JP3926197B2 - Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production - Google Patents

Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production Download PDF

Info

Publication number
JP3926197B2
JP3926197B2 JP2002117430A JP2002117430A JP3926197B2 JP 3926197 B2 JP3926197 B2 JP 3926197B2 JP 2002117430 A JP2002117430 A JP 2002117430A JP 2002117430 A JP2002117430 A JP 2002117430A JP 3926197 B2 JP3926197 B2 JP 3926197B2
Authority
JP
Japan
Prior art keywords
formula
weight
fiber
synthetic fiber
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002117430A
Other languages
Japanese (ja)
Other versions
JP2003313776A (en
Inventor
達也 臼井
幸男 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2002117430A priority Critical patent/JP3926197B2/en
Publication of JP2003313776A publication Critical patent/JP2003313776A/en
Application granted granted Critical
Publication of JP3926197B2 publication Critical patent/JP3926197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭素繊維製造用合成繊維処理剤(以下、単に処理剤という)及び炭素繊維製造用合成繊維の処理方法(以下、単に処理方法という)に関する。ピッチ繊維やアクリル繊維から炭素繊維を製造する場合、高品質の炭素繊維を低コストで製造するため、耐炎化工程では耐炎化繊維相互の融着防止を図ることが要求され、また炭素化工程では焼成炉内汚染物質の発生防止を図ることが要求される。本発明はかかる要求に応える処理剤及び処理方法に関する。
【0002】
【従来の技術】
従来、処理剤としてシリコーンを主成分とするものが使用されている。ところが、かかる処理剤には、耐炎化工程において耐炎化繊維相互の融着を防止できるものの、耐炎化工程後の炭素化工程において、処理剤の分解による酸化珪素や窒化珪素等の焼成炉内汚染物質が生成し、堆積するため、焼成炉内の清掃を頻繁に行なう必要があり、生産性を著しく低下させるという問題がある。そこで従来、潤滑剤としてシリコーンを用いない処理剤が提案されている。これには例えば、潤滑剤として、1)ビスフェノールAのアルキレンオキサイド付加物の脂肪酸エステルと、アミド化合物のアルキレンオキサイド付加物との混合物(特開平9−78340)、2)二塩基酸とオキシアルキレン単位を有するポリオールの縮合物と脂肪族アルカノールアミドとを反応させて得られる末端にアミド基を有する化合物と、アミド化合物のアルキレンオキサイド付加物との混合物(特開平9−78341)を用いたものがある。ところが、これらの処理剤には、炭素化工程において焼成炉内汚染物質の発生を防止できるものの、炭素化工程前の耐炎化工程において、耐炎化繊維相互の融着を充分に防止できないという問題がある。
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、ピッチ繊維やアクリル繊維から炭素繊維を製造する場合に、耐炎化工程での耐炎化繊維相互の融着防止と炭素化工程での焼成炉内汚染物質の発生防止とを同時に且つ充分に図ることができる処理剤及び処理方法を提供する処にある。
【0004】
【課題を解決するための手段】
しかして本発明者らは、上記の課題を解決するべく研究した結果、潤滑剤として特定の含窒素化合物を含有する処理剤を用いることが正しく好適であることを見出した。
【0005】
すなわち本発明は、潤滑剤として下記の式1、式2又は式3で示される含窒素化合物から選ばれる一つ又は二つ以上を含有して成ることを特徴とする炭素繊維製造用合成繊維処理剤に係る。
【0006】
【式1】

Figure 0003926197
【0007】
【式2】
Figure 0003926197
【0008】
【式3】
Figure 0003926197
【0009】
式1〜式3において、
,X:炭素数2〜22の脂肪族カルボニルオキシ基
:炭素数1〜22の脂肪族アミノ基
:炭素数6〜14の芳香族化合物からm個の水素原子を除いた残基
:トリグリシジルイソシアヌレートから全てのグリシジル基を除いた残基
:n価の芳香族ポリグリシジル化合物から全てのグリシジル基を除いた残基
m:1又は2
n:2〜10の整数
【0010】
また本発明は、前記のような本発明に係る処理剤を、炭素繊維製造用合成繊維に対し0.2〜1.5重量%となるよう付着させることを特徴とする処理方法に係る。
【0011】
本発明に係る処理剤おいて、潤滑剤として用いる式1で示される含窒素化合物は、ポリグリシジルアミン化合物と脂肪酸とをエステル化反応させたものである。
【0012】
式1で示される含窒素化合物において、合成に供するポリグリシジルアミン化合物は、分子中に1又は2個のジグリシジルアミノ基と1〜3個の芳香環とを有するポリグリシジルアミン化合物である。これには例えば、1)N,N−ジグリシジルアニリン、N,N−ジグリシジルナフチルアミン、N,N−ジグリシジルジフェニルアミン、N,N,N’,N’−テトラグリシジルフェニレンジアミン、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン等が挙げられるが、なかでもN,N−ジグリシジルジフェニルアミン、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタンが好ましい。
【0013】
式1で示される含窒素化合物において、合成に供する脂肪酸としては、1)酢酸、ヘキサン酸、デカン酸、ドデカン酸、オクタデカン酸、ドコサン酸、2ーエチルヘキサン酸、イソオクタデカン酸等の炭素数2〜22の飽和脂肪酸、2)アクリル酸、9−デセン酸、9−テトラデセン酸、9−オクタデセン酸、13−ドコセン酸等の炭素数2〜22の不飽和脂肪酸が挙げられるが、なかでも炭素数12〜22の飽和脂肪酸又は炭素数18〜22の不飽和脂肪酸が好ましい。
【0014】
式1で示される含窒素化合物は、公知の方法で合成できる。これには例えば、アルカリ触媒の存在下に、ポリグリシジルアミン化合物と、該ポリグリシジルアミン化合物のグリシジル基と当モルの脂肪酸とを反応させる方法が挙げられる。
【0015】
本発明に係る処理剤において、潤滑剤として用いる式2で示される含窒素化合物は、トリグリシジルイソシアヌレートの全てのグリシジル基を脂肪酸とエステル化反応させたものである。かかる脂肪酸は、炭素数2〜22の脂肪酸であって、式1で示される含窒素化合物について前記した脂肪酸と同じものである。式2で示される含窒素化合物も、式1で示される含窒素化合物と同様の方法で合成できる。
【0016】
本発明に係る処理剤において、潤滑剤として用いる式3で示される含窒素化合物は、芳香族ポリグリシジル化合物と脂肪族アミンとをアミノ化反応させたものである。
【0017】
式3で示される含窒素化合物において、合成に供する芳香族ポリグリシジル化合物は分子中に2〜10個のグリシジル基と芳香環とを有するものである。これには例えば、1)ビスフェノールAグリシジルエーテル、ビスフェノールAジグリシジルエーテル縮合物等のビスフェノールA型ジグリシジルエーテル、2)ビスフェノールFグリシジルエーテル、ビスフェノールFジグリシジルエーテル縮合物等のビスフェノールF型ジグリシジルエーテル、3)テトラヒドロキシフェニルエタンテトラグリシジルエーテル、4)ノボラックグリシジルエーテル等が挙げられるが、なかでもビスフェノールAグリシジルエーテル、ビスフェノールAジグリシジルエーテル縮合物が好ましく、ビスフェノールAグリシジルエーテル、縮合度が2又は3のビスフェノールAジグリシジルエーテル縮合物がより好ましい。
【0018】
式3で示される含窒素化合物において、合成に供する脂肪族アミンは炭素数1〜22の脂肪族アミンである。これには例えば、1)メチルアミン、ジメチルアミン、ブチルアミン、ジブチルアミン、オクチルアミン、ドデシルアミン、オクタデシルアミン、ドコシルアミン等の炭素数1〜22の飽和脂肪族アミン化合物、2)ビニルアミン、9−デセエニルアミン、9−テトラデセニルアミン、9−オクタデセニルアミン、13−ドコセニルアミン等の炭素数2〜22の不飽和脂肪族アミン化合物が挙げられるが、なかでも炭素数12〜22の飽和脂肪族アミン化合物、炭素数18〜22の不飽和脂肪族アミン化合物が好ましい。
【0019】
式3で示される含窒素化合物は、公知の方法で合成できる。これには例えば、アルカリ存在下に、芳香族ポリグリシジル化合物と脂肪族アミンとを反応させる方法が挙げられる。
【0020】
以上説明した式1、式2又は式3で示される含窒素化合物の含有割合は、処理剤中、15〜75重量%とするのが好ましく、30〜60重量%とするのがより好ましい。
【0021】
本発明に係る処理剤は、潤滑剤として式1、式2又は式3で示される含窒素化合物から選ばれる一つ又は二つ以上を含有するものであるが、更にアミノ変性ポリシロキサンを含有することができる。かかるアミノ変性ポリシロキサンとしては数平均分子量4000〜50000のものが好ましく、数平均分子量10000〜30000のものがより好ましい。アミノ変性ポリシロキサンの含有割合は、処理剤中、10〜45重量%とするが、15〜35重量%とするのが好ましい。
【0022】
本発明に係る処理剤は、潤滑剤として式1、式2又は式3で示される含窒素化合物から選ばれる一つ又は二つ以上を含有するものであり、或はまた前記したアミノ変性ポリシロキサンを含有するものであるが、更に界面活性剤を含有することができる。かかる界面活性剤としては、非イオン性界面活性剤が好ましい。非イオン性界面活性剤としては、ポリオキシアルキレン多価アルコール脂肪酸エステル、ポリオキシアルキレングリコール脂肪酸エステル、脂肪族アルコールのポリオキシアルキレングリコールエーテル、脂肪族アミンのポリオキシアルキレングリコールエーテル、アルキル置換フェノールのポリオキシアルキレングリコールエーテル及び多価アルコール部分脂肪酸エステル等が挙げられる。かかる非イオン性界面活性剤のオキシアルキレン単位の繰り返し数、オキシアルキレン単位の種類及びオキシアルキレン単位の繰り返しの形態は、本発明に係る処理剤の水性液を調製する場合、該水性液に所望の乳化性若しくは分散性が得られるよう適宜に選択することができる。
【0023】
界面活性剤の含有割合は、処理剤中、5〜60重量%とするが、7〜35重量%とするのがより好ましい。
【0024】
以上、本発明に係る処理剤について説明したが、該処理剤を、潤滑剤としての含窒素化合物、アミノ変性ポリシロキサン及び界面活性剤で構成する場合、含窒素化合物を30〜60重量%、アミノ変性ポリシロキサンを15〜35重量%及び界面活性剤を7〜35重量%(合計100重量%)で含有するものが最も好ましい。
【0025】
本発明に係る処理方法では、以上説明した本発明に係る処理剤を炭素繊維製造用合成繊維に対し0.2〜1.5重量%となるように、好ましくは0.3〜1.2重量%となるよう、より好ましくは0.4〜1.0重量%となるよう付着させる。
【0026】
本発明に係る処理剤を炭素繊維製造用合成繊維に付着させる方法としては、浸漬給油法、ローラー給油法、計量ポンプを用いたガイド給油法、スプレー給油法等の公知の方法が挙げられるが、浸漬給油法、ローラー給油法、計量ポンプを用いたガイド給油法が好ましい。
【0027】
本発明に係る処理剤を炭素繊維製造用合成繊維に付着させるに当たり、該処理剤はその水性液、その有機溶剤溶液、又は40〜80℃に加温して均一な液体としたものをそのままの形で用いることができるが、水性液として用いるのが好ましい。本発明に係る処理剤を炭素繊維製造用合成繊維へ付着させるに際しては、合目目的に他の成分、例えば制電剤、抗酸化剤、防腐剤、防錆剤等を併用することができるが、その使用量は可及的に少量とするのが好ましい。
【0028】
本発明に係る処理剤及び処理方法は炭素繊維製造用のピッチ繊維或はアクリル繊維に適用できるが、アクリル繊維に適用する場合により効果が高い。
【0029】
【発明の実施の形態】
本発明に係る処理剤及び処理方法の実施形態としては、次の1)〜14)が挙げられる。
1)下記の潤滑剤(M−1)70重量%及び下記の界面活性剤(N−1)30重量%(合計100重量%)から成る処理剤(P−1)。そしてこの処理剤(P−1)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−1)として1.0重量%となるよう付着させる処理方法。
潤滑剤(M−1):式1で示される含窒素化合物であって、式1中のXがドデカノイルオキシ基、mが2、Yがジフェニルメタンのフェニル基からそれぞれ1個の水素を除いた残基である場合の含窒素化合物。
界面活性剤(N−1):ポリオキシエチレン(オキシエチレン単位の繰り返し数が10、以下t=10とする)ラウリルエーテル
【0030】
2)下記の潤滑剤(M−2)60重量%及び下記の界面活性剤(N−2)40重量%(合計100重量%)から成る処理剤(P−2)。そしてこの処理剤(P−2)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−2)として0.8重量%となるよう付着させる処理方法。
潤滑剤(M−2):式1で示される含窒素化合物であって、式1中のXが9−オクタデセノイルオキシ基、mが1、Yがジフェニルのフェニル基からそれぞれ1個の水素を除いた残基である場合の含窒素化合物。
界面活性剤(N−2):ポリオキシエチレン(t=6)ノニルフェニルエーテル
【0031】
3)下記の潤滑剤(T−1)30重量%及び前記の界面活性剤(N−1)70重量%(合計100重量%)から成る処理剤(P−5)。そしてこの処理剤(P−3)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−5)として1.0重量%となるよう付着させる処理方法。
潤滑剤(T−1):式2で示される含窒素化合物であって、式2中のXがドデカノイルオキシ基、Yがトリグリシジルイソシアヌレートから全てのグリシジル基を除いた残基である場合の含窒素化合物。
【0032】
4)下記の潤滑剤(T−2)30重量%及び前記の界面活性剤(N−1)70重量%(合計100重量%)から成る処理剤(P−6)。そしてこの処理剤(P−6)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−6)として1.0重量%となるよう付着させる処理方法。
潤滑剤(T−2):式2で示される含窒素化合物であって、式2中のXが9−オクタデセノイルオキシ基、Yがトリグリシジルイソシアヌレートから全てのグリシジル基を除いた残基である場合の含窒素化合物。
【0033】
5)下記の潤滑剤(D−1)70重量%及び前記の界面活性剤(N−1)30重量%(合計100重量%)から成る処理剤(P−8)。そしてこの処理剤(P−8)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−8)として1.0重量%となるよう付着させる処理方法。
潤滑剤(D−1):式3で示される含窒素化合物であって、式3中のXがドデシルアミノ基、nが2、YがビスフェノールAジグリシジルエーテルから全てのグリシジル基を除いた残基である場合の含窒素化合物。
【0034】
6)下記の潤滑剤(D−2)60重量%及び前記の界面活性剤(N−2)40重量%(合計100重量%)から成る処理剤(P−9)。そしてこの処理剤(P−9)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−9)として0.8重量%となるよう付着させる処理方法。
潤滑剤(D−2):式3で示される含窒素化合物であって、式3中のXが9−オクタデセニルアミノ基、nが2、YがビスフェノールAジグリシジルエーテル縮合物(縮合度が2と3の混合物)から全てのグリシジル基を除いた残基である場合の含窒素化合物。
【0035】
7)下記の潤滑剤(D−3)50重量%及び前記の界面活性剤(N−2)50重量%(合計100重量%)から成る処理剤(P−10)。そしてこの処理剤(P−10)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−10)として0.6重量%となるよう付着させる処理方法。
潤滑剤(D−3):式3で示される含窒素化合物であって、式3中のXが13−ドコセニルアミノ基、nが2、YがビスフェノールAジグリシジルエーテルから全てのグリシジル基を除いた残基である場合の含窒素化合物。
【0036】
8)前記の潤滑剤(M−1)48重量%、数平均分子量8000のアミノ変性ポリシロキサン(S−1)30重量%及び前記の界面活性剤(N−1)22重量%(合計100重量%)から成る処理剤(P−14)。そしてこの処理剤(P−14)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−14)として0.8重量%となるよう付着させる処理方法。
【0037】
9)前記の潤滑剤(M−2)40重量%、数平均分子量20000のアミノ変性ポリシロキサン(S−2)30重量%及び前記の界面活性剤(N−1)30重量%(合計100重量%)から成る処理剤(P−15)。そしてこの処理剤(P−15)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−15)として0.4重量%となるよう付着させる処理方法。
【0038】
10)前記の潤滑剤(T−1)35重量%、前記のアミノ変性ポリシロキサン(S−1)30重量%及び前記の界面活性剤(N−1)35重量%(合計100重量%)から成る処理剤(P−18)。そしてこの処理剤(P−18)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−18)として0.6重量%となるよう付着させる処理方法。
【0039】
11)前記の潤滑剤(T−2)45重量%、前記のアミノ変性ポリシロキサン(S−2)25重量%及び前記の界面活性剤(N−1)30重量%(合計100重量%)から成る処理剤(P−19)。そしてこの処理剤(P−19)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−19)として0.6重量%となるよう付着させる処理方法。
【0040】
12)前記の潤滑剤(D−1)48重量%、前記のアミノ変性ポリシロキサン(S−1)30重量%及び前記の界面活性剤(N−1)22重量%(合計100重量%)から成る処理剤(P−21)。そしてこの処理剤(P−21)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−21)として0.8重量%となるよう付着させる処理方法。
【0041】
13)前記の潤滑剤(D−2)35重量%、前記のアミノ変性ポリシロキサン(S−2)30重量%及び前記の界面活性剤(N−1)35重量%(合計100重量%)から成る処理剤(P−22)。そしてこの処理剤(P−22)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−22)として0.4重量%となるよう付着させる処理方法。
【0042】
14)前記の潤滑剤(D−3)50重量%、前記のアミノ変性ポリシロキサン(S−2)30重量%及び前記の界面活性剤(N−1)20重量%(合計100重量%)から成る処理剤(P−23)。そしてこの処理剤(P−23)を水性エマルジョンとなし、炭素繊維製造用アクリルフィラメントに、処理剤(P−23)として0.6重量%となるよう付着させる処理方法。
【0043】
以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。尚、以下の実施例等において、別に記載しない限り、部は重量部、%は重量%である。
【0044】
【実施例】
試験区分1(式1で示される含窒素化合物の合成)
・含窒素化合物(M−1)の合成
フラスコにテトラグリシジルジアミノジフェニルメタン422g(1.0モル)、ラウリン酸800g(4.0モル)及び触媒としてトリエタノールアミン0.6gを仕込み、窒素ガス気流下で攪拌しながら100℃に加温した。同温度で更に10時間反応を続けて合成物を得た。合成物を分析したところ、式1において、Xがトデカノイルオキシ基、mが2、Yがジフェニルメタンのフェニル基からそれぞれ1個の水素を除いた残基である場合の含窒素化合物(M−1)であった。
【0045】
・含窒素化合物(M−2)〜(M−4)、(m−1)及び(m−2)の合成
含窒素化合物(M−1)の合成の場合と同様にして、含窒素化合物(M−2)〜(M−4)、(m−1)及び(m−2)を合成した。以上で合成した各含窒素化合物の内容を表1にまとめて示した。
【0046】
【表1】
Figure 0003926197
【0047】
表1において、
Y−1:ジフェニルメタンのフェニル基からそれぞれ1個の水素を除いた残基
Y−2:ジフェニルのフェニル基からそれぞれ1個の水素を除いた残基
Y−3:ベンゼンから1個の水素を除いた残基
Y−4:ナフタレンから1個の水素を除いた残基
Y−5:n−ブタンから1位の水素1個と4位の水素1個を除いた残基
Y−6:モルホリンからアミノ基を除いた残基
【0048】
試験区分2(式2で示される含窒素化合物の合成)
・含窒素化合物(T−1)の合成
フラスコにトリグリシジルイソシアヌレート297g(1.0モル)、ラウリン酸600g(3.0モル)及び触媒としてトリエタノールアミン0.4gを仕込み、窒素ガス気流下で攪拌しながら100℃に加温した。同温度で更に10時間反応を続けて合成物を得た。合成物を分析したところ、式2において、Xがドデカノイルオキシ基、Yがトリグリシジルイソシアヌレートから全てのグリシジル基を除いた残基である場合の含窒素化合物(T−1)であった。
【0049】
・含窒素化合物(T−2)及び(T−3)の合成
含窒素化合物(T−1)の合成の場合と同様にして、含窒素化合物(T−2)及び(T−3)を合成した。以上で合成した各含窒素化合物の内容を表2にまとめて示した。
【0050】
【表2】
Figure 0003926197
【0051】
試験区分3(式3で示される含窒素化合物の合成)
・含窒素化合物(D−1)の合成
フラスコにビスフェノールAジグリシジルエーテル340g(1.0モル)及びラウリルアミン370g(2.0モル)を仕込み、窒素ガス気流下で攪拌しながら100℃に加温した。同温度で更に4時間反応を続けて合成物を得た。合成物を分析したところ、式3において、Xがドデシルアミノ基、nが2、YがビスフェノールAジグリシジルエーテルから全てのグリシジル基を除いた残基である場合の含窒素化合物(D−1)であった。
【0052】
・含窒素化合物(D−2)〜(D−6)、(d−1)及び(d−2)の合成
含窒素化合物(D−1)の合成の場合と同様にして、含窒素化合物(D−2)〜(D−6)、(d−1)及び(d−2)を合成した。以上で合成した各含窒素化合物の内容を表3にまとめて示した。
【0053】
【表3】
Figure 0003926197
【0054】
表3において、
Y−7:ビスフェノールAジグリシジルエーテルから全てのグリシジル基を除いた残基
Y−8:ビスフェノールAジグリシジルエーテル縮合物(縮合度が2と3の混合物)から全てのグリシジル基を除いた残基
Y−9:ビスフェノールFジグリシジルエーテルから全てのグリシジル基を除いた残基
Y−10:テトラグリシジルフェニルエタンから全てのグリシジル基を除いた残基
Y−11:フェノールノボラックグリシジルエーテル(縮合度=6)から全てのグリシジル基を除いた残基
Y−12:グリセリントリグリシジルエーテルから全てのグリシジル基を除いた残基
Y−13:ポリエチレングリコールジグリシジルエーテル(分子量=400)から全てのグリシジル基を除いた残基
【0055】
試験区分4(処理剤の調製)
・処理剤(P−1)〜(P−26)、(Q−1)〜(Q−5)、(Q−8)、(Q−9)及び(Q−11)〜(Q−14)の調製
試験区分1で得た含窒素化合物(M−1)70部と表3に記載の界面活性剤(N−1)30部とを混合して実施例1の処理剤(P−1)を調製した。同様にして、処理剤(P−2)〜(P−26)、(Q−1)〜(Q−5)、(Q−8)、(Q−9)及び(Q−11)〜(Q−14)を調製した。これらの内容を表4及び表5にまとめて示した。
【0056】
・処理剤(Q−6)、(Q−7)及び(Q−10)の調製
ビスフェノールAのエチレンオキサイド2モル付加物とラウリン酸とのモノエステルに更にアジピン酸を反応させたエステル/ジエチレントリアミン1モルとステアリン酸2モルとのアミド化合物のエチレンオキサイド10モル付加物=60/40(重量比)の混合物を処理剤(Q−6)として調製した。同様にして、処理剤(Q−7)及び(Q−10)を調製した。これらの内容を表5にまとめて示した。
【0057】
試験区分5(炭素繊維製造用アクリルフィラメントへの処理剤の付着及び評価)
・炭素繊維製造用アクリルフィラメントへの処理剤の付着
試験区分4で調製した処理剤30部に水70部を加え、ホモジナイザーを用いて水性エマルジョンとした。この水性エマルジョンを常法により製造したアクリルフィラメント{18000デシテックス(16000デニール)/12000フィラメント}に浸漬給油法にて付着させ後、乾熱ローラーを用い、115℃×4秒間乾燥してプレカーサートウとした。このプレカーサートウを240℃の強制循環式オーブン中で60分間耐炎化処理して耐炎化繊維とし、次いでこの耐炎化繊維を窒素雰囲気中300〜1800℃の温度勾配を持つ焼成炉で50分間焼成して炭素繊維とした。
【0058】
・処理剤の付着量の測定
JIS−L1073(合成繊維フィラメント糸試験方法)に準拠し、抽出溶剤としてノルマルヘキサン/エタノール=70/30(容量比)の混合溶剤を用いて、前記プレカーサートウへの処理剤の付着量を測定した。結果を表4及び表5にまとめて示した。
【0059】
・融着防止性の評価
前記耐炎化繊維について任意の10ヶ所から2cm長の短繊維10片を切り出し、試料片とした。この試料片を白紙上で軽く振盪して、その融着状態を肉眼観察した。同様の試験を5回行ない、下記の基準で融着防止性を評価した。
◎:融着なし
○:融着ごく僅かあり
△:融着ややあり
×:融着大
【0060】
・焼成炉内汚染物質の発生防止性の評価
前記耐炎化繊維50kgを炭素繊維とする際の焼成炉内の汚染状態を肉眼観察した。同様の試験を5回行ない、次の基準で評価した。
◎:汚染はなく、工程通過性に問題なし
○:汚染はごく僅かあるが、工程通過性に問題なし
△:汚染が明らかにあり、工程通過性に問題あり
×:汚染が著しく、工程通過性に問題あり
【0061】
【表4】
Figure 0003926197
【0062】
【表5】
Figure 0003926197
【0063】
表4及び表5において、
評価1:融着防止性
評価2:焼成炉内汚染物質の発生防止性
付着量:アクリルフィラメントに対する処理剤の付着量(%)
比率:重量比
【0064】
含窒素化合物(M−1)〜(M−4),(m−1)及び(m−2):試験区分1で合成した含窒素化合物
含窒素化合物(T−1)〜(T−3):試験区分2で合成した含窒素化合物
含窒素化合物(D−1)〜(D−6),(d−1)及び(d−2):試験区分3で合成した含窒素化合物
S−1:数平均分子量8000のアミノ変性ポリシロキサン
S−2:数平均分子量20000のアミノ変性ポリシロキサン
S−3:数平均分子量45000のアミノ変性ポリシロキサン
N−1:ポリオキシエチレン(t=10)ラウリルエーテル
N−2:ポリオキシエチレン(t=6)ノニルフェニルエーテル
N−3:ポリオキシエチレン(t=25)硬化ヒマシ油
【0065】
C−1:ビスフェノールAのエチレンオキサイド2モル付加物とラウリン酸とのモノエステルに更にアジピン酸を反応させたエステル/ジエチレントリアミン1モルとステアリン酸2モルとのアミド化合物のエチレンオキサイド10モル付加物=60/40(重量比)の混合物
C−2:アジピン酸1.5モルと硬化ヒマシ油のエチレンオキサイド20モル付加物1モルとの縮合物にオレイン酸ジエタノールアミド0.8モルを反応させた末端アミド化合物/ジエチレントリアミン1モルとステアリン酸2モルとを反応させたアミド化合物のエチレンオキサイド10モル付加物=70/30(重量比)の混合物
C−3:ビスフェノールAのエチレンオキサイド2モル付加物とオレイン酸とのジエステル
C−4:トリベンジルフェノールのエチレンオキサイド10モル付加物とフタル酸とのジエステル
C−5:α−メチルスチリルフェノールのエチレンオキサイド49モル付加物とアジピン酸とのジエステル
C−6:ビスフェノールAのエチレンオキサイド2モル付加物と乳酸とラウリン酸とのテトラエステル
C−7:パラクミルフェニルオキシエチレート1モルとエチルアルコール1モルとアジピン酸1モルとのジエステル
C−8:オレイルアルコールのエチレンオキサイド5モル付加物と安息香酸とのエステル
C−9:椰子油還元アルコールと安息香酸とのエステル
【0066】
【発明の効果】
既に明らかなように、以上説明した本発明には、炭素繊維の製造において、耐炎化工程での耐炎化繊維相互の融着防止と炭素化工程での焼成炉内汚染物質の発生防止とを同時に且つ充分に図ることができるという効果がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synthetic fiber treating agent for producing carbon fibers (hereinafter simply referred to as a treating agent) and a method for treating synthetic fibers for producing carbon fibers (hereinafter simply referred to as a treating method). When manufacturing carbon fiber from pitch fiber or acrylic fiber, in order to manufacture high-quality carbon fiber at low cost, it is required to prevent fusion between the flame-resistant fibers in the flame-proofing process. It is required to prevent the generation of contaminants in the firing furnace. The present invention relates to a treatment agent and a treatment method that meet such a demand.
[0002]
[Prior art]
Conventionally, a treatment agent mainly containing silicone has been used. However, such a treatment agent can prevent fusion between the flame-resistant fibers in the flameproofing step, but in the carbonization step after the flameproofing step, contamination in the firing furnace such as silicon oxide or silicon nitride due to decomposition of the treatment agent. Since the substance is generated and deposited, it is necessary to frequently clean the inside of the baking furnace, and there is a problem that the productivity is remarkably lowered. Therefore, a treatment agent that does not use silicone as a lubricant has been proposed. For example, as a lubricant, 1) a mixture of a fatty acid ester of an alkylene oxide adduct of bisphenol A and an alkylene oxide adduct of an amide compound (JP-A-9-78340), 2) a dibasic acid and an oxyalkylene unit And a mixture of a compound having an amide group at the terminal obtained by reacting a polyol condensate with an aliphatic alkanolamide with an alkylene oxide adduct of the amide compound (JP-A-9-78341). . However, although these treatment agents can prevent the generation of contaminants in the firing furnace in the carbonization step, there is a problem that the fusion between the flame resistant fibers cannot be sufficiently prevented in the flame resistance step before the carbonization step. is there.
[0003]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that when producing carbon fiber from pitch fiber or acrylic fiber, prevention of fusion between the flame resistant fibers in the flame resistance process and generation of contaminants in the firing furnace in the carbonization process The present invention is to provide a treatment agent and a treatment method capable of simultaneously and sufficiently preventing.
[0004]
[Means for Solving the Problems]
As a result of studying the above problems, the present inventors have found that it is correctly and suitably used as a lubricant a treating agent containing a specific nitrogen-containing compound.
[0005]
That is, the present invention comprises a synthetic fiber treatment for producing carbon fibers, characterized in that it contains one or two or more selected from nitrogen-containing compounds represented by the following formula 1, formula 2 or formula 3 as a lubricant. It relates to the agent.
[0006]
[Formula 1]
Figure 0003926197
[0007]
[Formula 2]
Figure 0003926197
[0008]
[Formula 3]
Figure 0003926197
[0009]
In Equations 1 to 3,
X 1 , X 2 : C2-C22 aliphatic carbonyloxy group
X 3 : C1-C22 aliphatic amino group
Y 1 : Residue obtained by removing m hydrogen atoms from an aromatic compound having 6 to 14 carbon atoms
Y 2 : Residues obtained by removing all glycidyl groups from triglycidyl isocyanurate
Y 3 : Residue obtained by removing all glycidyl groups from an n-valent aromatic polyglycidyl compound
m: 1 or 2
n: an integer from 2 to 10
[0010]
Moreover, this invention concerns on the processing method characterized by making the processing agent concerning the above inventions adhere to 0.2 to 1.5 weight% with respect to the synthetic fiber for carbon fiber manufacture.
[0011]
In the treating agent according to the present invention, the nitrogen-containing compound represented by Formula 1 used as a lubricant is obtained by esterifying a polyglycidylamine compound and a fatty acid.
[0012]
In the nitrogen-containing compound represented by Formula 1, the polyglycidylamine compound used for synthesis is a polyglycidylamine compound having 1 or 2 diglycidylamino groups and 1 to 3 aromatic rings in the molecule. This includes, for example, 1) N, N-diglycidylaniline, N, N-diglycidylnaphthylamine, N, N-diglycidyldiphenylamine, N, N, N ′, N′-tetraglycidylphenylenediamine, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane and the like can be mentioned, among which N, N-diglycidyldiphenylamine and N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane are preferable.
[0013]
In the nitrogen-containing compound represented by Formula 1, the fatty acids used for synthesis are as follows: 1) C2-C22 such as acetic acid, hexanoic acid, decanoic acid, dodecanoic acid, octadecanoic acid, docosanoic acid, 2-ethylhexanoic acid, isooctadecanoic acid 2) C2-C22 unsaturated fatty acids such as acrylic acid, 9-decenoic acid, 9-tetradecenoic acid, 9-octadecenoic acid, 13-docosenoic acid, etc. 22 saturated fatty acids or C18-22 unsaturated fatty acids are preferred.
[0014]
The nitrogen-containing compound represented by Formula 1 can be synthesized by a known method. This includes, for example, a method in which a polyglycidylamine compound, a glycidyl group of the polyglycidylamine compound and an equimolar amount of fatty acid are reacted in the presence of an alkali catalyst.
[0015]
In the treating agent according to the present invention, the nitrogen-containing compound represented by Formula 2 used as a lubricant is obtained by esterifying all glycidyl groups of triglycidyl isocyanurate with a fatty acid. Such a fatty acid is a fatty acid having 2 to 22 carbon atoms and is the same as the fatty acid described above for the nitrogen-containing compound represented by Formula 1. The nitrogen-containing compound represented by Formula 2 can also be synthesized in the same manner as the nitrogen-containing compound represented by Formula 1.
[0016]
In the treating agent according to the present invention, the nitrogen-containing compound represented by Formula 3 used as a lubricant is an amination reaction of an aromatic polyglycidyl compound and an aliphatic amine.
[0017]
In the nitrogen-containing compound represented by Formula 3, the aromatic polyglycidyl compound used for synthesis has 2 to 10 glycidyl groups and an aromatic ring in the molecule. Examples thereof include 1) bisphenol A glycidyl ether, bisphenol A diglycidyl ether condensate, etc. 2) bisphenol F diglycidyl ether, such as bisphenol F glycidyl ether, bisphenol F diglycidyl ether condensate, etc. 3) tetrahydroxyphenyl ethane tetraglycidyl ether, 4) novolac glycidyl ether, etc., among which bisphenol A glycidyl ether and bisphenol A diglycidyl ether condensate are preferable, and bisphenol A glycidyl ether, the degree of condensation is 2 or 3 The bisphenol A diglycidyl ether condensate is more preferable.
[0018]
In the nitrogen-containing compound represented by Formula 3, the aliphatic amine used for synthesis is an aliphatic amine having 1 to 22 carbon atoms. Examples thereof include 1) saturated aliphatic amine compounds having 1 to 22 carbon atoms such as methylamine, dimethylamine, butylamine, dibutylamine, octylamine, dodecylamine, octadecylamine, docosylamine, 2) vinylamine, 9-decenylamine, Examples thereof include unsaturated aliphatic amine compounds having 2 to 22 carbon atoms such as 9-tetradecenylamine, 9-octadecenylamine, 13-docosenylamine, etc. Among them, saturated aliphatic amine compounds having 12 to 22 carbon atoms, An unsaturated aliphatic amine compound having 18 to 22 carbon atoms is preferred.
[0019]
The nitrogen-containing compound represented by Formula 3 can be synthesized by a known method. This includes, for example, a method in which an aromatic polyglycidyl compound and an aliphatic amine are reacted in the presence of an alkali.
[0020]
The content ratio of the nitrogen-containing compound represented by Formula 1, Formula 2 or Formula 3 described above is preferably 15 to 75% by weight, more preferably 30 to 60% by weight in the treatment agent.
[0021]
The treating agent according to the present invention contains one or two or more selected from nitrogen-containing compounds represented by formula 1, formula 2 or formula 3 as a lubricant, but further contains an amino-modified polysiloxane. be able to. Such amino-modified polysiloxane preferably has a number average molecular weight of 4,000 to 50,000, more preferably a number average molecular weight of 10,000 to 30,000. The content of the amino-modified polysiloxane is 10 to 45% by weight in the treatment agent, but preferably 15 to 35% by weight.
[0022]
The treating agent according to the present invention contains one or two or more selected from nitrogen-containing compounds represented by the formula 1, formula 2 or formula 3 as a lubricant, or the amino-modified polysiloxane described above. However, it can further contain a surfactant. As such a surfactant, a nonionic surfactant is preferable. Nonionic surfactants include polyoxyalkylene polyhydric alcohol fatty acid esters, polyoxyalkylene glycol fatty acid esters, aliphatic alcohol polyoxyalkylene glycol ethers, aliphatic amine polyoxyalkylene glycol ethers, alkyl-substituted phenol polys. Examples include oxyalkylene glycol ethers and polyhydric alcohol partial fatty acid esters. The number of oxyalkylene unit repeats, the type of oxyalkylene units, and the form of oxyalkylene unit repeats of such a nonionic surfactant are the desired when the aqueous liquid of the treatment agent according to the present invention is prepared. It can select suitably so that emulsifiability or dispersibility may be acquired.
[0023]
The content ratio of the surfactant is 5 to 60% by weight in the treatment agent, and more preferably 7 to 35% by weight.
[0024]
The treatment agent according to the present invention has been described above. However, when the treatment agent is composed of a nitrogen-containing compound as a lubricant, an amino-modified polysiloxane, and a surfactant, the nitrogen-containing compound is 30 to 60% by weight, amino Most preferably, the modified polysiloxane is 15 to 35% by weight and the surfactant is 7 to 35% by weight (total 100% by weight).
[0025]
In the treatment method according to the present invention, the treatment agent according to the present invention described above is preferably 0.3 to 1.2% by weight so as to be 0.2 to 1.5% by weight with respect to the synthetic fiber for carbon fiber production. %, More preferably 0.4 to 1.0% by weight.
[0026]
Examples of the method of attaching the treatment agent according to the present invention to the synthetic fiber for carbon fiber production include known methods such as an immersion oiling method, a roller oiling method, a guide oiling method using a metering pump, and a spray oiling method. The immersion oil supply method, roller oil supply method, and guide oil supply method using a metering pump are preferable.
[0027]
In adhering the treatment agent according to the present invention to the synthetic fiber for carbon fiber production, the treatment agent is the aqueous liquid, the organic solvent solution, or the one heated to 40 to 80 ° C. to obtain a uniform liquid. Although it can be used in a form, it is preferably used as an aqueous liquid. When attaching the treatment agent according to the present invention to the synthetic fiber for carbon fiber production, other components such as antistatic agents, antioxidants, antiseptics, rust inhibitors, etc. can be used in combination for the purpose of jointing. The amount used is preferably as small as possible.
[0028]
The treatment agent and treatment method according to the present invention can be applied to pitch fibers or acrylic fibers for producing carbon fibers, but the effect is higher when applied to acrylic fibers.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the treatment agent and the treatment method according to the present invention include the following 1) to 14).
1) A treating agent (P-1) comprising 70% by weight of the following lubricant (M-1) and 30% by weight (100% in total) of the following surfactant (N-1). And the processing method which makes this processing agent (P-1) into aqueous emulsion, and makes it adhere to the acrylic filament for carbon fiber manufacture so that it may become 1.0 weight% as a processing agent (P-1).
Lubricant (M-1): a nitrogen-containing compound represented by formula 1, wherein X in formula 1 1 Is dodecanoyloxy group, m is 2, Y 1 Is a residue obtained by removing one hydrogen from the phenyl group of diphenylmethane.
Surfactant (N-1): polyoxyethylene (the number of repeating oxyethylene units is 10, hereinafter t = 10) lauryl ether
[0030]
2) A treating agent (P-2) comprising 60% by weight of the following lubricant (M-2) and 40% by weight (100% by weight in total) of the following surfactant (N-2). And the processing method which makes this processing agent (P-2) into an aqueous emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 0.8 weight% as a processing agent (P-2).
Lubricant (M-2): a nitrogen-containing compound represented by formula 1, wherein X in formula 1 1 Is 9-octadecenoyloxy group, m is 1, Y 1 Is a residue obtained by removing one hydrogen from each phenyl group of diphenyl.
Surfactant (N-2): polyoxyethylene (t = 6) nonylphenyl ether
[0031]
3) A treating agent (P-5) comprising 30% by weight of the following lubricant (T-1) and 70% by weight (100% in total) of the surfactant (N-1). And the processing method which makes this processing agent (P-3) into aqueous emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 1.0 weight% as a processing agent (P-5).
Lubricant (T-1): a nitrogen-containing compound represented by formula 2, wherein X in formula 2 2 Is dodecanoyloxy group, Y 2 A nitrogen-containing compound in which is a residue obtained by removing all glycidyl groups from triglycidyl isocyanurate.
[0032]
4) A treating agent (P-6) comprising 30% by weight of the following lubricant (T-2) and 70% by weight (100% in total) of the surfactant (N-1). And the processing method which makes this processing agent (P-6) an aqueous emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 1.0 weight% as a processing agent (P-6).
Lubricant (T-2): a nitrogen-containing compound represented by formula 2, wherein X in formula 2 2 Is 9-octadecenoyloxy group, Y 2 A nitrogen-containing compound in which is a residue obtained by removing all glycidyl groups from triglycidyl isocyanurate.
[0033]
5) A treating agent (P-8) comprising 70% by weight of the following lubricant (D-1) and 30% by weight of the surfactant (N-1) (100% in total). And the processing method which makes this processing agent (P-8) an aqueous emulsion, and makes it adhere to the acrylic filament for carbon fiber manufacture so that it may become 1.0 weight% as a processing agent (P-8).
Lubricant (D-1): a nitrogen-containing compound represented by formula 3, wherein X in formula 3 3 Is dodecylamino group, n is 2, Y 3 Is a residue obtained by removing all glycidyl groups from bisphenol A diglycidyl ether.
[0034]
6) A treating agent (P-9) comprising 60% by weight of the following lubricant (D-2) and 40% by weight (100% by weight in total) of the surfactant (N-2). And the processing method which makes this processing agent (P-9) water-based emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 0.8 weight% as a processing agent (P-9).
Lubricant (D-2): a nitrogen-containing compound represented by formula 3, wherein X in formula 3 3 Is 9-octadecenylamino group, n is 2, Y 3 Is a residue obtained by removing all glycidyl groups from a bisphenol A diglycidyl ether condensate (a mixture having a condensation degree of 2 and 3).
[0035]
7) Treatment agent (P-10) comprising 50% by weight of the following lubricant (D-3) and 50% by weight (100% by weight in total) of the surfactant (N-2). And the processing method which makes this processing agent (P-10) into an aqueous emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 0.6 weight% as a processing agent (P-10).
Lubricant (D-3): a nitrogen-containing compound represented by formula 3, wherein X in formula 3 3 Is 13-docosenylamino group, n is 2, Y 3 Is a residue obtained by removing all glycidyl groups from bisphenol A diglycidyl ether.
[0036]
8) 48% by weight of the lubricant (M-1), 30% by weight of amino-modified polysiloxane (S-1) having a number average molecular weight of 8000, and 22% by weight of the surfactant (N-1) (100% in total) %) Treatment agent (P-14). And the processing method which makes this processing agent (P-14) water-based emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 0.8 weight% as a processing agent (P-14).
[0037]
9) 40% by weight of the lubricant (M-2), 30% by weight of an amino-modified polysiloxane (S-2) having a number average molecular weight of 20000 and 30% by weight of the surfactant (N-1) (100% in total) %) Treatment agent (P-15). And the processing method which makes this processing agent (P-15) into an aqueous emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 0.4 weight% as a processing agent (P-15).
[0038]
10) From 35% by weight of the lubricant (T-1), 30% by weight of the amino-modified polysiloxane (S-1) and 35% by weight of the surfactant (N-1) (total 100% by weight) A treating agent (P-18). And the processing method which makes this processing agent (P-18) an aqueous emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 0.6 weight% as a processing agent (P-18).
[0039]
11) From 45% by weight of the lubricant (T-2), 25% by weight of the amino-modified polysiloxane (S-2) and 30% by weight of the surfactant (N-1) (total 100% by weight) A treating agent (P-19). And the processing method which makes this processing agent (P-19) an aqueous emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 0.6 weight% as a processing agent (P-19).
[0040]
12) 48% by weight of the lubricant (D-1), 30% by weight of the amino-modified polysiloxane (S-1) and 22% by weight of the surfactant (N-1) (100% by weight in total) A treating agent (P-21). And the processing method which makes this processing agent (P-21) an aqueous emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 0.8 weight% as a processing agent (P-21).
[0041]
13) 35% by weight of the lubricant (D-2), 30% by weight of the amino-modified polysiloxane (S-2) and 35% by weight of the surfactant (N-1) (total 100% by weight) A treating agent (P-22). And the processing method which makes this processing agent (P-22) an aqueous emulsion, and makes it adhere to the acrylic filament for carbon fiber manufacture so that it may become 0.4 weight% as a processing agent (P-22).
[0042]
14) From 50% by weight of the lubricant (D-3), 30% by weight of the amino-modified polysiloxane (S-2) and 20% by weight of the surfactant (N-1) (total 100% by weight) A treating agent (P-23). And the processing method which makes this processing agent (P-23) an aqueous emulsion, and adheres it to the acrylic filament for carbon fiber manufacture so that it may become 0.6 weight% as a processing agent (P-23).
[0043]
Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated, parts are parts by weight and% is% by weight.
[0044]
【Example】
Test category 1 (synthesis of nitrogen-containing compounds represented by formula 1)
・ Synthesis of nitrogen-containing compound (M-1)
The flask was charged with 422 g (1.0 mol) of tetraglycidyldiaminodiphenylmethane, 800 g (4.0 mol) of lauric acid and 0.6 g of triethanolamine as a catalyst, and heated to 100 ° C. with stirring under a nitrogen gas stream. The reaction was further continued at the same temperature for 10 hours to obtain a synthesized product. When the synthesized product was analyzed, in Formula 1, X 1 Is a todecanoyloxy group, m is 2, Y 1 Is a nitrogen-containing compound (M-1) in which each is a residue obtained by removing one hydrogen from the phenyl group of diphenylmethane.
[0045]
Synthesis of nitrogen-containing compounds (M-2) to (M-4), (m-1) and (m-2)
Nitrogen-containing compounds (M-2) to (M-4), (m-1) and (m-2) were synthesized in the same manner as in the synthesis of the nitrogen-containing compound (M-1). The contents of each nitrogen-containing compound synthesized above are summarized in Table 1.
[0046]
[Table 1]
Figure 0003926197
[0047]
In Table 1,
Y-1: residue obtained by removing one hydrogen from each phenyl group of diphenylmethane
Y-2: residue obtained by removing one hydrogen from the phenyl group of diphenyl
Y-3: Residue obtained by removing one hydrogen from benzene
Y-4: residue obtained by removing one hydrogen from naphthalene
Y-5: residue obtained by removing one hydrogen at the 1-position and one hydrogen at the 4-position from n-butane
Y-6: Residue obtained by removing amino group from morpholine
[0048]
Test category 2 (synthesis of nitrogen-containing compounds represented by formula 2)
・ Synthesis of nitrogen-containing compound (T-1)
A flask was charged with 297 g (1.0 mol) of triglycidyl isocyanurate, 600 g (3.0 mol) of lauric acid and 0.4 g of triethanolamine as a catalyst, and heated to 100 ° C. with stirring under a nitrogen gas stream. The reaction was further continued at the same temperature for 10 hours to obtain a synthesized product. Analysis of the synthesized product revealed that in Formula 2, X 2 Is dodecanoyloxy group, Y 2 Is a nitrogen-containing compound (T-1) in the case of a residue obtained by removing all glycidyl groups from triglycidyl isocyanurate.
[0049]
・ Synthesis of nitrogen-containing compounds (T-2) and (T-3)
Nitrogen-containing compounds (T-2) and (T-3) were synthesized in the same manner as in the synthesis of the nitrogen-containing compound (T-1). The contents of each nitrogen-containing compound synthesized above are summarized in Table 2.
[0050]
[Table 2]
Figure 0003926197
[0051]
Test category 3 (synthesis of nitrogen-containing compounds represented by formula 3)
・ Synthesis of nitrogen-containing compound (D-1)
The flask was charged with 340 g (1.0 mol) of bisphenol A diglycidyl ether and 370 g (2.0 mol) of laurylamine and heated to 100 ° C. with stirring under a nitrogen gas stream. The reaction was further continued at the same temperature for 4 hours to obtain a synthesized product. When the synthesized product was analyzed, in Formula 3, X 3 Is dodecylamino group, n is 2, Y 3 Is a nitrogen-containing compound (D-1) in the case of a residue obtained by removing all glycidyl groups from bisphenol A diglycidyl ether.
[0052]
Synthesis of nitrogen-containing compounds (D-2) to (D-6), (d-1) and (d-2)
In the same manner as in the synthesis of the nitrogen-containing compound (D-1), nitrogen-containing compounds (D-2) to (D-6), (d-1) and (d-2) were synthesized. The contents of the nitrogen-containing compounds synthesized above are summarized in Table 3.
[0053]
[Table 3]
Figure 0003926197
[0054]
In Table 3,
Y-7: Residue obtained by removing all glycidyl groups from bisphenol A diglycidyl ether
Y-8: Residue obtained by removing all glycidyl groups from a bisphenol A diglycidyl ether condensate (a mixture having a condensation degree of 2 and 3)
Y-9: Residue obtained by removing all glycidyl groups from bisphenol F diglycidyl ether
Y-10: residue obtained by removing all glycidyl groups from tetraglycidylphenylethane
Y-11: residue obtained by removing all glycidyl groups from phenol novolac glycidyl ether (condensation degree = 6)
Y-12: Residue obtained by removing all glycidyl groups from glycerin triglycidyl ether
Y-13: Residue obtained by removing all glycidyl groups from polyethylene glycol diglycidyl ether (molecular weight = 400)
[0055]
Test Category 4 (Preparation of treatment agent)
Treatment agents (P-1) to (P-26), (Q-1) to (Q-5), (Q-8), (Q-9) and (Q-11) to (Q-14) Preparation of
70 parts of the nitrogen-containing compound (M-1) obtained in Test Category 1 and 30 parts of the surfactant (N-1) listed in Table 3 were mixed to prepare the treating agent (P-1) of Example 1. did. Similarly, the treating agents (P-2) to (P-26), (Q-1) to (Q-5), (Q-8), (Q-9) and (Q-11) to (Q -14) was prepared. These contents are summarized in Tables 4 and 5.
[0056]
-Preparation of treatment agents (Q-6), (Q-7) and (Q-10)
Ethylene oxide 10 mol adduct of amide compound of ester / diethylenetriamine 1 mol and stearic acid 2 mol obtained by further reacting adipic acid with monoester of ethylene oxide 2 mol adduct of bisphenol A and lauric acid = 60/40 ( (Weight ratio) mixture was prepared as treating agent (Q-6). Similarly, treating agents (Q-7) and (Q-10) were prepared. These contents are summarized in Table 5.
[0057]
Test category 5 (Adhesion and evaluation of treatment agents on acrylic filaments for carbon fiber production)
・ Attachment of treatment agent to acrylic filament for carbon fiber production
70 parts of water was added to 30 parts of the treatment agent prepared in Test Category 4, and an aqueous emulsion was prepared using a homogenizer. This aqueous emulsion was attached to an acrylic filament {18000 decitex (16000 denier) / 12000 filament} produced by a conventional method by a dipping oiling method, and then dried at 115 ° C. for 4 seconds using a dry heat roller to obtain a precursor tow. . This precursor tow is flame-treated in a forced circulation oven at 240 ° C. for 60 minutes to form flame-resistant fibers, and then the flame-resistant fibers are fired in a firing furnace having a temperature gradient of 300 to 1800 ° C. in a nitrogen atmosphere for 50 minutes. Carbon fiber.
[0058]
・ Measurement of treatment agent adhesion
Based on JIS-L1073 (synthetic fiber filament yarn test method), using a mixed solvent of normal hexane / ethanol = 70/30 (volume ratio) as an extraction solvent, the adhesion amount of the treatment agent to the precursor tow was measured. . The results are summarized in Table 4 and Table 5.
[0059]
・ Evaluation of adhesion prevention
Ten pieces of 2 cm-long short fibers were cut out from arbitrary 10 locations of the flameproof fiber, and used as sample pieces. The sample piece was shaken lightly on white paper, and the fused state was visually observed. The same test was performed 5 times, and the anti-fusing property was evaluated according to the following criteria.
A: No fusion
○: Very little fusion
Δ: Slightly fused
×: Large fusion
[0060]
・ Evaluation of prevention of pollutants in the firing furnace
The state of contamination in the firing furnace when 50 kg of the flameproof fiber was used as carbon fiber was visually observed. The same test was conducted 5 times and evaluated according to the following criteria.
A: No contamination, no problem in process passage
○: There is very little contamination, but there is no problem in process passage
△: Clearly contaminated, problem in process passage
×: Contamination is significant and there is a problem with process passage
[0061]
[Table 4]
Figure 0003926197
[0062]
[Table 5]
Figure 0003926197
[0063]
In Table 4 and Table 5,
Evaluation 1: Anti-fusing property
Evaluation 2: Prevention of generation of contaminants in the firing furnace
Adhesion amount: Adhesion amount of treatment agent to acrylic filament (%)
Ratio: Weight ratio
[0064]
Nitrogen-containing compounds (M-1) to (M-4), (m-1) and (m-2): nitrogen-containing compounds synthesized in test category 1
Nitrogen-containing compounds (T-1) to (T-3): Nitrogen-containing compounds synthesized in Test Category 2
Nitrogen-containing compounds (D-1) to (D-6), (d-1) and (d-2): nitrogen-containing compounds synthesized in Test Category 3
S-1: Amino-modified polysiloxane having a number average molecular weight of 8,000
S-2: Amino-modified polysiloxane having a number average molecular weight of 20000
S-3: Amino-modified polysiloxane having a number average molecular weight of 45,000
N-1: polyoxyethylene (t = 10) lauryl ether
N-2: Polyoxyethylene (t = 6) nonylphenyl ether
N-3: Polyoxyethylene (t = 25) hydrogenated castor oil
[0065]
C-1: An ester obtained by further reacting an adipic acid with a monoester of ethylene oxide 2 mol adduct of bisphenol A and lauric acid / ethylene oxide 10 mol adduct of amide compound of 1 mol of diethylenetriamine and 2 mol of stearic acid = 60/40 (weight ratio) mixture
C-2: a terminal amide compound obtained by reacting 0.8 mol of diethanolamide oleic acid / condensation product of 1.5 mol of adipic acid and 20 mol of adduct of hydrogenated castor oil with 20 mol of ethylene oxide and 1 mol of diethylenetriamine and stearic acid Mixture of ethylene oxide 10 mol adduct of amide compound reacted with 2 mol = 70/30 (weight ratio)
C-3: Diester of bisphenol A ethylene oxide 2-mol adduct and oleic acid
C-4: Diester of ethylene oxide 10 mol adduct of tribenzylphenol and phthalic acid
C-5: Diester of ethylene oxide 49 mol adduct of α-methylstyrylphenol and adipic acid
C-6: Tetraester of ethylene oxide 2-mole adduct of bisphenol A and lactic acid and lauric acid
C-7: Diester of 1 mol of paracumylphenyloxyethylate, 1 mol of ethyl alcohol and 1 mol of adipic acid
C-8: Ester of oleic alcohol with 5 moles of ethylene oxide 5 mol adduct and benzoic acid
C-9: Esters of palm oil reduced alcohol and benzoic acid
[0066]
【The invention's effect】
As is apparent from the above, the present invention described above simultaneously prevents the fusion of flame-resistant fibers in the flame-proofing process and the generation of contaminants in the firing furnace in the carbonization process. In addition, there is an effect that it can be sufficiently achieved.

Claims (13)

潤滑剤として下記の式1、式2又は式3で示される含窒素化合物から選ばれる一つ又は二つ以上を含有して成ることを特徴とする炭素繊維製造用合成繊維処理剤。
【式1】
Figure 0003926197
【式2】
Figure 0003926197
【式3】
Figure 0003926197
(式1〜式3において、
,X:炭素数2〜22の脂肪族カルボニルオキシ基
:炭素数1〜22の脂肪族アミノ基
:炭素数6〜14の芳香族化合物からm個の水素原子を除いた残基
:トリグリシジルイソシアヌレートから全てのグリシジル基を除いた残基
:n価の芳香族ポリグリシジル化合物から全てのグリシジル基を除いた残基
m:1又は2
n:2〜10の整数)
A synthetic fiber treating agent for producing carbon fiber, comprising one or more selected from nitrogen-containing compounds represented by the following formula 1, formula 2 or formula 3 as a lubricant.
[Formula 1]
Figure 0003926197
[Formula 2]
Figure 0003926197
[Formula 3]
Figure 0003926197
(In Formulas 1 to 3,
X 1 , X 2 : Aliphatic carbonyloxy group having 2 to 22 carbon atoms X 3 : Aliphatic amino group having 1 to 22 carbon atoms Y 1 : m hydrogen atoms are removed from an aromatic compound having 6 to 14 carbon atoms residues Y 2: residue obtained by removing all of the glycidyl groups from triglycidyl isocyanurate Y 3: residue excluding an n-valent all glycidyl groups from an aromatic polyglycidyl compound of m: 1 or 2
n: an integer of 2 to 10)
式1で示される含窒素化合物が、式1中のXが炭素数12〜22の飽和脂肪族カルボニルオキシ基又は炭素数18〜22の不飽和脂肪族カルボニルオキシ基であり、mが2である場合のものである請求項1記載の炭素繊維製造用合成維処理剤。In the nitrogen-containing compound represented by Formula 1, X 1 in Formula 1 is a saturated aliphatic carbonyloxy group having 12 to 22 carbon atoms or an unsaturated aliphatic carbonyloxy group having 18 to 22 carbon atoms, and m is 2. The synthetic fiber treatment agent for producing carbon fiber according to claim 1, which is in a case. 式2で示される含窒素化合物が、式2中のXが炭素数12〜22の飽和脂肪族カルボニルオキシ基又は炭素数18〜22の不飽和脂肪族カルボニルオキシ基である場合のものである請求項1又は2記載の炭素繊維製造用合成維処理剤。The nitrogen-containing compound represented by Formula 2 is a compound in which X 2 in Formula 2 is a saturated aliphatic carbonyloxy group having 12 to 22 carbon atoms or an unsaturated aliphatic carbonyloxy group having 18 to 22 carbon atoms. The synthetic fiber processing agent for carbon fiber manufacture of Claim 1 or 2. 式3で示される含窒素化合物が、式3中のXが炭素数12〜22の飽和脂肪族アミノ基又は炭素数18〜22の不飽和脂肪族アミノ基であり、nが2〜4である場合のものである請求項1〜3のいずれか一つの項記載の炭素繊維製造用合成維処理剤。In the nitrogen-containing compound represented by Formula 3, X 3 in Formula 3 is a saturated aliphatic amino group having 12 to 22 carbon atoms or an unsaturated aliphatic amino group having 18 to 22 carbon atoms, and n is 2 to 4 The synthetic fiber treatment agent for producing carbon fiber according to any one of claims 1 to 3, wherein the synthetic fiber treatment agent is used in some cases. 含窒素化合物を15〜75重量%含有する請求項1〜4のいずれか一つの項記載の炭素繊維製造用合成繊維処理剤。The synthetic fiber processing agent for carbon fiber manufacture as described in any one of Claims 1-4 containing 15 to 75 weight% of nitrogen-containing compounds. 更に、アミノ変性ポリシロキサンを10〜45重量%含有する請求項5記載の炭素繊維製造用合成繊維処理剤。Furthermore, the synthetic fiber processing agent for carbon fiber manufacture of Claim 5 which contains amino modified polysiloxane 10 to 45weight%. アミノ変性ポリシロキサンが、数平均分子量4000〜50000のものである請求項6記載の炭素繊維製造用合成繊維処理剤。The synthetic fiber treating agent for producing carbon fibers according to claim 6, wherein the amino-modified polysiloxane has a number average molecular weight of 4000 to 50000. 更に、界面活性剤を5〜60重量%含有する請求項5〜7のいずれか一つの項記載の炭素繊維製造用合成繊維処理剤。Furthermore, the synthetic fiber processing agent for carbon fiber manufacture of any one of Claims 5-7 containing 5 to 60 weight% of surfactant. 界面活性剤が、非イオン性界面活性剤である請求項8記載の炭素繊維製造用合成繊維処理剤。The synthetic fiber treating agent for producing carbon fiber according to claim 8, wherein the surfactant is a nonionic surfactant. 含窒素化合物を30〜60重量%、アミノ変性ポリシロキサンを15〜35重量%及び界面活性剤を7〜35重量%(合計100重量%)含有する請求項8又は9記載の炭素繊維製造用合成繊維処理剤。The synthesis for carbon fiber production according to claim 8 or 9, comprising 30 to 60% by weight of a nitrogen-containing compound, 15 to 35% by weight of an amino-modified polysiloxane and 7 to 35% by weight (100% by weight in total) of a surfactant. Fiber treatment agent. 請求項1〜10のいずれか一つの項記載の炭素繊維製造用合成繊維処理剤を、炭素繊維製造用合成繊維に対し0.2〜1.5重量%となるよう付着させることを特徴とする炭素繊維製造用合成繊維の処理方法。The synthetic fiber treatment agent for producing carbon fibers according to any one of claims 1 to 10 is adhered to the synthetic fiber for producing carbon fibers so as to be 0.2 to 1.5% by weight. A method for treating synthetic fibers for carbon fiber production. 炭素繊維製造用合成繊維処理剤をその水性液とした後、炭素繊維製造用合成繊維に付着させる請求項11記載の炭素繊維製造用合成繊維の処理方法。The method for treating a synthetic fiber for carbon fiber production according to claim 11, wherein the synthetic fiber treating agent for carbon fiber production is made into an aqueous liquid and then adhered to the synthetic fiber for carbon fiber production. 炭素繊維製造用合成繊維がアクリル繊維である請求項11又は12記載の炭素繊維製造用合成繊維の処理方法。The synthetic fiber for producing carbon fiber according to claim 11 or 12, wherein the synthetic fiber for producing carbon fiber is an acrylic fiber.
JP2002117430A 2002-04-19 2002-04-19 Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production Expired - Fee Related JP3926197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117430A JP3926197B2 (en) 2002-04-19 2002-04-19 Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117430A JP3926197B2 (en) 2002-04-19 2002-04-19 Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production

Publications (2)

Publication Number Publication Date
JP2003313776A JP2003313776A (en) 2003-11-06
JP3926197B2 true JP3926197B2 (en) 2007-06-06

Family

ID=29534635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117430A Expired - Fee Related JP3926197B2 (en) 2002-04-19 2002-04-19 Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production

Country Status (1)

Country Link
JP (1) JP3926197B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046605B2 (en) * 2002-12-19 2008-02-13 竹本油脂株式会社 Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production
JP4480176B2 (en) * 2006-12-27 2010-06-16 竹本油脂株式会社 Synthetic fiber treatment liquid and synthetic fiber treatment method
CN111825627B (en) * 2020-07-28 2023-04-25 清远高新华园科技协同创新研究院有限公司 Preparation method of high-solid hydroxyl resin

Also Published As

Publication number Publication date
JP2003313776A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
TWI796547B (en) Treatment agent for synthetic fiber and synthetic fiber
JP3926197B2 (en) Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production
JPH06509593A (en) Water-soluble and biodegradable carboxylic acid polyester
TWI830274B (en) Synthetic fiber treatment agent and synthetic fiber
JP4090035B2 (en) Synthetic fiber spinning oil and synthetic fiber processing method
KR20030074698A (en) Biodegradable polyneopentyl polyol based synthetic ester blends and lubricants
CN107699322A (en) A kind of saturated polyol ester type high temperature chain oil and preparation method thereof
JP4046605B2 (en) Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production
KR20200058522A (en) Synthetic fiber treatment agent and synthetic fiber
US7578948B2 (en) Method of producing low concentration aqueous solution of agent for processing synthetic fibers
JP2018150665A (en) Treatment agent for synthetic fiber and manufacturing method of synthetic fiber
JP4367874B2 (en) Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production
JP4624601B2 (en) Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production
JP3725467B2 (en) Synthetic fiber treatment agent and synthetic fiber treatment method
JP3703279B2 (en) Synthetic fiber treatment agent for carbon fiber production and synthetic fiber treatment method for carbon fiber production
JP2002241781A (en) Lubricant composition for wet wire-drawing processing of plated steel wire and method for wet wire-drawing processing
JPS6026864B2 (en) Lubricating agent for synthetic fibers
JP6176820B2 (en) Fiber treatment agent
JP2001123382A (en) Agent for treating synthetic fiber for production of carbon fiber and treatment of synthetic fiber for production of carbon fiber
JPWO2003000981A1 (en) Polyester fiber oligomer inhibitor
WO2000011258A1 (en) Synthetic-fiber treatment composition with satisfactory biodegradability
JP2023094406A (en) Mold release agent for vulcanized rubber and method of manufacturing vulcanized rubber molded products using agent
JP2004162187A (en) Treating agent for polyurethane elastic fiber and method for treating polyurethane elastic fiber
US5464678A (en) Fibers containing an antistatic finish and process therefor
JP2021116514A (en) Synthetic fiber treating agent and production method of synthetic fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees