内部に設置されている素子に対して二次的な電磁障害を引き起こす場合が少なからず生じ、重大な影響を与えている。
【0004】
更に、能動素子から発生したノイズはそのまま放射されるばかりでなく、リードを通じて伝導し、基板上の配線をアンテナとして放射されたり、配線を通じて他のデバイスに影響を及ぼしたりしている。
【0005】
また更に、従来の対策法はいずれも実装するスペースが必要となり高密度化を阻害し時代の要求に逆行するものである。また、先に述べたように2次的に生じる障害を発生させたりもしている。
【0006】
本発明の技術的課題は、本来の回路機能を損なうことなく、外部へ放射する電磁波の透過に対しては遮蔽効果を有し、かつ周辺部品間との相互干渉や信号線への電磁誘導による誤動作等を抑止でき、且つリード〜配線を通じて伝導させる不要伝導ノイズも同時に低減・抑止する複合磁性体を提供することである。
【0007】
【課題を解決するための手段】
本発明によれば、表面に酸化皮膜を有する軟磁性体粉末と有機結合剤とからなる複合磁性体において、能動素子とこの能動素子を実装する基板上の配線とを繋ぐリード上若しくはこのリードを取り囲むように配置される複合磁性体であって、前記能動素子上の部位と、前記リード上若しくはリードを取り囲む部位とでは、透磁率の周波数特性において異なる挙動を示す複合磁性体材料をそれぞれ配置したことを特徴とする複合磁性体が得られる。
【0008】
【作用】
本出願人は従来技術の欠点に鑑み、先に、同じく本出願人が提案した複合磁性体材料を能動素子上の2つの部位に配置している。これにより、2次放射ノイズを発生させることなく外部への電磁波漏洩の防止、外部からの飛来ノイズの侵入防止を図ることができる。本出願人は、このような実装配置を更に考慮し、能動素子の本体から発生する放射ノイズとリード部を通じて伝導される伝導ノイズの各々を最も効果的に減少させる手段を検討した結果、前記放射ノイズと前記伝導ノイズの性質が異なることに着眼し、これら異なる性質を持つノイズを同時に排除する複合磁性体を発明した。即ち、放射ノイズについては、複合磁性体の磁気損失特性(虚数部透磁率μ″)を利用し、空間中で吸収体として主に作用させ、伝導ノイズについては、複合磁性体のインピーダンス特性(複素透磁率(μ=μ′−jμ″))を利用し伝導ライン直近にてインピーダーとして主に作用させる。
【0009】
【発明の実施の形態】
本発明は、表面に酸化皮膜を有する軟磁性体粉末と有機結合剤からなる複合磁性体が、半導体等の能動素子とこの能動素子が実装される基板上の配線とを繋ぐリード上若しくはリードを取り囲むように配置されている。前記能動素子上の部分と、前記リード上若しくはリードを取り囲む部分とでは、透磁率の周波数特性において異なる挙動を示す複合磁性体材料をそれぞれ配置することを特徴とする。ここで、表面に酸化皮膜を有する軟磁性体粉末とは酸化物磁性体粉末も含む。前記能動素子上の部分に配置される複合磁性体材料Aの複素透磁率特性が、所望の周波数帯域においてμ″A >μ′A であって、前記リード上若しくはリードを取り囲む部分に配置される複合磁性体材料Bが、同じ周波数帯域においてμ′B >μ″B の関係を満足すること、更に、前記複合磁性体材料AとBの複素透磁率特性が、前記周波数帯域でμ′B >μ′A の関係を満足することによって異なる性質のノイズを吸収する効果が助長される。前記複合磁性体材料AとBが略一体に成形されていることによって、AB間に空隙が生じなくなるため効果が高まる。
【0010】
また、前記複合磁性体材料Aを構成する前記軟磁性体粉末または前記複合磁性体Bを構成する前記軟磁性粉末の少なくとも一方が、表面に酸化皮膜を有する金属磁性体粉末である場合、本発明の複合磁性体は、渦電流損失の低減化と空間とのインピーダンス不整合の抑止が出来、その結果、より高い周波数帯域で効果的に放射ノイズを抑制することが可能となる。
【0011】
本発明の第1の実施形態を図1、図2および図3に示す。また、ここで用いた複合磁性体材料AおよびBは、接着剤等で互いに接合されるが、μ−f特性について図4に示す。能動素子1からは基板上に形成された配線と接続するためのリード2がでている。能動素子1上には断面凸状に成形された複合磁性体材料Aが、リード2上には上面略ロの字状に成形された複合磁性体材料Bが配置されている。本実施形態による形状の場合、能動素子1から直接放射される放射ノイズの他、リード部をアンテナとして放射される伝導ノイズに対しても有効である。
【0012】
本発明の第2の実施形態を図5および図6に示す。複合磁性体材料AおよびBは、共に同じ有機結合剤が用いられており、一つの成形体として加圧成形すなわち一体成形されている。前記成形体は、能動素子1上には複合磁性体材料Aが、リード2上に複合磁性体材料Bが来るように、各々を構成している軟磁性体粉末が有機結合剤中に混練分散されている。
【0013】
本実施形態によると、複合磁性体材料AとBとの間には空隙が生じなくなるため、非常に効果的なノイズ対策が可能となる。
【0014】
【実施例】
(実施例1)
本発明の第1の実施例は、第1の実施形態に従う。前記複合磁性体材料A、Bには、共に軟磁性体粉末として同じ金属磁性体粉末が原料として用いられており、加熱処理によって異なる周波数特性が実現されている。ここで、金属磁性体粉末は、酸素分圧20%の窒素−酸素混合ガス雰囲気中で気相酸化され、表面に酸化皮膜が形成されていることを確認してある。表1に複合磁性体を形成する構成材料を示す。
【0015】
【表1】
【0016】
本実施例において、各複合磁性体材料の各々の構成要素を、別々に加熱混練後、加圧成形したが、複合磁性体材料Aについては、その断面が凸状となるように、また複合磁性体材料Bについては、その上面が略ロの字状となるように成形した。ここで、複合磁性体材料Aは、複合磁性体材料Bの開口部に嵌合するよう成形してある。これを図1に示したように能動素子1(リード2を含む)上に配置した。尚、複合磁性体の表面抵抗を測定したところ、いずれも1×106 Ωであった。また、成形体の平均肉厚は1.5mmであった。
【0017】
(実施例2)
本発明の第2の実施例は第2の実施形態に従う。構成材料には実施例1と同じものを用いており、別々に加熱混練したものを加圧成型時に一体化して一つの成形体とした。これを図3に示したように、能動素子1(リード2も含む)上に配置した。平均肉厚も実施例1と同様とした。
【0018】
(実施例3)
本発明の第3の実施例も第2の実施形態に従う。本実施例において複合磁性体材料Bの軟磁性体粉末にはNi−Znフェライトを、複合磁性体材料Aの軟磁性体粉末には実施例1と同じ材料を用いた。構成材料について表2に示す。
【0019】
【表2】
【0020】
ここで、各々の複合磁性体材料を別々に加熱混練し、一体的に加圧成形するのは実施例2と同様である。図7、図8に実装例を示すが、本実施例では各リード間にも複合磁性体材料を配置して複合磁性体を成形し、本発明の効果を高めている。本実施例に従えば、複合磁性体を樹脂成形と同様の手法で成形出来るので、この様な複雑形状にも対応が可能である。
【0021】
本発明の複合磁性体の試料の評価には、実施例にて得られた成形体を試料20として用い、各々透過減衰レベル及び結合レベルの測定を行った。測定装置には図12(a)、(b)に示すように、電磁界波源用発信器21と電磁界強度測定器(受信用素子)22と、それぞれループ径2mm以下の電磁界送信用微小ループアンテナ23及び電磁界受信用微小ループアンテナ24を接続した装置を用いた。透過減衰レベルの測定は、図12(a)に示すように電磁界送信用微小ループアンテナ23と電磁界受信用微小ループアンテナ24との間に試料を位置させて行った。結合レベルの測定では、図12(b)のように試料の一面と電磁界送信用微小ループアンテナ23及び電磁界受信用微小ループアンテナ24とを対向させた。電磁界強度測定器22には図示しないスペクトラムアナライザが接続されており、試料が存在しない状態での電磁界強度を基準として結合レベルの測定を行った。
【0022】
各実施例による複合磁性体の透過減衰レベルを図10(a)に、結合レベルを図10(b)に示す。これによると透過減衰レベル、結合レベルは共に減少し、反射による2次放射ノイズを引き起こすことなく効果的に放射ノイズを除去できることが分かる。
【0023】
また、高速デジタル信号波形をオシロスコープで観察した結果を図11に示すが、信号の立ち上がり、立ち上がりに起因するノイズ成分を波形を崩さずにカットできていることが判る。
【0024】
【発明の効果】
以上説明したように本発明によれば、2次放射ノイズを発生させることなく能動素子から発生する放射・伝導の異なる性質を持つノイズを同時に抑制できる複合磁性体を提供できるという効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による複合磁性体の斜視図である。
【図2】図1のII−II線に沿って切断した断面図である。
【図3】図1の複合磁性体の分解斜視図である。
【図4】実施例1、2で用いた複合磁性体材料A(実線)と複合磁性体材料B(破線)とのμ−f特性図である。
【図5】本発明の第2の実施形態による複合磁性体の斜視図である。
【図6】図5のVI−VI線に沿って切断した断面図である。
【図7】本発明の第3の実施例による本発明の複合磁性体の斜視図である。
【図8】 図7のVIII−VIII線に沿って切断した断面図である。
【図9】実施例3で用いた複合磁性体材料A(実線)と複合磁性体材料B(破線)とのμ−f特性図である。
【図10】(a)透過減衰レベルの評価試験による測定結果(周波数・透過減衰レベル特性図)である。
(b)結合レベルの評価試験による測定結果(周波数・透過減衰レベル特性図)である。(比較例:t=0.5mmのAl板)
【図11】(a)高速デジタル信号波形の観察図である。
(b)実施例1を適用した場合の図である。
(c)実施例3を適用した場合の図である。
【図12】(a)透過減衰レベルの評価装置の外略図である。
(b)結合レベルの評価装置の外略図である。
【符号の説明】
1 能動素子
2 リード
A 複合磁性体
B 複合磁性体
20 評価試料
21 電磁界波源用発信器
22 電磁界強度測定器
23 電磁界送信用微小ループアンテナ
24 電磁界受信用微小ループアンテナ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an EMI countermeasure component, and more particularly to a composite magnetic body that suppresses electromagnetic interference such as external radiation and performance degradation and abnormal resonance caused by unnecessary electromagnetic waves in a high frequency region.
[0002]
[Prior art]
In recent years, electronic devices have become faster, higher frequency, and digitized, and miniaturization and multifunctional functions are also accelerating. The component mounting density on the wiring board has been increasing due to the demand for smaller and more functional devices, and LSIs and ICs such as a central processing unit (CPU) or image processor arithmetic logic unit (IPLU) are placed close together. ing. These LSIs and ICs are composed of a large number of semiconductor elements. The semiconductor elements are generally called active elements because they perform operations such as amplification or oscillation upon receiving external energy supply, and generate inductive noise. There are many. This inductive noise induces a high-frequency magnetic field on the same surface as the element mounting surface of the wiring board and on the opposite surface. Generation of a high-frequency magnetic field induces performance degradation or abnormal resonance due to electromagnetic coupling due to increased line coupling or radiation noise. Conventionally, for such so-called electromagnetic interference, electromagnetic coupling or unnecessary radiation that causes electromagnetic interference by taking measures such as inserting a noise filter in the circuit, moving away the circuit in question, or performing shielding. Noise has been suppressed.
[0003]
[Problems to be solved by the invention]
By the way, shielding that encloses the circuit in question with a conductive material such as a metal plate or conductive plating is a conventional method, but this is due to external leakage of radiated noise generated from inside or radiated noise from outside. although the intrusion prevention is very effective means, is promoted electromagnetic coupling due to the reflection, if the element that is located inside the shield causes a secondary electromagnetic interference is generated not a little, a significant effect Giving.
[0004]
Furthermore, the noise generated from the active element is not only radiated as it is, but also conducted through the lead, and the wiring on the substrate is radiated as an antenna, or other devices are affected through the wiring.
[0005]
Furthermore, all of the conventional countermeasures require a mounting space, which hinders high density and goes against the requirements of the times. In addition, as described above, a failure that occurs secondarily is also generated.
[0006]
The technical problem of the present invention is that it has a shielding effect against the transmission of electromagnetic waves radiating to the outside without impairing the original circuit function, and is due to mutual interference between peripheral parts and electromagnetic induction to signal lines. An object of the present invention is to provide a composite magnetic body that can suppress malfunction and the like, and can simultaneously reduce / suppress unnecessary conductive noise conducted through leads to wires.
[0007]
[Means for Solving the Problems]
According to the present invention, in a composite magnetic body composed of a soft magnetic powder having an oxide film on the surface and an organic binder, the active element and the lead connecting the wiring on the substrate on which the active element is mounted or the lead A composite magnetic material arranged so as to surround, wherein a composite magnetic material that exhibits different behavior in frequency characteristics of magnetic permeability is disposed in a portion on the active element and a portion on the lead or surrounding the lead. A composite magnetic body characterized by the above can be obtained.
[0008]
[Action]
In view of the drawbacks of the prior art, the present applicant has previously arranged the composite magnetic material proposed by the present applicant at two sites on the active element. As a result, it is possible to prevent the leakage of electromagnetic waves to the outside and the invasion of incoming noise from the outside without generating secondary radiation noise. The present applicant further considers such a mounting arrangement, and as a result of studying means for reducing each of the radiation noise generated from the main body of the active element and the conduction noise conducted through the lead portion most effectively, Focusing on the difference between noise and the nature of the conduction noise, the inventors invented a composite magnetic material that simultaneously eliminates noise having these different characteristics. That is, for radiation noise, the magnetic loss characteristic (imaginary part permeability μ ″) of the composite magnetic material is used to act mainly as an absorber in the space, and for conduction noise, the impedance characteristic (complexity of the composite magnetic material) The magnetic permeability (μ = μ′−jμ ″)) is used to act mainly as an impeder near the conduction line.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a composite magnetic body composed of a soft magnetic powder having an oxide film on the surface and an organic binder has a lead or lead connected to an active element such as a semiconductor and a wiring on a substrate on which the active element is mounted. It is arranged so as to surround it. A composite magnetic material exhibiting different behavior in the frequency characteristic of magnetic permeability is arranged on the part on the active element and on the lead or the part surrounding the lead, respectively. Here, the soft magnetic powder having an oxide film on the surface includes oxide magnetic powder. The complex magnetic permeability characteristic of the composite magnetic material A disposed on the portion on the active element is μ ″ A > μ ′ A in a desired frequency band, and is disposed on the lead or the portion surrounding the lead. The composite magnetic material B satisfies the relationship of μ ′ B > μ ″ B in the same frequency band. Further, the complex magnetic permeability characteristics of the composite magnetic materials A and B indicate that μ ′ B > Satisfying the μ ′ A relationship promotes the effect of absorbing noise of different properties. Since the composite magnetic materials A and B are formed substantially integrally, a void is not generated between AB, so that the effect is enhanced.
[0010]
When at least one of the soft magnetic powder constituting the composite magnetic material A or the soft magnetic powder constituting the composite magnetic body B is a metal magnetic powder having an oxide film on the surface thereof, the present invention This composite magnetic body can reduce eddy current loss and suppress impedance mismatch with space, and as a result, can effectively suppress radiation noise in a higher frequency band.
[0011]
A first embodiment of the present invention is shown in FIGS. The composite magnetic materials A and B used here are bonded to each other with an adhesive or the like, and the μ-f characteristics are shown in FIG. The
[0012]
A second embodiment of the present invention is shown in FIGS. The composite magnetic materials A and B both use the same organic binder, and are pressure-formed, that is, integrally molded as a single molded body. In the molded body, the soft magnetic powder constituting each is kneaded and dispersed in the organic binder so that the composite magnetic material A comes on the
[0013]
According to the present embodiment, since no gap is generated between the composite magnetic materials A and B, a very effective noise countermeasure can be achieved.
[0014]
【Example】
Example 1
The first example of the present invention follows the first embodiment. In the composite magnetic materials A and B, the same metal magnetic powder as the soft magnetic powder is used as a raw material, and different frequency characteristics are realized by heat treatment. Here, it was confirmed that the metal magnetic powder was vapor-phase oxidized in a nitrogen-oxygen mixed gas atmosphere having an oxygen partial pressure of 20% and an oxide film was formed on the surface. Table 1 shows constituent materials for forming the composite magnetic body.
[0015]
[Table 1]
[0016]
In this example, each component of each composite magnetic material was separately heated and kneaded and then pressure-molded. However, for the composite magnetic material A, the composite magnetic material A was so shaped that its cross-section was convex. About the body material B, it shape | molded so that the upper surface may become a substantially square shape. Here, the composite magnetic material A is shaped so as to fit into the opening of the composite magnetic material B. This was placed on the active element 1 (including the lead 2) as shown in FIG. The surface resistance of the composite magnetic material was measured and found to be 1 × 10 6 Ω. The average thickness of the molded body was 1.5 mm.
[0017]
(Example 2)
The second example of the present invention follows the second embodiment. The same materials as in Example 1 were used as the constituent materials, and the components that were separately heated and kneaded were integrated during pressure molding to form one molded body. This was placed on the active element 1 (including the lead 2) as shown in FIG. The average thickness was also the same as in Example 1.
[0018]
(Example 3)
The third example of the present invention also follows the second embodiment. In this example, Ni—Zn ferrite was used for the soft magnetic powder of the composite magnetic material B, and the same material as that of Example 1 was used for the soft magnetic powder of the composite magnetic material A. The constituent materials are shown in Table 2.
[0019]
[Table 2]
[0020]
Here, each composite magnetic material is separately heat-kneaded and integrally pressure-molded as in the second embodiment. FIG. 7 and FIG. 8 show mounting examples . In this embodiment, the composite magnetic material is formed between the leads to form the composite magnetic material, thereby enhancing the effect of the present invention. According to the present embodiment, since the composite magnetic body can be molded by the same method as the resin molding, it is possible to cope with such a complicated shape.
[0021]
For the evaluation of the sample of the composite magnetic body of the present invention, the molded body obtained in the example was used as the
[0022]
FIG. 10A shows the transmission attenuation level of the composite magnetic material according to each example, and FIG . 10B shows the coupling level. According to this, both the transmission attenuation level and the coupling level are reduced, and it can be seen that radiation noise can be effectively removed without causing secondary radiation noise due to reflection.
[0023]
Further, FIG. 11 shows the result of observing the high-speed digital signal waveform with an oscilloscope, and it can be seen that the noise component caused by the rising and rising of the signal can be cut without breaking the waveform.
[0024]
【The invention's effect】
As described above, according to the present invention, there is an effect that it is possible to provide a composite magnetic body that can simultaneously suppress noise having different radiation and conduction properties generated from an active element without generating secondary radiation noise.
[Brief description of the drawings]
FIG. 1 is a perspective view of a composite magnetic body according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line II-II in FIG.
3 is an exploded perspective view of the composite magnetic body of FIG. 1. FIG.
4 is a μ-f characteristic diagram of a composite magnetic material A (solid line) and a composite magnetic material B (broken line) used in Examples 1 and 2. FIG.
FIG. 5 is a perspective view of a composite magnetic body according to a second embodiment of the present invention.
6 is a cross-sectional view taken along line VI-VI in FIG.
FIG. 7 is a perspective view of a composite magnetic body of the present invention according to a third embodiment of the present invention.
8 is a sectional view taken along line VIII-VIII of FIG.
9 is a μ-f characteristic diagram of the composite magnetic material A (solid line) and the composite magnetic material B (broken line) used in Example 3. FIG.
FIG. 10A is a measurement result (frequency / transmission attenuation level characteristic diagram) based on a transmission attenuation level evaluation test.
(B) It is a measurement result (frequency / transmission attenuation level characteristic diagram) by the evaluation test of a coupling level. (Comparative example: t = 0.5 mm Al plate)
FIG. 11A is an observation diagram of a high-speed digital signal waveform;
(B) It is a figure at the time of applying Example 1. FIG.
(C) It is a figure at the time of applying Example 3. FIG.
FIG. 12A is a schematic diagram of a transmission attenuation level evaluation apparatus.
(B) It is the outline figure of the evaluation apparatus of a coupling level.
[Explanation of symbols]
DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00034297A JP3979610B2 (en) | 1997-01-06 | 1997-01-06 | Composite magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00034297A JP3979610B2 (en) | 1997-01-06 | 1997-01-06 | Composite magnetic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10199721A JPH10199721A (en) | 1998-07-31 |
JP3979610B2 true JP3979610B2 (en) | 2007-09-19 |
Family
ID=11471209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00034297A Expired - Fee Related JP3979610B2 (en) | 1997-01-06 | 1997-01-06 | Composite magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3979610B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4502320B2 (en) * | 2003-07-02 | 2010-07-14 | Necトーキン株式会社 | Coil antenna |
JP4530140B2 (en) * | 2004-06-28 | 2010-08-25 | Tdk株式会社 | Soft magnetic material and antenna device using the same |
-
1997
- 1997-01-06 JP JP00034297A patent/JP3979610B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10199721A (en) | 1998-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3608063B2 (en) | EMI countermeasure component and active element including the same | |
US5639989A (en) | Shielded electronic component assembly and method for making the same | |
US6778034B2 (en) | EMI filters | |
JPH09116289A (en) | Noise suppression type electronic device and its manufacture | |
JP3979610B2 (en) | Composite magnetic material | |
JP3528455B2 (en) | Electromagnetic interference suppressor | |
JPH1092623A (en) | Electromagnetic interference suppressing material | |
JP4494714B2 (en) | Printed wiring board | |
JP3712846B2 (en) | communication cable | |
JP4065578B2 (en) | Electromagnetic interference suppressor | |
JPH0818271A (en) | Electronic device and noise suppressing method | |
JP2000183540A (en) | Printed wiring board | |
JP3528255B2 (en) | Hybrid integrated circuit device and method of manufacturing the same | |
JP3844270B2 (en) | Noise suppression parts | |
JPH08204380A (en) | Noise suppressing method for electric apparatus and noise suppressed electronic apparatus using this method | |
JP3278054B2 (en) | Shield case | |
JP2004221602A (en) | Emi-countermeasure component and active element provided therewith | |
JPH1167300A (en) | Terminal board | |
JP4667292B2 (en) | Shield case for electronic equipment | |
CN220326153U (en) | Device for shielding electromagnetic interference of crystal oscillator and PCB | |
JP2012222076A (en) | Electromagnetic interference suppressor | |
JP2001111287A (en) | Electromagnetic interference restraining body and mounting method therefor | |
US20230378103A1 (en) | Multi chip front end module with shielding vias | |
JP3505691B2 (en) | Electronic equipment | |
JP4157012B2 (en) | Electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070625 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |