JP3926289B2 - Styrenic expandable resin particles, expanded beads and expanded molded products - Google Patents

Styrenic expandable resin particles, expanded beads and expanded molded products Download PDF

Info

Publication number
JP3926289B2
JP3926289B2 JP2003129891A JP2003129891A JP3926289B2 JP 3926289 B2 JP3926289 B2 JP 3926289B2 JP 2003129891 A JP2003129891 A JP 2003129891A JP 2003129891 A JP2003129891 A JP 2003129891A JP 3926289 B2 JP3926289 B2 JP 3926289B2
Authority
JP
Japan
Prior art keywords
styrene
molecular weight
polymerization
resin particles
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003129891A
Other languages
Japanese (ja)
Other versions
JP2004250655A5 (en
JP2004250655A (en
Inventor
誠 齋藤
哲也 加藤
誠 国見
弘 中岫
敏夫 秋間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2003129891A priority Critical patent/JP3926289B2/en
Publication of JP2004250655A publication Critical patent/JP2004250655A/en
Publication of JP2004250655A5 publication Critical patent/JP2004250655A5/ja
Application granted granted Critical
Publication of JP3926289B2 publication Critical patent/JP3926289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スチレン系発泡性樹脂粒子とその製造方法、さらにスチレン系発泡ビーズ及び発泡成形品に関する。
【0002】
【従来の技術】
スチレン系発泡性樹脂は、優れた断熱性、経済性、衛生性を特徴として多くの食品容器、梱包材、緩衝材等に用いられている。これらの発泡成形品は、スチレン系発泡性樹脂粒子をスチーム等により加熱、所望の嵩密度まで予備発泡し、熟成工程を経た後、成形金型に充填し再度加熱発泡成形する方法により製造される。このスチレン系発泡性樹脂粒子は、予備発泡段階や金型内での加熱発泡成形段階において、良好な発泡性を示し、また、成形品としたときの成形品強度の大きいことが求められている。
【0003】
従来、発泡成形品の強度を大きくするためには、成形品密度を高密度化する方法や成形品自体の肉厚を厚くする方法等が行われていた。しかし、これらいずれの方法も成形品重量がかさむため経済的とは言い難く、環境的視点からも問題である。また、スチレン系発泡性樹脂粒子においては、分子量を高分子量化する、また、樹脂粒子を可塑化する可塑剤の種類や添加量を減量調整する等の方法が行われてきた。
【0004】
一方、スチレン系発泡性樹脂粒子の発泡性を向上させる方法として、分子量を低分子化する方法や樹脂粒子を可塑化する方法、さらには発泡剤の組成比を変更する方法等が検討されてきた。
【0005】
このような発泡成形品の強度を大きくするための方法及び発泡性を向上させる方法は、一般的に相反し両立させることは困難であった。
【0006】
これら問題点を解決する方法として、粒子最表層部と粒子中心部が低分子量であり、粒子中間部が高分子量となる樹脂粒子が提案されている(例えば、特許文献1参照)。
しかし、この粒子は、粒子最表層部の分子量が粒子中心部同様に低分子量であるため、加熱発泡成形時において熱融着が促進しすぎて、成形品の表面仕上がりを悪化させるという欠点があった。
【0007】
また、表層部の分子量が粒子全体の分子量より高い樹脂粒子も開示されている(例えば、特許文献2参照)。
この特許文献には、表層部をあまり高分子量化すると発泡性能が低下し成形品の外観が損なわれ、その結果として、強度が低下することが記載されている。これは、ここに開示されている粒子が、表層部を高分子量化するとそれに伴い中心部も高分子量化してしまうためと考えられる。即ち、この樹脂粒子には、表層部を十分に高分子量化できないという欠点があった。
【0008】
【特許文献1】
特開平8−295756号公報
【特許文献2】
特開平7−188454号公報
【0009】
【発明が解決しようとする課題】
本発明は、成形品の強度が大きく、発泡性に優れたスチレン系発泡性樹脂粒子、発泡ビーズ及び発泡成形品を提供することを目的とする。
【0010】
【課題点を解決するための手段】
本発明の第1の態様によれば、粒子の表面から中心に向かって5等分した表面から1/5までを形成する表面部分の重量平均分子量が、中心から表面に向かって中心から1/5までを形成する中心部分の重量平均分子量より高く、表面部分のゲルパーミエーションクロマトグラフ法のチャートが二山又はショルダーを有することを特徴とするスチレン系発泡性樹脂粒子が提供される。
【0012】
本発明の第2の態様によれば、粒子の表面から中心に向かって5等分した表面から1/5までを形成する表面部分の、GPC/MALLS法により測定したlog(R.M.S半径)とlog(MW)との相関式の傾きが、0.53以下であることを特徴とするスチレン系発泡性樹脂粒子が提供される。
【0014】
本発明の第3の態様によれば、スチレン系単量体の懸濁重合において、重合率が60%以上のとき、反応槽内の酸素濃度を7体積%以下に保ちつつ、スチレン系発泡性樹脂粒子の5重量%〜30重量%のスチレン系単量体を添加し、重合途中にあるスチレン樹脂粒子に吸着させて重合反応を進め、重合反応の完了前または重合反応の完了後に、発泡剤を含浸することを特徴とするスチレン系発泡性樹脂粒子の製造方法が提供される。
【0015】
本発明の第4の態様によれば、上記の製造方法により得られることを特徴とするスチレン系発泡性樹脂粒子が提供される。
【0016】
本発明の第5の態様によれば、上記のスチレン系発泡性樹脂粒子を発泡させて得られることを特徴とするスチレン系発泡ビーズが提供される。
【0017】
本発明の第6の態様によれば、上記のスチレン系発泡ビーズを成形させて得られることを特徴とするスチレン系発泡成形品が提供される。
【0018】
【発明の実施の形態】
本発明のスチレン系発泡性樹脂粒子、発泡ビーズ及び発泡成形品について詳しく説明する。
スチレン系発泡性樹脂粒子は、スチレン系単量体を重合して得られるものである。スチレン系単量体として、スチレン、又はスチレンを主成分とし、α―メチルスチレン、クロルスチレン、ビニルトルエン等のスチレン誘導体、アクリル酸メチル、アクリル酸メチル、アクリル酸ブチル等のアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等のメタクリル酸エステル類との混合単量体を使用できる。
【0019】
スチレン系発泡性樹脂粒子を製造する方法は懸濁重合が好ましく、これは従来公知の方法を採用することができる。即ち、一般に、分散剤を含む水性媒体中に有機過酸化物等の触媒を溶解したスチレン系単量体を分散してラジカルを発生させて重合を行なう。
【0020】
分散剤として、難溶性無機塩と界面活性剤を併用してもよいし、PVA等の有機分散剤等従来公知のものを使用することができる。
難溶性無機塩として、リン酸マグネシウム、リン酸三カルシウム等が使用できる。界面活性剤として、オレイン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、その他懸濁重合に一般的に使用されるアニオン系界面活性剤、ノニオン系界面活性剤のいずれでも使用できる。有機分散剤として、ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース等が使用できる。
有機過酸化物は、10時間半減分解温度が50〜100℃である従来公知のものを使用できる。例えば、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t―ブチルパーオキシベンゾエート、t―ブチルパーオキシイソプロピルカーボネイト等がある。有機過酸化物は、重合性単量体に対して0.001重量%〜0.5重量%使用されるのが好ましい。有機過酸化物は一又は二以上用いることができる。
【0021】
全体の分子量は、触媒濃度を調整するか、連鎖移動剤を併用するか、又はこれら両方により調整できる。
連鎖移動剤としては、オクチルメルカプタン、ドデシルメルカプタン、α―メチルスチレンダイマー等の従来公知のものが使用できる。連鎖移動剤の添加量は、重合性単量体に対して20ppm〜100ppm使用することが好ましい。
【0022】
本発明の製造方法においては、少なくとも、重合後期のとき、反応槽内の酸素濃度を低く保ちつつ、スチレン系単量体を添加する。
この方法では、重合開始又は重合途中より、反応槽内を低酸素濃度にしてもよいが、少なくとも重合後期には低酸素濃度にする。また、酸素濃度を、例えば重合後期だけ特に低くするように、変化させてもよい。
【0023】
好ましくは重合率が60%以上、より好ましくは60%以上97%未満において、スチレン系単量体を添加する。また、好ましくは、反応槽内の酸素濃度は7体積%以下に保ちつつ、スチレン系単量体を添加する。
酸素濃度が7体積%を超えると、スチレン系単量体を添加して反応を進める際に、スチレン系樹脂粒子の表面層で低分子量物が形成される。表皮での低分子量物の生成は、発泡成形時において熱融着が促進しすぎて、成形品の強度を低下させると共に表面仕上がりを悪化させる。好ましくは、酸素濃度は5体積%以下ある。酸素濃度は窒素等の不活性ガスで置き換えることにより調節できる。
【0024】
重合率が60%より低い場合、スチレン系樹脂粒子へのスチレン系単量体の吸収が促進し、中心部分の分子量が高分子量化するため、発泡力及び成形品の融着が低下する。また、重合率が97%以上の場合、樹脂粒子へのスチレン系単量体の吸収が低下し、樹脂粒子内のラジカル量及び重合触媒量が減少し、樹脂粒子最表面部の分子量が低分子量化するため、発泡成形時において熱融着が促進しすぎて、成形品の強度を低下させると共に表面仕上がりを悪化させる恐れがある。重合率85以上97%未満での追加がより好ましい。
【0025】
スチレン系単量体の添加量は、最終的に得られるスチレン系樹脂粒子に対して5重量%〜30重量%であることが好ましい。より好ましくは、10重量%〜15重量%の範囲である。
添加量が5重量%より少ない量では、スチレン系樹脂粒子における最表面部の高分子量化効果が小さく、強度向上効果を十分に得られない場合がある。反面、添加量が30重量%より多い量では、樹脂粒子を軟化し、スチレン系単量体の吸収が促進され中心部の分子量が高分子量化する等粒子内の最も高分子量化する部分が中心部へ移動するため、発泡力が低下し成形品で融着しにくくなる場合がある。
【0026】
懸濁重合温度は、一般に、80℃〜95℃である。スチレン系単量体の添加温度は、そのままの温度でもよく昇温してもよい。最終的に得られるスチレン系発泡性樹脂粒子において残存するスチレン系単量体の量を少なくするという、工業的な製造効率からは、重合温度は90℃以上が好ましく、スチレン系単量体添加温度は昇温中に行うことが好ましい。
【0027】
本発明の製造方法においては、水分散液の水素イオン濃度が8〜10で重合を開始させ、重合率20%〜50%で少なくとも1回以上の難溶性無機塩を追加することが好ましい。水分散液は連続相であることが好ましい。
水素イオン濃度が上記の範囲外であると、懸濁重合終了時の粒度分布がシャープとならない恐れがある。水素イオン濃度は塩基性無機塩により調節することができる。
また、同様の理由により重合率20%〜50%で難溶性無機塩を追加することができる。
難溶性無機塩は少なくとも一回以上、例えば、2〜3回追加することができる。また、難溶性無機塩はさらに重合が進んでから追加することもできる。
【0028】
昜揮発性発泡剤は、スチレン系単量体の添加と平行して圧入することもできるが、一般的には、スチレン系単量体添加後に行うことが好ましく、重合反応の完結前又は完結後に、易揮発性発泡剤をスチレン系樹脂粒子に含浸することが好ましい。
【0029】
昜揮発性発泡剤としては、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、シクロペンタン等の脂肪族炭化水素の中から選ばれる。また、発泡助剤として脂肪族炭化水素の他に、シクロヘキサン等の脂環式炭化水素や芳香族炭化水素を昜揮発性発泡剤と併用することもできる。
【0030】
重合に際し、溶剤、可塑剤、発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等、スチレン系発泡性樹脂粒子を製造する際に用いられる添加剤を、必要に応じて適宜使用してもよい。
【0032】
スチレン系発泡性樹脂粒子は、発泡剤の含浸が完了し、重合系内より排出され、さらに脱水乾燥した後、必要に応じて表面被覆剤を被覆することができる。かかる被覆剤は、従来公知である発泡スチレン系樹脂粒子に用いられるものが適用できる。例えば、ジンクステアレート、ステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油、アミド化合物、シリコーン類、静電防止剤等である。
【0033】
通常、懸濁重合により製造されるスチレン系発泡性樹脂粒子は、重量平均分子量(分子量)は重合触媒の量により決定され、粒子中心部、中間部、及び表層部の分子量は、ほぼ一定である。
しかしながら、本発明の製造方法によれば、樹脂粒子の表面部分の分子量が、中心部分の分子量より高いスチレン系発泡性樹脂粒子が得られる。中心から表面までの分子量勾配は、徐々に一定の比率で高くなるのではなく、表面付近で急に高くなる。
本発明の製造方法により得られるスチレン系発泡性樹脂粒子では、分子量が表面付近で急に高くなっているので、中心部分を低分子量に保ちながら、表面部分を高分子量にできる。一般に、中心部分が低分子量であると良好な発泡性が発揮でき、表面部分が高分子量であると成形品の強度が大きくなる。従って、本発明の粒子では、発泡性と成形品強度を共に満足させることができる。例えば、ある程度の発泡性を保ちながら、かなり高い成形品強度を得ることができる。
【0034】
特に、本発明のスチレン系発泡性樹脂粒子は、樹脂粒子表面から中心に向かって5等分した表面から1/5までを形成する表面部分の重量平均分子量が、中心から表面に向かって中心から1/5までを形成する中心部分の重量平均分子量より高いことが好ましい。
ここで、表面部分及び中心部分について、図面を用いて説明する。図1に示すように、樹脂粒子10の表面から中心に向かって5等分する。最も外側にある、表面から1/5までを形成する部分1が、表面部分である。表面部分の重量平均分子量は、この部分1の重量平均分子量である。最も内側にある、中心から1/5までを形成する部分5が、中心部分である。中心部分の重量平均分子量は、この部分5を5等分した中心の重量平均分子量である。
さらに、表面部分のゲルパーミエーションクロマトグラフ法によるチャートが二山又はショルダーを有することが好ましい。二山又はショルダーを有することは、分子量が急激に変化していることを意味する。ショルダーは変曲点により形成される。本発明において、ゲルパーミエーションクロマトグラフ法によるチャートは、日立化成工業(株)社製のカラム、GL−R400M、を2本用いて測定する。尚、通常チャートの両すそにも変曲点が発生するが、本発明でいうショルダーにはこれらは含まれない(図3参照)。
【0035】
さらに、本発明は、中心部分の重量平均分子量が、200,000〜300,000の範囲であり、表面部分の重量平均分子量が300,000〜450,000の範囲であると共に、表面部分の重量平均分子量が中心部分の重量平均分子量に対して1.2倍以上大きいことが好ましい。
【0036】
中心部分の分子量が200,000より小さい場合、成形品強度が低くなる恐れがある。また、分子量を200,000より小さくするためには、製造過程において、触媒の使用量を増加しなければならず好ましくない。
中心部分の分子量が300,000より大きい場合、発泡性が低くなる恐れがある。
また、好ましくは、中心部分の重量平均分子量は、200,000〜250,000である。好ましくは、中心から3/5を形成する部分の分子量がほぼ均一である。
【0037】
表面部分の分子量が300,000より小さい場合、十分な成形品強度が得られない恐れがある。
表面部分の分子量が450,000より大きい場合、発泡力が低下し熱溶融が促進せず成形品の表面仕上がりが悪くなり融着しにくくなる。
また、好ましくは、表面部分の重量平均分子量は、350,000〜450,000である。
【0038】
中心部分の重量平均分子量に対して表面部分の重量平均分子量(分子量比)はより好ましくは、1.5倍以上である。通常、2.2倍以下である。
【0039】
このようなスチレン系発泡性樹脂粒子は上記の本発明の製造方法により酸素濃度を低くして製造できる。
【0040】
また、本発明の製造方法によれば、表面部分に、従来のスチレンのラジカル重合では起こらないと考えられていたグラフト化が起こり、高分子量の枝分かれ構造を生成させることが可能となった。
このように、表面部分が枝分かれ構造を有していることは、例えば、粒子の表面から中心に向かって5等分した表面から1/5までを形成する表面部分をGPC/MALLS法により測定すると、log(R.M.S半径)とlog(MW)との相関式の傾きが0.53以下、好ましくは0.52以下、より好ましくは0.50以下であることから分かる。ここで、GPCはゲルパーミエーションクロマトグラフィーを、MALLS(Multi
Angle Laser Light Scattering)は、多角度光散乱検出器を、R.M.S(Root Mean Square)半径は、根平均二乗半径を、MWは、絶対分子量をそれぞれ意味する。
尚、この傾きは、通常のラジカル重合(懸濁系)により得られた直鎖構造のポリスチレンでは、0.55〜0.60である。
また、この表面部分の重量平均分子量は、上記と同様の理由により、300,000以上450,000以下が好ましい。
【0041】
本発明の樹脂粒子では、上述したように、表面部分における低分子量物の発生が抑制され、また、この表面部分に高分子量の枝分かれ構造を有しているため、酸素濃度を抑制しない通常の重合により製造される発泡成形品に比較し、粒子表面部分の耐熱性が向上し、外観及び機械強度の良好な発泡成形品を得ることができる。
【0042】
尚、本発明のスチレン系発泡性樹脂粒子の平均粒子径は、通常、0.05〜2.0mmである。
【0043】
本発明の発泡ビーズは、スチレン系発泡性樹脂粒子を発泡して製造する。また、本発明の発泡成形品は、この発泡ビーズを成形して製造する。
一般には、スチレン系発泡性樹脂粒子を、スチーム等により加熱して所定の嵩密度まで予備発泡し、熟成工程を経て発泡ビーズを製造する。その後、発泡ビーズを成形金型に充填し再度加熱発泡成形して、発泡成形品を製造する。
【0044】
本発明では、スチレン系発泡性樹脂粒子の発泡性と、それから得られる成形品の強度のバランスに優れている。本発明の成形品は、食品容器、梱包材、緩衝材等に好適に使用できる。
【0045】
【実施例】
実施例及び比較例における特性評価方法は以下の通りであった。
(1)重量平均分子量(分子量)
スチレン系発泡性樹脂粒子の分子量は粒子を発泡させて測定した。
スチレン系発泡性樹脂粒子を飽和水蒸気中で嵩倍数80ml/gに発泡した。
任意の発泡粒子2〜3粒を採取し、剃刀で図1に示すように粒子1を半分等間隔に5等分して、外側から、部分1,2,3,4,5を形成した。最も表面側の部分1(表面部分)についてはそのまま、最も内側の部分5(中心部分)についてはこの部分を5等分した中心を注射針で繰り抜いて取り出し、分子量を測定した。部分3(中心より3/5部分)については部分5と同じ中心を注射針で繰り抜いて取り出し、分子量を測定した。
尚、分子量は、ゲルパーミエーションクロマトグラフ(GPC)法により測定した。
また、表面部分について、GPC法によるチャート(GPCチャート)を得た。そのとき、以下の装置及び条件で測定した。
測定装置:(株)日立製作所社製
溶離液:THF、流量:2ml/分
検出器:UV 220nm
カラム:日立化成工業(株)社製 GL−R400M 2本
【0046】
(2)発泡性
発泡性は、スチレン系発泡性樹脂粒子の揮発性成分量が7.0重量%のときの100℃沸騰水中で3分間発泡させた際の嵩密度(発泡度)を測定した。
【0047】
(3)曲げ強度
スチレン系発泡性樹脂粒子を、日立テクノプラント(株)製のHBP−700発泡機を用いて発泡させて発泡ビーズを得た。さらに、この発泡ビーズを、ダイセン工業(株)製のVS−500成形機を用い、スチーム圧力を0.08MPaで成形して、550mm×335mm×150mmの成形品を得た。
成形品の曲げ強度は、密度60ml/gの発泡成形体をJIS−A−9511に準じて測定した。
【0048】
(4)GPC/MALLS法による粒子表面部分のポリマー構造解析
図1に示す表面部分1を測定用試料とした。GPC/MALLS法は、以下の装置及び条件で行い、これから、log(R.M.S半径)とlog(MW)との相関式の傾きを求めた。
カラム:Shodex、KF−807L×2本
カラム温度:40℃
溶離液:THF
流速:1.00ml/min
注入量:100μL
検出器:RI及びWyatt Technology、DAWN DSP-F
(レーザー波長:632.8nm)
多角度フィット法:Berry法
【0049】
(5)外観(表面平滑率)
(3)と同様にして製造した成形品の表面部分に黒色印刷インクをローラーで薄く塗り、この表面部分を画像処理装置にかけた。表面部分の空隙には印刷インクが塗布されないことから、全塗布面積に対する黒色部分の面積を求め表面平滑率とし、外観の評価数値とした。
【0050】
(6)重合率
重合率は、合成中の樹脂粒子を採取し、以下の装置及び条件にて測定した。
測定装置:(株)日立製作所社製
溶離液:アセトニトリル/蒸留水=70/30、流量:1ml/分
検出器:UV 230nm
カラム:Inertsil ODS−2
【0051】
実施例1
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン5400g、ベンゾイルパーオキサイド22.0g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
仕込み完了後、重合槽内を密閉した。90℃まで昇温し、昇温完了2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ40%,46%であった。
引き続き、90℃で2時間保温した時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合率は95%であった。重合槽内を窒素で200〜300ml/分の速度で10分間置換した。このときの重合槽内における酸素濃度は3.1体積%であった。この後、スチレン600gを100℃に昇温しながら3時間かけて連続的に滴下した。
【0052】
引き続き、シクロヘキサン90g、さらに1時間後に、ブタン(イソブタン/ノルマルブタン比=4/6)420gを1時間で圧入し、さらに4時間保温した。その後、室温まで冷却しオートクレーブより取り出した。
【0053】
取り出したスラリーを洗浄、脱水、乾燥と各工程を行った後、14メッシュ通過、26メッシュ残で分級し、さらにジンクステアレート0.08%、ひまし硬化油0.05%、ジメチルシリコーン0.02%を表面被覆しスチレン系発泡性樹脂粒子を得た。
【0054】
得られたスチレン系発泡性樹脂粒子の分子量及び特性を測定しその結果を表1に示す。また、中心から表面に向かった分子量変化を図2に示す。
さらに、表面部分について、GPC法によるチャート(GPCチャート)を測定した。チャートを図3(a)に示す。
【0055】
実施例2
攪拌機付属の14リットルオートクレーブ槽内に、窒素を500〜600ml/分の速度で30分間置換した後、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン5400g、ベンゾイルパーオキサイド23.6g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
仕込み完了後、重合槽内を密閉し、ブロー用配管を開放した後、窒素を200〜300ml/分の速度で流した。90℃まで昇温し、昇温完了1.5時間及び2.5時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ39%,46%であった。
引き続き、90℃で2時間保温した時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときまで、窒素は継続し流し続けており、このときの重合率は96%であり、酸素濃度を測定したところ0.1体積%であった。酸素濃度測定後、窒素を止めブロー用配管を閉めた後、スチレン600gを100℃に昇温しながら3時間かけて連続的に滴下した。
発泡剤の含浸以降は、実施例1と同様に行った。
【0056】
分子量及び特性を測定しその結果を表1に示す。
さらに、表面部分について、GPC法によるチャート(GPCチャート)を測定した。チャートを図3(b)に示す。
【0057】
比較例1
スチレン系発泡性樹脂粒子(商品名S−HCM−K、湘南積水工業(株))の分子量及び特性を測定しその結果を表1に示す。また、中心から表面に向かった分子量変化を図2に示す。
さらに、表面部分について、GPC法によるチャート(GPCチャート)を測定した。チャートを図3(c)に示す。
【0058】
図2に示されるように、実施例1の粒子も比較例1の粒子も、中心から表面に向かって、分子量が高くなっていた。しかし、比較例1の粒子が徐々に高くなるのに対し、実施例1の粒子は、中心から3/5まではほぼ均一であまり変化しないで、表面付近で急に分子量が高くなっていた。従って、実施例1の粒子では、中心付近の分子量を低く維持した状態で表面付近の分子量が高くなっているのが分かる。
また、図3(a),(b),(c)に示されるように、実施例1,2のように急に分子量が高くなる粒子は、GPCチャートがショルダーを有していた。これらショルダーに変曲点が存在している。ショルダーは、高分子ポリマー比率が多いため形成される。一方、比較例1のように分子量が少しずつ上がる粒子は、GPCチャートに若干の膨らみが見られるものの、変曲点が無くショルダーを形成していなかった。
【0059】
実施例3
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン5400g、ベンゾイルパーオキサイド20.4g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
仕込み完了後、重合槽内を密閉した。90℃まで昇温し、昇温完了2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ35%,44%であった。
引き続き、90℃で2時間保温した時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合率は91%であり、重合槽内を窒素で200〜300ml/分の速度で10分間置換した後測定した酸素濃度は4.8体積%であった。この後、スチレン600gを100℃に昇温しながら3時間かけて連続的に滴下した。
発泡剤の含浸以降は、実施例1と同様に行った。
分子量及び特性を測定しその結果を表1に示す。
【0060】
実施例4
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン5700g、ベンゾイルパーオキサイド20.4g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
仕込み完了後、重合槽内を密閉した。90℃まで昇温し、昇温完了2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ35%,44%であった。
引き続き、90℃で2時間保温した時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合率は、90%であり、重合槽内を窒素で200〜300ml/分の速度で10分間置換した後測定した酸素濃度は4.5体積%であった。この後、スチレン300gを100℃に昇温しながら1.5時間かけて連続的に滴下した。
発泡剤の含浸以降は、実施例1と同様に行った。
分子量及び特性を測定しその結果を表1に示す。
【0061】
実施例5
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン5400g、ベンゾイルパーオキサイド20.0g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。仕込み完了後、重合槽内を密閉した。90℃まで昇温し、昇温完了2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ34%,43%であった。
引き続き、90℃で2時間保温した時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合率は、90%であり、重合槽内を窒素で200〜300ml/分の速度で10分間置換した後測定した酸素濃度は4.0体積%であった。この後、スチレン600gを100℃に昇温しながら3時間かけて連続的に滴下した。
発泡剤の含浸以降は、実施例1と同様に行った。
分子量及び特性を測定しその結果を表1に示す。
【0062】
実施例6
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いてスチレン5400g、ベンゾイルパーオキサイド22.4g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。仕込み完了後、重合糟内を密閉した。90℃まで昇温し、昇温完了後2時間及び2.5時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ38%,43%であった。
引き続き、90℃で0.5時間保温した時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合率は、61%であり、重合槽内を窒素で200〜300ml/分の速度で10分間置換した後測定した酸素濃度は4.1体積%であった。この後、スチレン600gを100℃に昇温しながら5時間かけて連続的に滴下した。
発泡剤の含浸以降は、実施例1と同様に行った。
分子量及び特性を測定しその結果を表1に示す。
【0063】
実施例7
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン4200g、ベンゾイルパーオキサイド21.7g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。仕込み完了後、重合糟内を密閉した。90℃まで昇温し、昇温完了後1.5時間及び2時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ35%,40%であった。
引き続き、90℃で1.5時間保温した時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合率は、96%であり、重合槽内を窒素で200〜300ml/分の速度で10分間置換した後測定した酸素濃度は3.8体積%であった。この後、スチレン1800gを100℃に昇温しながら6時間かけて連続的に滴下した。
発泡剤の含浸以降は、実施例1と同様に行った。
分子量及び特性を測定しその結果を表1に示す。
【0064】
実施例8
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いてスチレン5400g、ベンゾイルパーオキサイド22.4g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。仕込み完了後、重合糟内を密閉した。90℃まで昇温し、昇温完了後2時間及び2.5時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ38%,43%であった。
引き続き、90℃で0.5時間保温した時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合率は、61%であり、重合槽内を窒素で200〜300ml/分の速度で10分間置換した後測定した酸素濃度は6.5体積%であった。この後、スチレン600gを100℃に昇温しながら5時間かけて連続的に滴下した。
発泡剤の含浸以降は、実施例1と同様に行った。
分子量及び特性を測定しその結果を表1に示す。
【0067】
比較例2
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン6000g、ベンゾイルパーオキサイド20.8g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
仕込み完了後、重合糟内を密閉した。90℃まで昇温し、昇温完了後2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ38%,44%であった。
引き続き、90℃で2.5時間保温し時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合率は95%であり、酸素濃度は18.7体積%であった。この後、100℃に1時間かけて昇温した。
発泡剤の含浸以降は、実施例1と同様に行った。
分子量及び特性を測定しその結果を表1に示す。
【0068】
比較例3
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン5700g、ベンゾイルパーオキサイド24.8g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。仕込み完了後、重合槽内を密閉した。90℃まで昇温し、昇温完了1時間及び2時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ39%,48%であった。
引き続き、90℃で2時間保温した時点で再度燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの重合率は、98%であり、測定した酸素濃度は19.0体積%であった。この後、スチレン300gを100℃に昇温しながら1.5時間かけて連続的に滴下した。
発泡剤の含浸以降は、実施例1と同様に行った。
分子量及び特性を測定しその結果を表1に示す。
【0069】
【表1】

Figure 0003926289
【0070】
実施例10
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン5400g、ベンゾイルパーオキサイド22.4g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
仕込み完了後、重合槽内を密閉し、ブロー配管を開け、窒素置換を行った。このときの酸素濃度は12体積%であった。窒素置換終了後ブロー配管を閉め密閉状態としたのち、90℃まで昇温し、昇温完了後2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ40%,49%であった。
引き続き、90℃で2.5時間保温し重合率95%まで進んだ時点で燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの酸素濃度は3.1体積%であった。この後、スチレン600gを100℃に昇温しながら3時間かけて連続的に滴下した。
引き続き、シクロヘキサン90g、さらに1時間後に、ブタン(イソブタン/ノルマルブタン比=4/6)420gを1時間で圧入し、さらに4時間保温した。その後、室温まで冷却しオートクレーブより取り出した。
取り出したスラリーを洗浄、脱水、乾燥と各工程を行った後、14メッシュ通過、26メッシュ残で分級し、さらにジンクステアレート0.08%、ひまし硬化油0.05%、ジメチルシリコーン0.02%を表面被覆しスチレン系発泡性樹脂粒子を得た。
得られたスチレン系発泡性樹脂粒子の分子量及び特性を測定しその結果を表2に示す。また、中心から表面に向かった分子量変化を図6に示す。
【0071】
実施例11
攪拌機付属の14リットルオートクレーブ中を、窒素で置換した後、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン5400g、ベンゾイルパーオキサイド22.4g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
仕込み完了後、重合槽内を密閉し、ブロー配管を開け、再度窒素置換を行った。このとき酸素濃度計を用い測定した酸素濃度は5.4体積%であった。90℃まで昇温し、昇温完了後2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ40%,49%であった。
引き続き、90℃で2.5時間保温し重合率95%まで進んだ時点で燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの酸素濃度は4.8体積%であった。この後、スチレン600gを100℃に昇温しながら3時間かけて連続的に滴下した。
発泡剤の添加量や含浸時間温度以降、得られたスチレン系発泡性樹脂粒子の処理及び表面処理を含め、実施例10同様に行った。
分子量及び特性を測定しその結果を表2に示す。
【0072】
実施例12
攪拌機付属の14リットルオートクレーブ中に、純水6000g、燐酸三カルシウム9g、ドデシルベンゼンスルホン酸ソーダ0.3gを入れ230回転/分で攪拌しながら仕込んだ。このときの水素イオン濃度は8.0であった。
続いて、スチレン5400g、ベンゾイルパーオキサイド22.4g(Wet75%)、t−ブチルパーオキシイソプロピルカーボネイト2.4g、エチレンビスアミド3gを攪拌しながら仕込んだ。
仕込み完了後、重合槽内を密閉し、ブロー配管を開け、窒素置換を行った。このときの酸素濃度は11体積%であった。窒素置換終了後ブロー配管を閉め密閉状態としたのち、90℃まで昇温し、昇温完了後2時間及び3時間後、それぞれ燐酸三カルシウムを3g追加した。このときの重合率はそれぞれ40%,49%であった。
引き続き、90℃で2.5時間保温し重合率95%まで進んだ時点で燐酸三カルシウム6gとドデシルベンゼンスルホン酸ソーダ0.3gを追加した。このときの酸素濃度は5体積%であった。この後、窒素置換を実施し酸素濃度を0.5体積%まで減少させた後、スチレン600gを100℃に昇温しながら3時間かけて連続的に滴下した。
発泡剤の添加量や含浸時間温度以降、得られたスチレン系発泡性樹脂粒子の処理及び表面処理を含め、実施例10同様に行った。
分子量及び特性を測定しその結果を表2に示す。
【0073】
【表2】
Figure 0003926289
【0074】
【発明の効果】
本発明によれば、成形品の強度が大きく、発泡性に優れたスチレン系発泡性樹脂粒子、発泡ビーズ及び発泡成形品を提供できる。
【図面の簡単な説明】
【図1】本発明の表面部分と中心部分、さらに、これらの分子量の測定方法を説明するための図である。
【図2】実施例1及び比較例1の中心から表面までの分子量変化を示すグラフである。
【図3】実施例1,2及び比較例1のGPCチャートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a styrene-based expandable resin particle and a method for producing the same, and further relates to a styrene-based expanded bead and an expanded molded article.
[0002]
[Prior art]
Styrenic foamable resins are used in many food containers, packing materials, cushioning materials, and the like because of their excellent heat insulation, economic efficiency, and hygiene. These foam-molded products are manufactured by a method in which styrene-based expandable resin particles are heated with steam or the like, pre-foamed to a desired bulk density, passed through an aging step, filled into a molding die, and heated and foam-molded again. . The styrene-based expandable resin particles are required to exhibit good foamability in the pre-foaming stage and the heat-foaming molding stage in the mold and to have a high strength of the molded product when formed into a molded product. .
[0003]
Conventionally, in order to increase the strength of a foam molded product, a method of increasing the density of the molded product, a method of increasing the thickness of the molded product itself, and the like have been performed. However, any of these methods is not economical because the weight of the molded product increases, and it is also a problem from an environmental point of view. In styrene-based expandable resin particles, methods such as increasing the molecular weight and adjusting the amount and amount of plasticizers that plasticize the resin particles have been performed.
[0004]
On the other hand, as a method for improving the foamability of styrene-based foamable resin particles, a method for lowering the molecular weight, a method for plasticizing resin particles, and a method for changing the composition ratio of the foaming agent have been studied. .
[0005]
In general, the method for increasing the strength of the foamed molded product and the method for improving the foaming property are contradictory and it is difficult to achieve both.
[0006]
As a method for solving these problems, resin particles have been proposed in which the outermost layer part of the particle and the center part of the particle have a low molecular weight and the middle part of the particle has a high molecular weight (for example, see Patent Document 1).
However, this particle has a disadvantage that the surface finish of the molded product is deteriorated because the molecular weight of the outermost layer of the particle is as low as that of the center of the particle, and heat fusion is promoted too much at the time of hot foam molding. It was.
[0007]
Moreover, the resin particle whose molecular weight of a surface layer part is higher than the molecular weight of the whole particle | grain is also disclosed (for example, refer patent document 2).
This patent document describes that if the surface layer is made too high in molecular weight, the foaming performance is lowered and the appearance of the molded product is impaired, and as a result, the strength is lowered. This is presumably because the particles disclosed herein increase the molecular weight of the central layer when the surface layer increases in molecular weight. That is, this resin particle has a drawback that the surface layer portion cannot be sufficiently high molecular weight.
[0008]
[Patent Document 1]
JP-A-8-295756 [Patent Document 2]
Japanese Patent Laid-Open No. 7-188454
[Problems to be solved by the invention]
An object of the present invention is to provide styrene-based expandable resin particles, expanded beads, and expanded molded products having high strength of molded products and excellent foamability.
[0010]
[Means for Solving the Problems]
According to the first aspect of the present invention, the weight average molecular weight of the surface portion forming 1/5 from the surface divided equally from the surface of the particle to the center by 5 is 1/5 from the center toward the surface. There is provided a styrenic expandable resin particle which is higher than the weight average molecular weight of the central part forming up to 5, and has a gel permeation chromatography chart on the surface part having two peaks or shoulders.
[0012]
According to the second aspect of the present invention, the log (RMS) measured by the GPC / MALLS method of the surface portion forming from the surface of the particle divided into 5 equal parts toward the center to 1/5. Styrenic expandable resin particles are provided, wherein the slope of the correlation equation between (radius) and log (MW) is 0.53 or less.
[0014]
According to the third aspect of the present invention, in suspension polymerization of a styrene monomer, when the polymerization rate is 60% or more, the oxygen concentration in the reaction vessel is maintained at 7% by volume or less, while the styrene foaming property is maintained . Add 5% to 30% by weight of the styrene monomer of the resin particles and adsorb it to the styrene resin particles in the middle of the polymerization to advance the polymerization reaction. Before or after the completion of the polymerization reaction, the foaming agent A method for producing styrenic expandable resin particles is provided.
[0015]
According to the 4th aspect of this invention, the styrene-type expandable resin particle characterized by being obtained by said manufacturing method is provided.
[0016]
According to a fifth aspect of the present invention, there is provided a styrene foam bead obtained by foaming the above styrene foam resin particle.
[0017]
According to a sixth aspect of the present invention, there is provided a styrenic foam molded article obtained by molding the above styrenic foam beads.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The styrenic expandable resin particles, expanded beads and expanded molded article of the present invention will be described in detail.
Styrenic expandable resin particles are obtained by polymerizing styrene monomers. Styrene monomer, styrene or styrene as a main component, styrene derivatives such as α-methylstyrene, chlorostyrene, vinyltoluene, acrylic esters such as methyl acrylate, methyl acrylate, butyl acrylate, methacryl Mixed monomers with methacrylic acid esters such as methyl acid, ethyl methacrylate and butyl methacrylate can be used.
[0019]
The method for producing the styrene-based expandable resin particles is preferably suspension polymerization, and conventionally known methods can be adopted. That is, in general, polymerization is performed by dispersing a styrene monomer in which a catalyst such as an organic peroxide is dissolved in an aqueous medium containing a dispersant to generate radicals.
[0020]
As the dispersant, a hardly soluble inorganic salt and a surfactant may be used in combination, and conventionally known ones such as an organic dispersant such as PVA may be used.
As the hardly soluble inorganic salt, magnesium phosphate, tricalcium phosphate or the like can be used. As the surfactant, any of sodium oleate, sodium dodecylbenzenesulfonate, and other anionic surfactants and nonionic surfactants generally used for suspension polymerization can be used. As the organic dispersant, polyvinyl alcohol, polyvinyl pyrrolidone, methyl cellulose and the like can be used.
As the organic peroxide, a conventionally known one having a 10-hour half-life decomposition temperature of 50 to 100 ° C. can be used. For example, lauroyl peroxide, benzoyl peroxide, t-butyl peroxybenzoate, t-butyl peroxyisopropyl carbonate, and the like. The organic peroxide is preferably used in an amount of 0.001% to 0.5% by weight based on the polymerizable monomer. One or more organic peroxides can be used.
[0021]
The overall molecular weight can be adjusted by adjusting the catalyst concentration, using a chain transfer agent together, or both.
As the chain transfer agent, conventionally known ones such as octyl mercaptan, dodecyl mercaptan, α-methylstyrene dimer can be used. The addition amount of the chain transfer agent is preferably 20 ppm to 100 ppm with respect to the polymerizable monomer.
[0022]
In the production method of the present invention, at least in the late stage of polymerization, the styrene monomer is added while keeping the oxygen concentration in the reaction vessel low.
In this method, the inside of the reaction vessel may be set to a low oxygen concentration from the start of polymerization or during the polymerization, but at a low oxygen concentration at least late in the polymerization. Further, the oxygen concentration may be changed, for example, so as to be particularly low only at the latter stage of polymerization.
[0023]
Preferably, the styrene monomer is added at a polymerization rate of 60% or more, more preferably 60% or more and less than 97%. Preferably, the styrene monomer is added while maintaining the oxygen concentration in the reaction vessel at 7% by volume or less.
When the oxygen concentration exceeds 7% by volume, a low molecular weight substance is formed on the surface layer of the styrene resin particles when the styrene monomer is added and the reaction proceeds. Formation of a low molecular weight product in the skin causes excessive heat fusion during foam molding, thereby reducing the strength of the molded product and worsening the surface finish. Preferably, the oxygen concentration is less than 5 vol%. The oxygen concentration can be adjusted by replacing with an inert gas such as nitrogen.
[0024]
When the polymerization rate is lower than 60%, absorption of the styrenic monomer into the styrenic resin particles is promoted, and the molecular weight of the central portion is increased, so that the foaming force and the fusion of the molded product are lowered. In addition, when the polymerization rate is 97% or more, the absorption of the styrene monomer to the resin particles decreases, the amount of radicals and polymerization catalyst in the resin particles decreases, and the molecular weight of the outermost surface portion of the resin particles is low molecular weight. Therefore, heat fusion is promoted too much during foam molding, which may reduce the strength of the molded product and deteriorate the surface finish. Addition at a polymerization rate of 85 or more and less than 97% is more preferable.
[0025]
The addition amount of the styrene monomer is preferably 5% by weight to 30% by weight with respect to the styrene resin particles finally obtained. More preferably, it is in the range of 10% by weight to 15% by weight.
When the addition amount is less than 5% by weight, the effect of increasing the molecular weight of the outermost surface portion of the styrene resin particles is small, and the strength improvement effect may not be sufficiently obtained. On the other hand, when the added amount is more than 30% by weight, the resin particles are softened, the absorption of the styrenic monomer is promoted, and the molecular weight of the central part is increased. Therefore, the foaming force may be reduced, and it may be difficult to fuse the molded product.
[0026]
The suspension polymerization temperature is generally 80 ° C to 95 ° C. The addition temperature of the styrene monomer may be as it is or may be increased. From the industrial production efficiency of reducing the amount of styrene monomer remaining in the finally obtained styrene foam resin particles, the polymerization temperature is preferably 90 ° C. or higher, and the styrene monomer addition temperature. Is preferably performed during the temperature rise.
[0027]
In the production method of the present invention, it is preferable to start the polymerization when the hydrogen ion concentration of the aqueous dispersion is 8 to 10, and add at least one hardly soluble inorganic salt at a polymerization rate of 20% to 50%. The aqueous dispersion is preferably a continuous phase.
If the hydrogen ion concentration is outside the above range, the particle size distribution at the end of suspension polymerization may not be sharp. The hydrogen ion concentration can be adjusted with a basic inorganic salt.
For the same reason, a hardly soluble inorganic salt can be added at a polymerization rate of 20% to 50%.
The hardly soluble inorganic salt can be added at least once, for example, 2 to 3 times. Further, the hardly soluble inorganic salt can be added after further polymerization.
[0028]
昜 The volatile foaming agent can be injected in parallel with the addition of the styrenic monomer, but in general, it is preferably performed after the addition of the styrenic monomer, before or after the completion of the polymerization reaction. The styrene resin particles are preferably impregnated with a readily volatile foaming agent.
[0029]
昜 The volatile blowing agent is selected from aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, normal pentane, and cyclopentane. In addition to aliphatic hydrocarbons, alicyclic hydrocarbons such as cyclohexane and aromatic hydrocarbons can also be used in combination with highly volatile blowing agents as foaming aids.
[0030]
In the case of polymerization, it is necessary to use additives used in the production of styrene-based expandable resin particles, such as solvents, plasticizers, foamed cell nucleating agents, fillers, flame retardants, flame retardant aids, lubricants, colorants, etc. It may be used as appropriate.
[0032]
The styrenic foamable resin particles can be coated with a surface coating agent as necessary after impregnation with the foaming agent, discharged from the polymerization system, and further dehydrated and dried. As this coating agent, those used for conventionally known expanded styrene resin particles can be applied. For example, zinc stearate, stearic acid triglyceride, stearic acid monoglyceride, castor oil, amide compound, silicones, antistatic agent and the like.
[0033]
Usually, in the styrene-based expandable resin particles produced by suspension polymerization, the weight average molecular weight (molecular weight) is determined by the amount of the polymerization catalyst, and the molecular weights of the particle central portion, intermediate portion, and surface layer portion are almost constant. .
However, according to the production method of the present invention, styrene-based expandable resin particles in which the molecular weight of the surface portion of the resin particles is higher than the molecular weight of the central portion can be obtained. The molecular weight gradient from the center to the surface does not gradually increase at a constant rate but suddenly increases near the surface.
In the styrenic expandable resin particles obtained by the production method of the present invention, the molecular weight is abruptly increased in the vicinity of the surface, so that the surface portion can have a high molecular weight while keeping the central portion at a low molecular weight. In general, when the center portion has a low molecular weight, good foamability can be exhibited, and when the surface portion has a high molecular weight, the strength of the molded product increases. Therefore, in the particles of the present invention, both foamability and molded product strength can be satisfied. For example, a considerably high strength of the molded product can be obtained while maintaining a certain degree of foamability.
[0034]
In particular, in the styrene-based expandable resin particles of the present invention, the weight average molecular weight of the surface portion that forms 1/5 from the surface divided into 5 equal parts from the resin particle surface toward the center is from the center toward the surface. It is preferably higher than the weight average molecular weight of the central part forming up to 1/5.
Here, the surface portion and the central portion will be described with reference to the drawings. As shown in FIG. 1, the resin particles 10 are divided into five equal parts from the surface toward the center. The outermost part 1 forming 1/5 from the surface is the surface part. The weight average molecular weight of the surface portion is the weight average molecular weight of this portion 1. The innermost portion 5 that forms 1/5 from the center is the central portion. The weight average molecular weight of the central portion is the weight average molecular weight of the center obtained by dividing the portion 5 into 5 equal parts.
Furthermore, it is preferable that the chart of the surface portion by gel permeation chromatography has two peaks or a shoulder. Having two peaks or shoulders means that the molecular weight is changing rapidly. The shoulder is formed by an inflection point. In the present invention, the chart by gel permeation chromatography is measured using two columns, GL-R400M, manufactured by Hitachi Chemical Co., Ltd. Note that inflection points are also generated at both tails of the normal chart, but these are not included in the shoulder in the present invention (see FIG. 3).
[0035]
Further, according to the present invention, the weight average molecular weight of the central portion is in the range of 200,000 to 300,000, the weight average molecular weight of the surface portion is in the range of 300,000 to 450,000, and the weight of the surface portion. The average molecular weight is preferably 1.2 times or more larger than the weight average molecular weight of the central portion.
[0036]
When the molecular weight of the central part is smaller than 200,000, the strength of the molded product may be lowered. Further, in order to make the molecular weight smaller than 200,000, the amount of catalyst used must be increased in the production process, which is not preferable.
When the molecular weight of the central part is larger than 300,000, foamability may be lowered.
Moreover, Preferably, the weight average molecular weight of a center part is 200,000-250,000. Preferably, the molecular weight of the portion forming 3/5 from the center is substantially uniform.
[0037]
When the molecular weight of the surface portion is smaller than 300,000, there is a possibility that sufficient molded product strength cannot be obtained.
When the molecular weight of the surface portion is larger than 450,000, the foaming force is lowered, the thermal melting is not promoted, the surface finish of the molded product is deteriorated, and the fusion is difficult.
Moreover, Preferably, the weight average molecular weight of a surface part is 350,000-450,000.
[0038]
The weight average molecular weight (molecular weight ratio) of the surface portion is more preferably 1.5 times or more with respect to the weight average molecular weight of the central portion. Usually, it is 2.2 times or less.
[0039]
Such styrenic expandable resin particles can be produced by reducing the oxygen concentration by the production method of the present invention.
[0040]
Further, according to the production method of the present invention, grafting, which was considered not to occur in the conventional radical polymerization of styrene, occurred on the surface portion, and a high molecular weight branched structure could be generated.
In this way, the surface portion has a branched structure, for example, when the surface portion that forms 1/5 from the surface divided into five equal parts from the surface of the particle toward the center is measured by the GPC / MALLS method. , Log (RMS radius) and log (MW), the slope of the correlation equation is 0.53 or less, preferably 0.52 or less, more preferably 0.50 or less. Here, GPC performs gel permeation chromatography using MALLS (Multi
(Angle Laser Light Scattering) is a multi-angle light scattering detector. M.M. S (Root Mean Square) radius means the root mean square radius, and MW means absolute molecular weight.
In addition, this inclination is 0.55-0.60 in the polystyrene of the linear structure obtained by normal radical polymerization (suspension system).
Further, the weight average molecular weight of the surface portion is preferably 300,000 or more and 450,000 or less for the same reason as described above.
[0041]
In the resin particles of the present invention, as described above, the occurrence of low molecular weight substances in the surface portion is suppressed, and since the surface portion has a high molecular weight branched structure, normal polymerization that does not suppress the oxygen concentration Compared with the foam molded product produced by the above, the heat resistance of the particle surface portion is improved, and a foam molded product having good appearance and mechanical strength can be obtained.
[0042]
In addition, the average particle diameter of the styrenic expandable resin particles of the present invention is usually 0.05 to 2.0 mm.
[0043]
The expanded beads of the present invention are produced by expanding styrene-based expandable resin particles. The foamed molded product of the present invention is produced by molding the foamed beads.
In general, styrene-based expandable resin particles are heated with steam or the like to be pre-expanded to a predetermined bulk density, and expanded beads are produced through an aging step. Thereafter, the foamed beads are filled into a molding die and heated and foamed again to produce a foamed molded product.
[0044]
In this invention, it is excellent in the balance of the foamability of a styrene-type expandable resin particle, and the intensity | strength of the molded article obtained from it. The molded product of the present invention can be suitably used for food containers, packing materials, cushioning materials and the like.
[0045]
【Example】
The characteristic evaluation methods in the examples and comparative examples were as follows.
(1) Weight average molecular weight (molecular weight)
The molecular weight of the styrene-based expandable resin particles was measured by foaming the particles.
Styrenic foamable resin particles were foamed in saturated water vapor to a bulk multiple of 80 ml / g.
Arbitrary foamed particles 2 to 3 were collected, and with a razor, the particles 1 were equally divided into 5 at half equal intervals to form portions 1, 2, 3, 4, and 5 from the outside. The outermost part 1 (surface part) was taken out as it was, and the innermost part 5 (center part) was taken out by dividing the center into five parts with an injection needle, and the molecular weight was measured. For part 3 (3/5 part from the center), the same center as part 5 was pulled out with an injection needle, and the molecular weight was measured.
The molecular weight was measured by a gel permeation chromatograph (GPC) method.
Moreover, the chart (GPC chart) by GPC method was obtained about the surface part. At that time, it measured with the following apparatuses and conditions.
Measuring device: manufactured by Hitachi, Ltd. Eluent: THF, flow rate: 2 ml / min detector: UV 220 nm
Column: 2 GL-R400M manufactured by Hitachi Chemical Co., Ltd.
(2) Foaming foaming property measured the bulk density (foaming degree) at the time of making it foam for 3 minutes in 100 degreeC boiling water when the amount of volatile components of a styrene-type foaming resin particle is 7.0 weight%. .
[0047]
(3) Flexural strength Styrenic expandable resin particles were foamed using an HBP-700 foaming machine manufactured by Hitachi Technoplant Co., Ltd. to obtain expanded beads. Furthermore, this foamed bead was molded at a steam pressure of 0.08 MPa using a VS-500 molding machine manufactured by Daisen Industry Co., Ltd. to obtain a molded product of 550 mm × 335 mm × 150 mm.
The bending strength of the molded product was measured according to JIS-A-9511 for a foamed molded product having a density of 60 ml / g.
[0048]
(4) Polymer structure analysis of particle surface portion by GPC / MALLS method Surface portion 1 shown in FIG. 1 was used as a sample for measurement. The GPC / MALLS method was performed with the following apparatus and conditions, and the slope of the correlation equation between log (RMS radius) and log (MW) was determined from this.
Column: Shodex, KF-807L × 2 Column temperature: 40 ° C.
Eluent: THF
Flow rate: 1.00 ml / min
Injection volume: 100 μL
Detector: RI and Wyatt Technology, DAWN DSP-F
(Laser wavelength: 632.8 nm)
Multi-angle fitting method: Berry method
(5) Appearance (surface smoothness)
A black printing ink was thinly applied to the surface portion of the molded product produced in the same manner as (3) with a roller, and this surface portion was applied to an image processing apparatus. Since printing ink was not applied to the voids in the surface portion, the area of the black portion with respect to the total application area was determined and used as the surface smoothness, and the appearance evaluation value.
[0050]
(6) Polymerization rate The polymerization rate was measured using the following apparatus and conditions after collecting resin particles during synthesis.
Measuring apparatus: manufactured by Hitachi, Ltd. Eluent: acetonitrile / distilled water = 70/30, flow rate: 1 ml / min detector: UV 230 nm
Column: Inertsil ODS-2
[0051]
Example 1
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5400 g of styrene, 22.0 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylene bisamide were charged with stirring.
After completion of the charging, the inside of the polymerization tank was sealed. The temperature was raised to 90 ° C., and 2 hours and 3 hours after completion of the temperature increase, 3 g of tricalcium phosphate was added. The polymerization rates at this time were 40% and 46%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again when the temperature was kept at 90 ° C. for 2 hours. At this time, the polymerization rate was 95%. The inside of the polymerization tank was replaced with nitrogen at a rate of 200 to 300 ml / min for 10 minutes. At this time, the oxygen concentration in the polymerization tank was 3.1% by volume. Thereafter, 600 g of styrene was continuously dropped over 3 hours while raising the temperature to 100 ° C.
[0052]
Subsequently, 90 g of cyclohexane and another 1 hour later, 420 g of butane (isobutane / normal butane ratio = 4/6) were injected in 1 hour, and the temperature was further maintained for 4 hours. Then, it cooled to room temperature and took out from the autoclave.
[0053]
The extracted slurry was washed, dewatered, and dried, and then classified by passing 14 meshes and remaining 26 meshes. Further, zinc stearate 0.08%, castor oil 0.05%, dimethyl silicone 0. 02% of the surface was coated to obtain styrene-based expandable resin particles.
[0054]
The molecular weight and characteristics of the obtained styrenic expandable resin particles were measured, and the results are shown in Table 1. Moreover, the molecular weight change from the center toward the surface is shown in FIG.
Furthermore, the chart (GPC chart) by GPC method was measured about the surface part. The chart is shown in FIG.
[0055]
Example 2
In a 14 liter autoclave tank attached to a stirrer, nitrogen was replaced at a rate of 500 to 600 ml / min for 30 minutes, and then 6000 g of pure water, 9 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added at 230 rpm. Charged with stirring. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5400 g of styrene, 23.6 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylene bisamide were charged with stirring.
After completion of the charging, the inside of the polymerization tank was sealed, the blow piping was opened, and then nitrogen was flowed at a rate of 200 to 300 ml / min. The temperature was raised to 90 ° C., and 1.5 g and 2.5 hours after completion of the temperature raising, 3 g of tricalcium phosphate was added. The polymerization rates at this time were 39% and 46%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again when the temperature was kept at 90 ° C. for 2 hours. Until this time, nitrogen continued to flow, the polymerization rate at this time was 96%, and the oxygen concentration measured was 0.1% by volume. After measuring the oxygen concentration, nitrogen was stopped and the blow piping was closed, and then 600 g of styrene was continuously dropped over 3 hours while raising the temperature to 100 ° C.
After impregnation with the foaming agent, the same procedure as in Example 1 was performed.
[0056]
The molecular weight and properties were measured and the results are shown in Table 1.
Furthermore, the chart (GPC chart) by GPC method was measured about the surface part. The chart is shown in FIG.
[0057]
Comparative Example 1
The molecular weight and characteristics of styrene-based expandable resin particles (trade name S-HCM-K, Shonan Sekisui Industry Co., Ltd.) were measured, and the results are shown in Table 1. Moreover, the molecular weight change from the center toward the surface is shown in FIG.
Furthermore, the chart (GPC chart) by GPC method was measured about the surface part. The chart is shown in FIG.
[0058]
As shown in FIG. 2, the molecular weight of both the particles of Example 1 and Comparative Example 1 increased from the center toward the surface. However, while the particles of Comparative Example 1 gradually increased, the particles of Example 1 were almost uniform from the center to 3/5 and did not change much, and the molecular weight suddenly increased near the surface. Therefore, it can be seen that in the particles of Example 1, the molecular weight in the vicinity of the surface is high while the molecular weight in the vicinity of the center is kept low.
Further, as shown in FIGS. 3A, 3B, and 3C, the GPC chart had a shoulder in the particles that suddenly increased in molecular weight as in Examples 1 and 2. Inflection points exist in these shoulders. The shoulder is formed because of the high polymer ratio. On the other hand, the particles whose molecular weight gradually increased as in Comparative Example 1 did not have inflection points and did not form a shoulder although a slight swelling was seen on the GPC chart.
[0059]
Example 3
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5400 g of styrene, 20.4 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylene bisamide were charged with stirring.
After completion of the charging, the inside of the polymerization tank was sealed. The temperature was raised to 90 ° C., and 2 hours and 3 hours after completion of the temperature increase, 3 g of tricalcium phosphate was added. The polymerization rates at this time were 35% and 44%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again when the temperature was kept at 90 ° C. for 2 hours. The polymerization rate at this time was 91%, and the oxygen concentration measured after replacing the inside of the polymerization tank with nitrogen at a rate of 200 to 300 ml / min for 10 minutes was 4.8% by volume. Thereafter, 600 g of styrene was continuously dropped over 3 hours while raising the temperature to 100 ° C.
After impregnation with the foaming agent, the same procedure as in Example 1 was performed.
The molecular weight and properties were measured and the results are shown in Table 1.
[0060]
Example 4
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5700 g of styrene, 20.4 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylenebisamide were charged with stirring.
After completion of the charging, the inside of the polymerization tank was sealed. The temperature was raised to 90 ° C., and 2 hours and 3 hours after completion of the temperature increase, 3 g of tricalcium phosphate was added. The polymerization rates at this time were 35% and 44%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again when the temperature was kept at 90 ° C. for 2 hours. The polymerization rate at this time was 90%, and the oxygen concentration measured after substituting the inside of the polymerization tank with nitrogen at a rate of 200 to 300 ml / min for 10 minutes was 4.5% by volume. Thereafter, 300 g of styrene was continuously added dropwise over 1.5 hours while the temperature was raised to 100 ° C.
After impregnation with the foaming agent, the same procedure as in Example 1 was performed.
The molecular weight and properties were measured and the results are shown in Table 1.
[0061]
Example 5
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5400 g of styrene, 20.0 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylenebisamide were charged with stirring. After completion of the charging, the inside of the polymerization tank was sealed. The temperature was raised to 90 ° C., and 2 hours and 3 hours after completion of the temperature increase, 3 g of tricalcium phosphate was added. The polymerization rates at this time were 34% and 43%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again when the temperature was kept at 90 ° C. for 2 hours. The polymerization rate at this time was 90%, and the oxygen concentration measured after replacing the inside of the polymerization tank with nitrogen at a rate of 200 to 300 ml / min for 10 minutes was 4.0% by volume. Thereafter, 600 g of styrene was continuously dropped over 3 hours while raising the temperature to 100 ° C.
After impregnation with the foaming agent, the same procedure as in Example 1 was performed.
The molecular weight and properties were measured and the results are shown in Table 1.
[0062]
Example 6
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5400 g of styrene, 22.4 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylene bisamide were charged with stirring. After completion of the charging, the inside of the polymerization vessel was sealed. The temperature was raised to 90 ° C., and 3 g of tricalcium phosphate was added 2 hours and 2.5 hours after completion of the temperature rise. The polymerization rates at this time were 38% and 43%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again when the temperature was kept at 90 ° C. for 0.5 hour. The polymerization rate at this time was 61%, and the oxygen concentration measured after replacing the inside of the polymerization tank with nitrogen at a rate of 200 to 300 ml / min for 10 minutes was 4.1% by volume. Thereafter, 600 g of styrene was continuously dropped over 5 hours while raising the temperature to 100 ° C.
After impregnation with the foaming agent, the same procedure as in Example 1 was performed.
The molecular weight and properties were measured and the results are shown in Table 1.
[0063]
Example 7
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 4200 g of styrene, 21.7 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylene bisamide were charged with stirring. After completion of the charging, the inside of the polymerization vessel was sealed. The temperature was raised to 90 ° C., and 1.5 g and 2 hours after completion of the temperature raising, 3 g of tricalcium phosphate was added. The polymerization rates at this time were 35% and 40%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again when the temperature was kept at 90 ° C. for 1.5 hours. The polymerization rate at this time was 96%, and the oxygen concentration measured after substituting the inside of the polymerization tank with nitrogen at a rate of 200 to 300 ml / min for 10 minutes was 3.8% by volume. Thereafter, 1800 g of styrene was continuously dropped over 6 hours while raising the temperature to 100 ° C.
After impregnation with the foaming agent, the same procedure as in Example 1 was performed.
The molecular weight and properties were measured and the results are shown in Table 1.
[0064]
Example 8
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5400 g of styrene, 22.4 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylene bisamide were charged with stirring. After completion of the charging, the inside of the polymerization vessel was sealed. The temperature was raised to 90 ° C., and 3 g of tricalcium phosphate was added 2 hours and 2.5 hours after completion of the temperature rise. The polymerization rates at this time were 38% and 43%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again when the temperature was kept at 90 ° C. for 0.5 hour. The polymerization rate at this time was 61%, and the oxygen concentration measured after replacing the inside of the polymerization tank with nitrogen at a rate of 200 to 300 ml / min for 10 minutes was 6.5% by volume. Thereafter, 600 g of styrene was continuously dropped over 5 hours while raising the temperature to 100 ° C.
After impregnation with the foaming agent, the same procedure as in Example 1 was performed.
The molecular weight and properties were measured and the results are shown in Table 1.
[0067]
Comparative Example 2
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 6000 g of styrene, 20.8 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylenebisamide were charged with stirring.
After completion of the charging, the inside of the polymerization vessel was sealed. The temperature was raised to 90 ° C., and 3 g of tricalcium phosphate was added 2 hours and 3 hours after completion of the temperature rise. The polymerization rates at this time were 38% and 44%, respectively.
Subsequently, the mixture was kept at 90 ° C. for 2.5 hours, and 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again. The polymerization rate at this time was 95%, and the oxygen concentration was 18.7% by volume. Thereafter, the temperature was raised to 100 ° C. over 1 hour.
After impregnation with the foaming agent, the same procedure as in Example 1 was performed.
The molecular weight and properties were measured and the results are shown in Table 1.
[0068]
Comparative Example 3
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5700 g of styrene, 24.8 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylene bisamide were charged with stirring. After completion of the charging, the inside of the polymerization tank was sealed. The temperature was raised to 90 ° C., and 1 hour and 2 hours after completion of the temperature increase, 3 g of tricalcium phosphate was added. The polymerization rates at this time were 39% and 48%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added again when the temperature was kept at 90 ° C. for 2 hours. The polymerization rate at this time was 98%, and the measured oxygen concentration was 19.0% by volume. Thereafter, 300 g of styrene was continuously added dropwise over 1.5 hours while the temperature was raised to 100 ° C.
After impregnation with the foaming agent, the same procedure as in Example 1 was performed.
The molecular weight and properties were measured and the results are shown in Table 1.
[0069]
[Table 1]
Figure 0003926289
[0070]
Example 10
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5400 g of styrene, 22.4 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylenebisamide were charged with stirring.
After completion of the charging, the inside of the polymerization tank was sealed, the blow pipe was opened, and nitrogen substitution was performed. At this time, the oxygen concentration was 12% by volume. After completion of the nitrogen substitution, the blow pipe was closed and sealed, and then the temperature was raised to 90 ° C., and 3 g of tricalcium phosphate was added 2 hours and 3 hours after the completion of the temperature rise. The polymerization rates at this time were 40% and 49%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added when the temperature was maintained at 90 ° C. for 2.5 hours and the polymerization rate reached 95%. At this time, the oxygen concentration was 3.1% by volume. Thereafter, 600 g of styrene was continuously dropped over 3 hours while raising the temperature to 100 ° C.
Subsequently, 90 g of cyclohexane and another 1 hour later, 420 g of butane (isobutane / normal butane ratio = 4/6) were injected in 1 hour, and the temperature was further maintained for 4 hours. Then, it cooled to room temperature and took out from the autoclave.
The extracted slurry was washed, dewatered, and dried, and then classified by passing 14 meshes and remaining 26 meshes. Further, zinc stearate 0.08%, castor oil 0.05%, dimethyl silicone 0. 02% of the surface was coated to obtain styrene-based expandable resin particles.
The molecular weight and characteristics of the obtained styrenic expandable resin particles were measured, and the results are shown in Table 2. Moreover, the molecular weight change from the center toward the surface is shown in FIG.
[0071]
Example 11
The 14 liter autoclave attached to the stirrer was purged with nitrogen, and then 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were added while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5400 g of styrene, 22.4 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylenebisamide were charged with stirring.
After completion of the charging, the inside of the polymerization tank was sealed, the blow pipe was opened, and nitrogen substitution was performed again. At this time, the oxygen concentration measured using an oxygen concentration meter was 5.4% by volume. The temperature was raised to 90 ° C., and 3 g of tricalcium phosphate was added 2 hours and 3 hours after completion of the temperature rise. The polymerization rates at this time were 40% and 49%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added when the temperature was maintained at 90 ° C. for 2.5 hours and the polymerization rate reached 95%. The oxygen concentration at this time was 4.8% by volume. Thereafter, 600 g of styrene was continuously dropped over 3 hours while raising the temperature to 100 ° C.
After the addition amount of the foaming agent and the impregnation time temperature, the same procedures as in Example 10 were performed including the treatment and surface treatment of the obtained styrene-based foamable resin particles.
The molecular weight and properties were measured and the results are shown in Table 2.
[0072]
Example 12
In a 14 liter autoclave attached to a stirrer, 6000 g of pure water, 9 g of tricalcium phosphate, and 0.3 g of sodium dodecylbenzenesulfonate were placed while stirring at 230 rpm. The hydrogen ion concentration at this time was 8.0.
Subsequently, 5400 g of styrene, 22.4 g of benzoyl peroxide (Wet 75%), 2.4 g of t-butylperoxyisopropyl carbonate, and 3 g of ethylenebisamide were charged with stirring.
After completion of the charging, the inside of the polymerization tank was sealed, the blow pipe was opened, and nitrogen substitution was performed. At this time, the oxygen concentration was 11% by volume. After completion of the nitrogen substitution, the blow pipe was closed and sealed, and then the temperature was raised to 90 ° C., and 3 g of tricalcium phosphate was added 2 hours and 3 hours after the completion of the temperature rise. The polymerization rates at this time were 40% and 49%, respectively.
Subsequently, 6 g of tricalcium phosphate and 0.3 g of sodium dodecylbenzenesulfonate were added when the temperature was maintained at 90 ° C. for 2.5 hours and the polymerization rate reached 95%. At this time, the oxygen concentration was 5% by volume. Thereafter, nitrogen substitution was performed to reduce the oxygen concentration to 0.5% by volume, and then 600 g of styrene was continuously dropped over 3 hours while the temperature was raised to 100 ° C.
After the addition amount of the foaming agent and the impregnation time temperature, the same procedures as in Example 10 were performed including the treatment and surface treatment of the obtained styrene-based foamable resin particles.
The molecular weight and properties were measured and the results are shown in Table 2.
[0073]
[Table 2]
Figure 0003926289
[0074]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the intensity | strength of a molded article is large and can provide the styrene-type expandable resin particle, the expanded bead, and the expanded molded article which were excellent in foamability.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram for explaining a surface portion and a central portion of the present invention and a method for measuring their molecular weights.
2 is a graph showing changes in molecular weight from the center to the surface of Example 1 and Comparative Example 1. FIG.
3 is a GPC chart of Examples 1 and 2 and Comparative Example 1. FIG.

Claims (3)

スチレン系単量体の懸濁重合において、
重合率が60%以上のとき、反応槽内の酸素濃度を7体積%以下に保ちつつ、スチレン系発泡性樹脂粒子の5重量%〜30重量%のスチレン系単量体を添加し、重合途中にあるスチレン樹脂粒子に吸着させて重合反応を進め、
重合反応の完了前または重合反応の完了後に、発泡剤を含浸することを特徴とするスチレン系発泡性樹脂粒子の製造方法。
In suspension polymerization of styrene monomer,
When the polymerization rate is 60% or more, 5% to 30% by weight of a styrene-based expandable resin particle is added while maintaining the oxygen concentration in the reaction vessel at 7% by volume or less. Adsorption to styrene resin particles in the
A method for producing styrenic expandable resin particles, wherein the foaming agent is impregnated before or after the completion of the polymerization reaction.
前記重合率が60%以上97%未満で、前記反応槽内の酸素濃度を5体積%以下に保つことを特徴とする請求項1記載のスチレン系発泡性樹脂粒子の製造方法。The method for producing styrene-based expandable resin particles according to claim 1, wherein the polymerization rate is 60% or more and less than 97%, and the oxygen concentration in the reaction vessel is maintained at 5% by volume or less. 前記スチレン系単量体の懸濁重合において、水分散液の水素イオン濃度が8〜10で重合が開始し、
重合率20%〜50%で、少なくとも1回以上、難溶性無機塩を加えることを特徴とする請求項1又は2記載のスチレン系発泡性樹脂粒子の製造方法。
In the suspension polymerization of the styrene monomer, the polymerization starts when the hydrogen ion concentration of the aqueous dispersion is 8 to 10,
The method for producing styrene-based expandable resin particles according to claim 1 or 2 , wherein the hardly soluble inorganic salt is added at least once or more at a polymerization rate of 20% to 50%.
JP2003129891A 2002-05-08 2003-05-08 Styrenic expandable resin particles, expanded beads and expanded molded products Expired - Fee Related JP3926289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129891A JP3926289B2 (en) 2002-05-08 2003-05-08 Styrenic expandable resin particles, expanded beads and expanded molded products

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002132623 2002-05-08
JP2002242015 2002-08-22
JP2002381173 2002-12-27
JP2003129891A JP3926289B2 (en) 2002-05-08 2003-05-08 Styrenic expandable resin particles, expanded beads and expanded molded products

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006275936A Division JP2007002265A (en) 2002-05-08 2006-10-10 Expandable styrene resin particles, expandable beads, and foamed article

Publications (3)

Publication Number Publication Date
JP2004250655A JP2004250655A (en) 2004-09-09
JP2004250655A5 JP2004250655A5 (en) 2006-05-11
JP3926289B2 true JP3926289B2 (en) 2007-06-06

Family

ID=33033254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129891A Expired - Fee Related JP3926289B2 (en) 2002-05-08 2003-05-08 Styrenic expandable resin particles, expanded beads and expanded molded products

Country Status (1)

Country Link
JP (1) JP3926289B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653405B2 (en) * 2004-03-08 2011-03-16 積水化成品工業株式会社 Method for producing expandable styrene resin particles, expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin foam molded article
JP2006160905A (en) * 2004-12-08 2006-06-22 Hitachi Chem Co Ltd Reclaimed foamable sytrenic resin particle, method for producing the same, reclaimed styrenic foamed bead and reclaimed foamed styrenic resin molded article
JP2006316240A (en) * 2005-04-11 2006-11-24 Hitachi Chem Co Ltd Foamed styrenic block molded product
JP2006307016A (en) * 2005-04-28 2006-11-09 Hitachi Chem Co Ltd Method for producing recycled foaming styrenic resin particle
JP2006316176A (en) * 2005-05-13 2006-11-24 Hitachi Chem Co Ltd Method for producing regenerated foaming styrene resin particle
JP4891586B2 (en) * 2005-09-28 2012-03-07 積水化成品工業株式会社 Expandable thermoplastic resin particles and process for producing the same, thermoplastic resin pre-expanded particles, and foam molded article
JP2007131826A (en) * 2005-10-13 2007-05-31 Hitachi Chem Co Ltd Pre-expanded resin particle, formed product of expanded resin and manufacturing method thereof
JP2007270120A (en) * 2005-11-15 2007-10-18 Daiden Co Ltd Extrusion molded form and method for producing the same, and optical fiber cable
JP5732358B2 (en) * 2011-09-12 2015-06-10 積水化成品工業株式会社 Polystyrene-based resin particles, expandable resin particles, expanded particles, expanded molded articles, and methods for producing them

Also Published As

Publication number Publication date
JP2004250655A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
WO2009096327A1 (en) Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings
US20070082960A1 (en) Expandable styrene resin particles, expandable beads, and foamed article
WO2004085528A1 (en) Expandable resin beads of styrene-modified, straight -chain, and low-density polyethylene, process for production thereof, pre-expanded beads, and foams
JP3926289B2 (en) Styrenic expandable resin particles, expanded beads and expanded molded products
JP2013060500A (en) Polystyrenic resin particle, foamable resin particle, foamed particle, foam molding, and method for manufacturing these
JP5641785B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP5689011B2 (en) Resin particle, method for producing the same, expandable resin particle, expanded particle
JPH04183706A (en) Production of styrene-modified polyethylene resin particle
JP4066337B2 (en) Expandable styrene resin particles for building materials and foamed molded articles thereof
JP3896987B2 (en) Styrenic expandable resin particles, expanded beads and expanded molded products
JP2006131777A (en) Styrenic foamable resin particle, foamed bead and molded article
JP2007002265A (en) Expandable styrene resin particles, expandable beads, and foamed article
JP3994911B2 (en) Styrenic expandable resin particles, expanded beads and expanded molded products
JP5860220B2 (en) RESIN PARTICLE, PROCESS FOR PRODUCING THE SAME, FOAMABLE RESIN PARTICLE, FOAMED PARTICLE, AND FOAM MOLDED BODY
JP3805209B2 (en) Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them
JP4832716B2 (en) Small particle size styrenic expandable resin particles, expanded beads and molded products
JP4494113B2 (en) Method for producing expandable styrene resin particles
JP2007191725A (en) Expandable styrene resin particle, expandable bead, and foamed article
JP5666796B2 (en) Method for producing styrenic polymer particles
JP5914079B2 (en) Styrene-based foamed resin particles and foamed molded article
JP3551277B2 (en) Expandable styrene resin particles and method for producing the same
JP3551274B2 (en) Method for producing expandable styrene resin particles
JP2006028447A (en) Foamable styrenic polymer particle, its production process and molded product of the same
JPH08295757A (en) Expandable styrene resin particle and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060315

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Ref document number: 3926289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees