JP3926164B2 - Proton conductor gas sensor and gas detection method using the same - Google Patents

Proton conductor gas sensor and gas detection method using the same Download PDF

Info

Publication number
JP3926164B2
JP3926164B2 JP2002029077A JP2002029077A JP3926164B2 JP 3926164 B2 JP3926164 B2 JP 3926164B2 JP 2002029077 A JP2002029077 A JP 2002029077A JP 2002029077 A JP2002029077 A JP 2002029077A JP 3926164 B2 JP3926164 B2 JP 3926164B2
Authority
JP
Japan
Prior art keywords
water
pack
gas
water reservoir
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002029077A
Other languages
Japanese (ja)
Other versions
JP2003232767A (en
Inventor
智弘 井上
一成 兼安
秀樹 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2002029077A priority Critical patent/JP3926164B2/en
Publication of JP2003232767A publication Critical patent/JP2003232767A/en
Application granted granted Critical
Publication of JP3926164B2 publication Critical patent/JP3926164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の利用分野】
この発明は、プロトン導電体膜を用いたガスセンサに関し、特にその水溜の改良に関する。
【0002】
【従来技術】
プロトン導電体を用いたガスセンサでは、例えばプロトン導電体膜の両側に電極膜を積層し、その一方を検知極、他方を対極とする。検知極や対極は、例えば疎水性のカーボンペーパー上に形成し、カーボンペーパーは電極からの集電体として、また電極全面に検出対象ガスや酸素、水蒸気を供給するためのガスチャネルとして作用する。プロトン導電体膜と検知極及び対極の複合体をMEA(膜電極複合体)と呼び、MEAは原則として、検知極及び対極共にカーボンペーパー付きのものである。そして金属缶に水を蓄えて水溜とし、金属缶に金属ワッシャを取り付け、MEAの対極側のカーボンペーパーを金属ワッシャ上に配置し、金属ワッシャを介して対極を金属缶に導通させる。検知極側のカーボンペーパーに接触するように、上部金属板を配置し、上部金属板をMEA側へ押圧するように、ガスケットを金属缶と上部金属板との間に取り付け、ガスケットからの押圧で上部金属板と検知極側のカーボンペーパーとの導通を保ち、同時に対極側のカーボンペーパーと金属ワッシャ、及び金属ワッシャと金属缶との導通を保つ。これと同時に、ガスケットで水溜と外気との通気を遮断し、金属ワッシャに設けた細孔から,MEAへ水蒸気を供給し、上部金属板から検知極へ検出対象ガスを供給する(米国特許5650054)。
【0003】
このようなガスセンサで、金属缶を横倒しにした状態で、急激に周囲温度が増すと、金属缶内の空気が膨張し、水溜の水を加圧して細孔から水をMEA側へ押し出すことになる。そしてMEAの電極は、水に濡れると特性が変化するおそれがある。このような問題は、温度変化やガスセンサの姿勢の変化などにより、水溜内の水が動き回ることにより生じる。
【0004】
【発明の課題】
この発明の基本的課題は、水溜内の水がセンサ本体へ接触することを防止することにある(請求項1〜6)。
この発明の追加の課題は、ガスセンサに衝撃が加わった際に、水溜パックが外ケースに衝突して破れることを防止することにある(請求項3)。
この発明の追加の課題はまた、水溜パックの水蒸気透過性を制御することにより、センサ本体の加湿速度を制御し、かつ水溜パックの水の消耗を制限することにある(請求項5)。
この発明の追加の課題はまた、対極側に検出対象ガスが回り込んで、ガスセンサの出力が低下することを防止することにある(請求項6)。
【0005】
【発明の構成】
この発明のプロトン導電体ガスセンサは、水溜に収容した水からの水蒸気を、少なくとも検知極と対極とプロトン導電体膜とを有するセンサ本体へ供給し、検知極と対極間の電気的出力から検出対象ガスを検出するようにしたセンサにおいて、前記水溜を、水を不透過に保持して水蒸気を所定の速度で透過させるための合成樹脂フィルムの水溜パックと、該水溜パックを保持した外ケースとで構成することを特徴とする(請求項1)。
【0006】
好ましくは、前記合成樹脂フィルムを熱可塑性樹脂のフィルムとし(請求項2)、特に好ましくは、熱可塑性のポリオレフィン樹脂のフィルムとする。
また好ましくは、前記外ケースに対して水溜パックが動き回ることを防止するように、外ケースに対する水溜パックの移動を制限するための手段を設ける(請求項3)。この手段は例えば、発泡体やスポンジ、あるいは水溜パックを固定する接着剤や粘着材とする。ここで特に好ましくは、水溜パックとセンサ本体との間にガススペースが生じるように、水溜泊のおおよその位置を定める。
【0007】
この発明のガス検出方法では、水を不透過に保持して、水蒸気を透過させるための、合成樹脂フィルムの水溜パックを外ケース内に収容すると共に、該外ケースに、少なくとも検知極と対極とプロトン導電体膜とを有するセンサ本体を取り付けて、該水溜パックからの水蒸気でセンサ本体を加湿し、かつ前記検知極と対極との間の電気的出力からガスを検出する(請求項4)。
【0008】
好ましくは、前記水溜パックの水蒸気透過性を制御することにより、水溜パックからのセンサ本体の加湿速度を所定の値に制御する(請求項5)。
また好ましくは、前記センサ本体を、検知極側が周囲雰囲気側に配置され、対極側が水溜パックに近い側に配置されるように配置し、かつセンサ本体の対極側へ回り込んだ検出対象ガスを、前記外ケース内へ逃がすように、前記外ケースにセンサ本体を取り付けて、対極側への検出対象ガスの回り込みを防止する(請求項6)。
【0009】
【発明の作用と効果】
この発明では、水溜パックに水を封じ込めるので、センサ本体が液体の水にさらされることがない(請求項1〜6)。ここで水溜パックの合成樹脂フィルムの水蒸気透過率を制御すると、水の蒸発速度を制限し、外ケースの気密性が低い場合などにも、水溜が作用する時間を長くできる。
【0010】
なお水溜パックに保持する水は、液体の水に限らず、吸水性ポリマーやシリカゲルなどに吸収させてゲル化した水、グリセリン等の腐敗防止剤、あるいは塩化カルシウム等の潮解剤を添加した水などでも良い。また水溜パックに用いる合成樹脂フィルムを熱可塑性樹脂のフィルムとすると、簡単にパックの口を融着して封口できる(請求項2)。
【0011】
ガスセンサが落下する、あるいはガスセンサに周期的な振動が加わる等により、水溜パックが外ケースに衝突すると、水溜パックが破れる恐れがある。そこで外ケースに対する水溜パックの移動を制限すると、落下や振動により水溜パックが破れることを防止できる(請求項3)。ここで好ましくは、センサ本体と水溜パックとの間で、外ケースに隙間が生じるように、水溜パックのおおよその位置を制限する。このようにすると、この隙間が水蒸気を供給するためのバッファとなり、ほぼ所定の相対湿度の水蒸気をセンサ本体へ供給できる。
【0012】
水溜パックの水蒸気透過性は、広い範囲で制御できる。例えば多孔質のポリオレフィン樹脂を用いると、極めて大きな水蒸気透過率を得ることができ、外ケース内の相対湿度を、水溜パックの外側でもほぼ100%に保つことができる。これに対して熱可塑性樹脂の材料を、塩化ビニルや塩化ビニリデン等の水蒸気透過率の小さなポリオレフィン樹脂とすると、外ケース内の相対湿度を例えば60〜80%程度に保つことができる。外ケース内の水溜パックの外側での相対湿度を100%よりも低くすると、水溜パックの寿命はそれに応じて長くなる。また外ケースからセンサ本体へ水蒸気を供給するための部位をより大きくでき、小さな部位からセンサ本体を加湿する場合よりも、センサ本体を均一に加湿できる。このため水溜パックの水蒸気透過性を制御することにより、水溜パックからセンサ本体への加湿速度を所定の値に制御できる(請求項5)。
【0013】
水を水溜パックに封じてあるので、外ケース内とセンサ本体の対極側の周囲との通気性を高めることができる。すると、検知極側からプロトン導電体膜の反対側へ回り込んだ検出対象ガスを、外ケース内に逃がし、外ケースを余分の検出対象ガスに対するバッファとして用いることができる。このようにすると、検知極の反対側に検出対象ガスが回り込んだ場合でも、ガスセンサの出力の低下を防止あるいは小さくできる(請求項6)。
【0014】
【実施例】
図1〜図6に、実施例のプロトン導電体ガスセンサを示す。図1〜図3に最初の実施例を示すと、2はプロトン導電体を用いたガスセンサで、4はスチールやステンレス等を用いた金属缶で、6は水溜パックである。水溜パック6の材料には熱可塑性の合成樹脂の袋を用い、例えば水蒸気透過率の高い袋では、ポリプロピレンやポリエチレン等のポリオレフィンフィルムを延伸して多孔質としたフィルムの袋がある。またポリエチレンやポリプロピレンに限らず、多孔質のフッ素樹脂ポリマーのフィルム等を用いても、水蒸気透過性の高い水溜パック6が得られる。水溜パック6からの水の蒸発速度を小さくするためには、ポリ塩化ビニルやポリ塩化ビニリデン等の水蒸気透過率の低い樹脂のフィルムを用いれば良く、極端な場合、ポリ塩化ビニルやポリ塩化ビニリデン等のフィルムにアルミニウムフィルムなどを積層してもよい。これらの樹脂はいずれも、熱可塑性のポリオレフィン樹脂である。そして水を水溜パック6内に収容することにより、液体の水がプロトン導電体膜やその電極に触れることがなくなり、水や水への添加物による被毒を防止し、水溜パック6からの水蒸気の蒸発速度を制御できる。水溜パック6の合成樹脂フィルムの融着部7は、水溜パック6を閉じるためのものである。なお水溜パック6内には水のないエアスペースが実質的に残らないようにし、水溜パック6内で水が動いてパックのフィルムを破らないようにする。
【0015】
8は発泡ポリスチレン等の発泡体で、水溜パック6から見てセンサ本体側(上側)に配置して、水溜パック6の位置を金属缶4の下側にほぼ固定する。なお発泡体8で水溜パック6の位置をほぼ固定する代わりに、水溜パック6の底部や側部を金属缶4に粘着剤や接着剤等で取り付けても良い。さらに発泡体8に代えて、スポンジ状のクッション等を配置しても良い。水溜パック6の上部の発泡体8が占めるスペースは、水溜パック6から蒸発した水蒸気で加湿された空気のバッファとなる。
【0016】
金属缶4の上部に水蒸気導入孔10を設け、12はMEAで、センサ本体に対応する。MEA12の構造を図2に示すと、14はプロトン導電体膜で、15は検知極、16は対極で、17,18はカーボンペーパーである。プロトン導電体膜14や電極15,16及びカーボンペーパー17,18の膜厚は例えば各20μmとし、プロトン導電体膜14にはSPE(固体高分子プロトン導電体)を用いる。検知極15や対極16の組成は例えば、Ptを担持したカーボン(重量比で、Pt:カーボン=1:4)60重量%に、20重量%のSPEと、粘結剤のフッ素樹脂20重量%とを混練したものとする。対極16の触媒活性を検知極15よりも低下させて、対極16側へ回り込んだ検出対象ガスの解離反応が生じないようにしても良い。カーボンペーパー17,18は、炭素繊維の方向がMEA12の厚さ方向と直角で、MEA12の厚さ方向と直角な方向に対して通気性や導電性が高く、炭素繊維に少量のフッ素樹脂を添加して疎水化したものを用いる。好ましくは、対極側のカーボンペーパー18にPt等の触媒を担持させ、金属缶4内へ拡散した検出対象ガスを、プロトン導電体膜内のプロトン移動を生じさせずに除去する。ここではプロトン導電体膜14の一方に検知極15を、反対側に対極16を配置した2極のものとしたが、検知極と対極と参照極の3極を設けたものとしても良い。
【0017】
20は金属蓋で、22は金属板で、24はガス導入用の細孔、26は活性炭やゼオライト等のフィルタ材で、金属蓋20と金属板22との間に充填し、28はMEA12の検知極15側へ検出対象ガスを導入するためのガス導入孔である。30はガスケットで、金属蓋20と金属缶4との間の気密性を確保し、32はかしめ部で、金属蓋20を金属缶4に対してかしめて固定すると共に、金属蓋20と検知極15との電気的接続と、対極16と金属缶4との間の電気的接続を確保するためのものである。MEA12とガスケット30との間には、隙間31が生じやすく、これはガスケット30の内径とMEA12の外径とを正確に一致させることが難しいためである。
【0018】
実施例の動作を説明する。CO等の検出対象ガスは、細孔24からフィルタ材26を介してガス導入孔28を通り、ガス導入孔28、あるいは細孔24で通気性を制限し、MEA12へ供給する。このためMEA12では、検出対象ガスの供給は拡散律速になっている。細孔24を金属板22の側面部に複数個設け、ガス導入孔28をMEA12の中心部に1個設ける、あるいはガス導入孔28をMEA12の周辺部に複数個設け、細孔24を金属板22の頂部に1個設ける等により、検出対象ガスがフィルタ材26の各部分をまんべんなく通過するようにし、フィルタ材26の寿命を延ばす。このため、細孔24とガス導入孔28とを、ガスセンサ2の上下方向(軸方向)に関して、一直線上に揃わない様に配置する。MEA12に達した検出対象ガスは、検知極15側のカーボンペーパー17に沿って図1の左右方向(軸方向と直角な半径方向)に拡散し、検知極15に供給される。これに伴って検知極15では、COのH2Oによる酸化が生じ、COの酸化反応で生じたプロトンがプロトン導電体膜14を移動し、対極16で酸素と反応してH2Oに再生する。そして金属缶4と金属板22との間を小さな負荷抵抗を介して接続すると、プロトン導電体膜14を流れる電流は負荷抵抗を流れ、これはCO濃度に比例した出力となる。
【0019】
水蒸気は、水溜パック6を透過して、この時合成樹脂フィルムの水蒸気透過性により透過速度が定まり、水蒸気導入孔10から対極16側のカーボンペーパー18に入り、カーボンペーパー内をMEA12の厚さ方向と直角な方向に拡散し、対極16に供給される。そして水蒸気は対極16から、プロトン導電体膜14や検知極15まで拡散し、外気との湿度差に応じて、ガス導入孔28から外気側へと放出される。
【0020】
水蒸気導入孔10の通気性を、ガス導入孔28の通気性よりも大きくする。また水溜パック6の外側での相対湿度を100%付近に保つように、水溜パック6の水蒸気透過性を定めても良いが、水溜パック6の外側での相対湿度を60〜80%程度に保つように、水蒸気透過性を定めることもできる。すると発泡体8を収容した部分での相対湿度も約60〜80%に保たれ、MEA12での相対湿度も60〜80%程度に保たれる。このように、大きな水蒸気導入孔10から、相対湿度が100%よりも低い加湿空気をMEA12に均一に供給でき、これに伴って水の消費量を小さくできる。何れの場合も、水溜パック6を用いることにより、水蒸気の蒸発速度は減少し、これに伴って水溜として作用する寿命を長くできる。
【0021】
プロトン導電体ガスセンサでの問題点として、検知極15側のカーボンペーパー17内を拡散したCO等の検出対象ガスが、隙間31から対極16側へと拡散することがある。これに対して実施例では、水蒸気導入孔10を大きくできるので、水溜パック6の上部の発泡体8を収容した空間へ、隙間31から拡散した検出対象ガスを逃がすことができる。このため発泡体8の部分の空間が、余分の検出対象ガスに対するバッファとなり、余分の検出対象ガスは金属缶4内へ拡散して、対極へ回り込んだガスにより出力が低下することを防止できる。また発泡体8を収容した空間の空気は、MEA12へ供給する加湿空気のバッファでもあり、水溜パック6のフィルムが直接水蒸気導入孔10に接触する場合よりも、均一に加湿空気(水蒸気)を供給できる。
【0022】
図3に、ガスセンサ2を横倒しにした姿を示す。水溜パック6を用いず、金属缶4内に直接水を蓄えると、水面は水蒸気導入孔10よりも上に達し、ここでガスセンサ2の温度が急激に上昇した場合、水面よりも上の空気が膨張するので、水は水蒸気導入孔10からMEA12側へ押し出され、MEA12が水で濡れることがある。このようなことは、検知極15や対極16の活性を変動させ、かつ水を消耗する。しかしながら水を水溜パック6内に収容すると、ガスセンサ2を横倒しにしても、液体の水が水蒸気導入孔10からMEA12側へ流れ出すことがない。また発泡体8を設けると、周囲温度が急激に低下した場合に、水溜パック6内の水温が下がるのに時間がかかっても、過飽和の水蒸気がMEA12に結露するのを防止できる。
【0023】
図4に変形例のガスセンサ42を示すと、46は隙間31の付近に設けた細孔で、MEA12から隙間31へ回り込んだ検出対象ガスを水溜パック6の上側のバッファスペースへ逃がすためのものである。また44は両面テープ等を用いた粘着部で、水溜パック6を金属缶4の下側にほぼ固定するためのものである。
【0024】
図5,図6に、第2の実施例のガスセンサ52を示す。54は非透湿パックで、例えば図6に示す様に、ポリエチレンやポリプロピレン等の熱可塑性フィルム55にアルミニウムフィルム56等をラミネートして、水蒸気透過性を極端に小さくしたたフィルムの袋である。そして非透湿パック54の内部に、水溜パック6を収容する。非透湿パック54は水蒸気透過性が低いが、それでも液体の水に直に接触した場合、僅かな水蒸気透過性があり、これはアルミニウムフィルム56の小さな細孔を介して水蒸気が逃げるのを防止し難いためである。このため、非透湿パック54内に例えば5cmの水を直接保持した場合、砂漠等の乾燥した雰囲気では、3年以内に水が失われる可能性がある。そこで、水溜パック6を非透湿パック54内に収容し、水溜パック6の水蒸気透過性を制限し、水溜としての寿命を延長する。
【0025】
水溜パック6は、粘着部44で非透湿パック54の内側下部に取り付けられ、その上部に隙間60が残る。62は透湿部で、図6に示すように、アルミニウムフィルム56をカットした開口63と、それに連通する熱可塑性フィルム55の開口64とからなっている。なお開口63,64は同径でもよく、あるいは熱可塑性フィルム55自体の水蒸気透過性を利用し、開口64は設けなくても良い。
【0026】
66はセンサ本体で、図6に示すようにMEA12の両側にリード67,68を配置し、これらを熱収縮フィルム72,73で挟み込んで、熱収縮フィルム72,73の収縮により、リード67とMEA12及びリード68とMEA12との導電性が得られるようにする。コンタクト部74,76は、例えばMEA12と同じサイズの板状で、リード67,68とMEA12との電気的コンタクトを得る部分である。そしてセンサ本体66は、例えば非透湿パック54側の熱収縮フィルム73を、熱可塑性フィルム55に融着あるいは接着すること等により、取り付ける。熱収縮フィルム72,73は、リード68とMEA12とのコンタクト並びにMEA12とリード67とのコンタクトを確保し、かつガスや水蒸気の導入経路を規制するためのもので、これらのコンタクトや導入経路を別の手法で得る場合には設けなくても良い。70はフィルタで、活性炭やシリカゲルあるいはゼオライト等からなり、被毒性のガスやエタノール,NOx等の干渉ガスを除去する。
【0027】
コンタクト部74には小径のガス導入孔78があり、MEA12が拡散律速となるように検出対象ガスを導入する。コンタクト部76には例えば複数個の水蒸気導入孔79があり、MEA12に均一に加湿した空気を導入する。複数個の水蒸気導入孔79をMEA12の周辺部に設けることに代えて、MEA12の中心部に、ガス導入孔78よりも大径の水蒸気導入孔を設けても良い。80は細孔で、ガス導入孔78に連通し、細孔81は水蒸気導入孔79に連通している。なおセンサ本体66は、図5の鎖線で示すように、非透湿パック54の内側で、水溜6の上側に配置してもよい。
【0028】
第2の実施例の作用を示す。非透質パック54は僅かな水蒸気透過性があり、水溜パック6を用いないと、短時間で水を消耗することがある。これに対して水溜パック6で水蒸気透過性を制限すると、水溜としての寿命を例えば3年以上に延長できる。検出対象ガスは、フィルタ70から細孔80,ガス導入孔78を介してMEA12に接触し、MEA12の側面から対極側へ流れ込むことがある。そこで対極側へ流れ込んだ検出対象ガスを、開口64から、非透湿パック54の隙間60へ流れ込ませ、この部分をバッファとする。
【0029】
実施例では、対極側のカーボンペーパー18にPt等の触媒を担持し、対極側へ回り込んだ検出対象ガスを除去する。しかしながら検出対象ガスの除去用の触媒は、水溜パック6の上部のスペース等に設けてもよい。実施例では、液体の水が動き回りMEA12に接触することを防止でき、また水溜パック6の水蒸気透過性を制御(選択)し、図5,図6の非透湿パック54のように、外ケースの気密性が不十分な場合でも、水溜の寿命を延ばすことができる。またMEA12に供給する水蒸気の相対湿度を100%よりも低くでき、相対湿度が例えば60〜80%程度の空気をより広い範囲からMEA12へ均一に供給し、MEA12全体を均一に加湿できる。水溜パック6に加わる衝撃等は発泡体8で吸収し、あるいは粘着部44で水溜パック6を固定し、水溜パック6が破損するのを防止できる。隙間31等により対極側へ回り込む検出対象ガスは、水溜パック6の上部の発泡体8の空間や隙間60等に逃がすことができ、検出対象ガスが対極側に回り込むことによる出力の低下を防止できる。水は水溜パック6に収容しているので、MEA12が液体の水で濡れることを防止できる。
【図面の簡単な説明】
【図1】 実施例のガスセンサの鉛直方向断面図
【図2】 実施例で用いたMEAの断面図
【図3】 実施例のガスセンサが横倒れになった際の状態を示す断面図
【図4】 変形例のガスセンサの鉛直方向断面図
【図5】 第2の実施例のガスセンサの水平方向断面図
【図6】 第2の実施例のガスセンサの要部拡大断面図
【符号の説明】
2 ガスセンサ
4 金属缶
6 水溜パック
7 融着部
8 発泡体
10 水蒸気導入孔
12 MEA
14 プロトン導電体膜
15 検知極
16 対極
17,18 カーボンペーパー
20 金属蓋
22 金属板
24 細孔
26 フィルタ材
28 ガス導入孔
30 ガスケット
31 隙間
32 かしめ部
42 ガスセンサ
44 粘着部
46 細孔
52 ガスセンサ
54 非透湿パック
55 熱可塑性フィルム
56 アルミニウムフィルム
60 隙間
62 透湿部
63,64 開口
66 センサ本体
67,68 リード
70 フィルタ
72,73 熱収縮フィルム
74,76 コンタクト部
78 ガス導入孔
79 水蒸気導入孔
80,81 細孔
[0001]
[Field of the Invention]
The present invention relates to a gas sensor using a proton conductor membrane, and more particularly to improvement of the water reservoir.
[0002]
[Prior art]
In a gas sensor using a proton conductor, for example, electrode films are stacked on both sides of a proton conductor film, one of which is a detection electrode and the other is a counter electrode. The detection electrode and the counter electrode are formed on, for example, hydrophobic carbon paper, and the carbon paper functions as a current collector from the electrode and as a gas channel for supplying detection target gas, oxygen, and water vapor to the entire electrode surface. A composite of the proton conductor film, the detection electrode, and the counter electrode is referred to as MEA (membrane electrode assembly). In principle, the MEA has carbon paper attached to both the detection electrode and the counter electrode. Then, water is stored in a metal can to form a water reservoir, a metal washer is attached to the metal can, a carbon paper on the counter electrode side of the MEA is disposed on the metal washer, and the counter electrode is conducted to the metal can through the metal washer. Place the upper metal plate in contact with the carbon paper on the detection electrode side, and attach the gasket between the metal can and the upper metal plate so that the upper metal plate is pressed to the MEA side. The continuity between the upper metal plate and the carbon paper on the detection electrode side is maintained, and at the same time, the continuity between the carbon paper on the counter electrode side and the metal washer, and between the metal washer and the metal can are maintained. At the same time, the gaskets block the ventilation between the water reservoir and the outside air, supply water vapor to the MEA from the pores provided in the metal washer, and supply the detection target gas from the upper metal plate to the detection electrode (US Pat. No. 5650054). .
[0003]
With such a gas sensor, when the ambient temperature suddenly increases with the metal can laid sideways, the air in the metal can expands, pressurizing the water in the water reservoir and pushing the water from the pores to the MEA side. Become. The characteristics of the MEA electrode may change when wetted with water. Such a problem occurs when water in the water pool moves around due to a change in temperature, a change in posture of the gas sensor, or the like.
[0004]
[Problems of the Invention]
A basic object of the present invention is to prevent water in a water reservoir from coming into contact with a sensor body (claims 1 to 6).
An additional object of the present invention is to prevent the water reservoir pack from colliding with the outer case and being torn when an impact is applied to the gas sensor.
Another object of the present invention is to control the moisture permeability of the sensor body by controlling the water vapor permeability of the water reservoir pack and to limit the water consumption of the water reservoir pack.
Another object of the present invention is to prevent the gas to be detected from flowing around to the counter electrode side and thereby reducing the output of the gas sensor (claim 6).
[0005]
[Structure of the invention]
The proton conductor gas sensor of the present invention supplies water vapor from water stored in a water reservoir to a sensor body having at least a detection electrode, a counter electrode, and a proton conductor film, and detects an object to be detected from an electrical output between the detection electrode and the counter electrode. In the sensor that detects gas, the water reservoir includes a water reservoir pack of a synthetic resin film that keeps water impermeable and allows water vapor to pass at a predetermined speed, and an outer case that holds the water reservoir pack. It is characterized by comprising (claim 1).
[0006]
Preferably, the synthetic resin film is a thermoplastic resin film (Claim 2), and particularly preferably a thermoplastic polyolefin resin film.
Preferably, means for restricting the movement of the water reservoir pack with respect to the outer case is provided so as to prevent the water reservoir pack from moving around with respect to the outer case. This means is, for example, an adhesive or a sticking material for fixing a foam, a sponge, or a water reservoir pack. Here, it is particularly preferable that the approximate position of the water reservoir is determined so that a gas space is generated between the water reservoir pack and the sensor body.
[0007]
In the gas detection method of the present invention, a water reservoir pack of a synthetic resin film for holding water impermeable and allowing water vapor to pass through is accommodated in the outer case, and at least a detection electrode and a counter electrode are provided in the outer case. A sensor main body having a proton conductor film is attached, the sensor main body is humidified with water vapor from the water reservoir pack, and a gas is detected from an electrical output between the detection electrode and the counter electrode.
[0008]
Preferably, the humidification rate of the sensor body from the water reservoir pack is controlled to a predetermined value by controlling the water vapor permeability of the water reservoir pack.
Preferably, the sensor main body is arranged such that the detection electrode side is arranged on the ambient atmosphere side, the counter electrode side is arranged on the side close to the water reservoir pack, and the detection target gas that wraps around the counter electrode side of the sensor main body, A sensor main body is attached to the outer case so as to escape into the outer case, thereby preventing detection target gas from entering the counter electrode side (Claim 6).
[0009]
[Operation and effect of the invention]
In the present invention, since the water is sealed in the water reservoir pack, the sensor main body is not exposed to liquid water (claims 1 to 6). Here, when the water vapor transmission rate of the synthetic resin film of the water reservoir pack is controlled, the evaporation rate of the water is limited, and the time for which the water reservoir acts can be lengthened even when the airtightness of the outer case is low.
[0010]
The water retained in the sump pack is not limited to liquid water, but water that has been absorbed into a water-absorbing polymer or silica gel, gelled, anti-corrosive agent such as glycerin, or water added with a deliquescent agent such as calcium chloride. But it ’s okay. If the synthetic resin film used for the water reservoir pack is a thermoplastic resin film, the mouth of the pack can be easily fused and sealed (Claim 2).
[0011]
If the water pack collides with the outer case due to the gas sensor falling or periodic vibrations being applied to the gas sensor, the water pack may be broken. Therefore, if the movement of the water pool pack with respect to the outer case is restricted, it is possible to prevent the water pool pack from being torn by dropping or vibration (claim 3). Here, preferably, the approximate position of the water pool pack is limited so that a gap is formed in the outer case between the sensor body and the water pool pack. If it does in this way, this gap will serve as a buffer for supplying water vapor, and it will be possible to supply water vapor with a substantially predetermined relative humidity to the sensor body.
[0012]
The water vapor permeability of the water reservoir pack can be controlled in a wide range. For example, when a porous polyolefin resin is used, a very large water vapor transmission rate can be obtained, and the relative humidity in the outer case can be kept almost 100% even outside the water reservoir pack. On the other hand, when the thermoplastic resin material is a polyolefin resin having a low water vapor transmission rate such as vinyl chloride or vinylidene chloride, the relative humidity in the outer case can be maintained at, for example, about 60 to 80%. If the relative humidity outside the water pack in the outer case is lower than 100%, the life of the water pack is increased accordingly. Further, the part for supplying water vapor from the outer case to the sensor body can be made larger, and the sensor body can be humidified more uniformly than when the sensor body is humidified from a small part. For this reason, by controlling the water vapor permeability of the water reservoir pack, the humidification rate from the water reservoir pack to the sensor body can be controlled to a predetermined value.
[0013]
Since the water is sealed in the water reservoir pack, the air permeability between the outer case and the periphery on the counter electrode side of the sensor body can be enhanced. Then, the detection target gas that has circulated from the detection electrode side to the opposite side of the proton conductor film can escape into the outer case, and the outer case can be used as a buffer for the extra detection target gas. In this way, even when the detection target gas circulates on the opposite side of the detection electrode, it is possible to prevent or reduce the decrease in the output of the gas sensor (claim 6).
[0014]
【Example】
1 to 6 show a proton conductor gas sensor according to an embodiment. 1 to 3 show a first embodiment, 2 is a gas sensor using a proton conductor, 4 is a metal can using steel or stainless steel, and 6 is a water reservoir pack. A thermoplastic synthetic resin bag is used as the material of the water pool pack 6. For example, a bag having a high water vapor transmission rate includes a film bag made of a polyolefin film such as polypropylene or polyethylene that is made porous. Further, not only polyethylene and polypropylene but also a porous fluororesin polymer film or the like can be used to obtain the water reservoir pack 6 having high water vapor permeability. In order to reduce the evaporation rate of water from the water reservoir pack 6, a resin film having a low water vapor transmission rate such as polyvinyl chloride or polyvinylidene chloride may be used. In extreme cases, polyvinyl chloride, polyvinylidene chloride, etc. An aluminum film or the like may be laminated on this film. All of these resins are thermoplastic polyolefin resins. By storing the water in the water reservoir pack 6, the liquid water is prevented from touching the proton conductor membrane and its electrodes, preventing poisoning due to water and additives to the water, and water vapor from the water reservoir pack 6. Can control the evaporation rate. The fused portion 7 of the synthetic resin film of the water reservoir pack 6 is for closing the water reservoir pack 6. It should be noted that a waterless air space is not substantially left in the water reservoir pack 6 so that water does not move in the water reservoir pack 6 to break the pack film.
[0015]
Reference numeral 8 denotes a foamed material such as expanded polystyrene, which is disposed on the sensor body side (upper side) when viewed from the water reservoir pack 6, and substantially fixes the position of the water reservoir pack 6 to the lower side of the metal can 4. Instead of substantially fixing the position of the water reservoir pack 6 with the foam 8, the bottom portion or side portion of the water reservoir pack 6 may be attached to the metal can 4 with an adhesive or an adhesive. Further, instead of the foam 8, a sponge-like cushion or the like may be arranged. The space occupied by the foam 8 at the top of the water pool pack 6 becomes a buffer for air humidified with water vapor evaporated from the water pool pack 6.
[0016]
A water vapor introduction hole 10 is provided in the upper part of the metal can 4, and 12 is an MEA, which corresponds to the sensor body. The structure of the MEA 12 is shown in FIG. 2. 14 is a proton conductor film, 15 is a detection electrode, 16 is a counter electrode, and 17 and 18 are carbon paper. The film thicknesses of the proton conductor film 14, the electrodes 15, 16 and the carbon paper 17, 18 are each 20 μm, for example, and SPE (solid polymer proton conductor) is used for the proton conductor film 14. The composition of the sensing electrode 15 and the counter electrode 16 is, for example, 60% by weight of carbon carrying Pt (weight ratio, Pt: carbon = 1: 4), 20% by weight of SPE, and 20% by weight of a binder fluororesin. And kneaded. The catalytic activity of the counter electrode 16 may be made lower than that of the detection electrode 15 so that the dissociation reaction of the detection target gas that has entered the counter electrode 16 side does not occur. The carbon papers 17 and 18 have a carbon fiber direction perpendicular to the thickness direction of the MEA 12 and high air permeability and conductivity in the direction perpendicular to the thickness direction of the MEA 12, and a small amount of fluororesin is added to the carbon fiber. Then, use a hydrophobized one. Preferably, a catalyst such as Pt is supported on the carbon paper 18 on the counter electrode side, and the detection target gas diffused into the metal can 4 is removed without causing proton transfer in the proton conductor film. Here, the detection electrode 15 is arranged on one side of the proton conductor film 14 and the counter electrode 16 is arranged on the opposite side, but three detection electrodes, a counter electrode, and a reference electrode may be provided.
[0017]
20 is a metal lid, 22 is a metal plate, 24 is a pore for introducing gas, 26 is a filter material such as activated carbon or zeolite, and is filled between the metal lid 20 and the metal plate 22, and 28 is a MEA 12. This is a gas introduction hole for introducing the detection target gas to the detection electrode 15 side. Reference numeral 30 denotes a gasket that secures airtightness between the metal lid 20 and the metal can 4, and 32 denotes a caulking portion that caulks and fixes the metal lid 20 to the metal can 4. 15, and the electrical connection between the counter electrode 16 and the metal can 4 is ensured. A gap 31 is likely to occur between the MEA 12 and the gasket 30 because it is difficult to accurately match the inner diameter of the gasket 30 and the outer diameter of the MEA 12.
[0018]
The operation of the embodiment will be described. A detection target gas such as CO passes through the gas introduction hole 28 from the pore 24 through the filter material 26, restricts air permeability through the gas introduction hole 28 or the pore 24, and supplies the gas to the MEA 12. For this reason, in the MEA 12, the supply of the detection target gas is diffusion-controlled. A plurality of pores 24 are provided in the side surface portion of the metal plate 22, and one gas introduction hole 28 is provided in the central portion of the MEA 12, or a plurality of gas introduction holes 28 are provided in the peripheral portion of the MEA 12, and the pores 24 are provided in the metal plate. By providing one at the top of 22 or the like, the gas to be detected passes through each part of the filter material 26 evenly, thereby extending the life of the filter material 26. For this reason, the fine holes 24 and the gas introduction holes 28 are arranged so as not to be aligned on the vertical direction (axial direction) of the gas sensor 2. The detection target gas that has reached the MEA 12 diffuses in the left-right direction (radial direction perpendicular to the axial direction) in FIG. 1 along the carbon paper 17 on the detection electrode 15 side, and is supplied to the detection electrode 15. Along with this, CO is oxidized by H 2 O at the detection electrode 15, and protons generated by the CO oxidation reaction move through the proton conductor film 14 and react with oxygen at the counter electrode 16 to be regenerated to H 2 O. When the metal can 4 and the metal plate 22 are connected via a small load resistance, the current flowing through the proton conductor film 14 flows through the load resistance, which is an output proportional to the CO concentration.
[0019]
The water vapor passes through the water storage pack 6, and at this time, the transmission speed is determined by the water vapor permeability of the synthetic resin film, enters the carbon paper 18 on the counter electrode 16 side from the water vapor introduction hole 10, and the inside of the carbon paper is in the thickness direction of the MEA 12. And is supplied to the counter electrode 16. Then, the water vapor diffuses from the counter electrode 16 to the proton conductor film 14 and the detection electrode 15 and is released from the gas introduction hole 28 to the outside air side according to the humidity difference from the outside air.
[0020]
The air permeability of the water vapor introduction hole 10 is made larger than the air permeability of the gas introduction hole 28. Further, the water vapor permeability of the water reservoir pack 6 may be determined so as to keep the relative humidity outside the water reservoir pack 6 near 100%, but the relative humidity outside the water reservoir pack 6 is maintained at about 60 to 80%. Thus, water vapor permeability can also be determined. Then, the relative humidity at the portion containing the foam 8 is also maintained at about 60 to 80%, and the relative humidity at the MEA 12 is also maintained at about 60 to 80%. Thus, the humidified air having a relative humidity lower than 100% can be uniformly supplied to the MEA 12 from the large water vapor introducing hole 10, and the consumption of water can be reduced accordingly. In any case, by using the water reservoir pack 6, the vaporization rate of the water vapor is reduced, and accordingly, the life acting as a water reservoir can be extended.
[0021]
As a problem in the proton conductor gas sensor, a detection target gas such as CO diffused in the carbon paper 17 on the detection electrode 15 side may diffuse from the gap 31 to the counter electrode 16 side. On the other hand, in the embodiment, since the water vapor introduction hole 10 can be enlarged, the detection target gas diffused from the gap 31 can be released to the space containing the foam 8 at the upper part of the water reservoir pack 6. For this reason, the space of the part of the foam 8 serves as a buffer for the extra detection target gas, and the extra detection target gas can be prevented from diffusing into the metal can 4 and lowering the output due to the gas that has entered the counter electrode. . The air in the space containing the foam 8 is also a buffer for humidified air to be supplied to the MEA 12 and supplies humidified air (water vapor) more uniformly than when the film of the water pool pack 6 is in direct contact with the water vapor introduction hole 10. it can.
[0022]
FIG. 3 shows the gas sensor 2 lying on its side. When water is stored directly in the metal can 4 without using the water reservoir pack 6, the water surface reaches above the water vapor introduction hole 10, and when the temperature of the gas sensor 2 suddenly rises, the air above the water surface Since it expands, water is pushed out from the water vapor introduction hole 10 toward the MEA 12 and the MEA 12 may get wet with water. This causes the activity of the detection electrode 15 and the counter electrode 16 to fluctuate and consumes water. However, if water is accommodated in the water reservoir pack 6, liquid water does not flow out from the water vapor introduction hole 10 to the MEA 12 side even if the gas sensor 2 is laid down. In addition, when the foam 8 is provided, it is possible to prevent the supersaturated water vapor from condensing on the MEA 12 even if it takes time for the water temperature in the water sump pack 6 to drop when the ambient temperature rapidly decreases.
[0023]
FIG. 4 shows a gas sensor 42 according to a modified example. 46 is a pore provided in the vicinity of the gap 31 for releasing the detection target gas that has entered the gap 31 from the MEA 12 to the buffer space above the water reservoir pack 6. It is. Reference numeral 44 denotes an adhesive portion using a double-sided tape or the like for substantially fixing the water reservoir pack 6 to the lower side of the metal can 4.
[0024]
5 and 6 show a gas sensor 52 of the second embodiment. Reference numeral 54 denotes a non-moisture permeable pack, for example, as shown in FIG. 6, which is a film bag in which an aluminum film 56 or the like is laminated on a thermoplastic film 55 such as polyethylene or polypropylene to extremely reduce water vapor permeability. The water reservoir pack 6 is accommodated inside the moisture-impermeable pack 54. The moisture-impermeable pack 54 has low water vapor permeability, but still has slight water vapor permeability when in direct contact with liquid water, which prevents water vapor from escaping through the small pores in the aluminum film 56. This is because it is difficult to do. For this reason, when, for example, 5 cm 3 of water is directly held in the moisture-impermeable pack 54, water may be lost within three years in a dry atmosphere such as a desert. Therefore, the water reservoir pack 6 is accommodated in the moisture-impermeable pack 54, the water vapor permeability of the water reservoir pack 6 is limited, and the life as a water reservoir is extended.
[0025]
The water reservoir pack 6 is attached to the inner lower portion of the moisture-impermeable pack 54 with the adhesive portion 44, and a gap 60 remains in the upper portion thereof. Reference numeral 62 denotes a moisture permeable portion, which includes an opening 63 obtained by cutting the aluminum film 56 and an opening 64 of the thermoplastic film 55 communicating therewith as shown in FIG. The openings 63 and 64 may have the same diameter, or the opening 64 may not be provided by utilizing the water vapor permeability of the thermoplastic film 55 itself.
[0026]
Reference numeral 66 denotes a sensor body. Leads 67 and 68 are arranged on both sides of the MEA 12 as shown in FIG. 6, and these are sandwiched between heat shrink films 72 and 73. In addition, conductivity between the lead 68 and the MEA 12 is obtained. The contact portions 74 and 76 are, for example, plates having the same size as the MEA 12 and are portions for obtaining electrical contact between the leads 67 and 68 and the MEA 12. The sensor body 66 is attached by, for example, fusing or adhering the heat shrink film 73 on the moisture-impermeable pack 54 side to the thermoplastic film 55. The heat-shrink films 72 and 73 are for securing the contact between the lead 68 and the MEA 12 and the contact between the MEA 12 and the lead 67 and restricting the introduction path of gas and water vapor. If it is obtained by this method, it may not be provided. A filter 70 is made of activated carbon, silica gel, zeolite, or the like, and removes toxic gases and interference gases such as ethanol and NOx.
[0027]
The contact portion 74 has a small-diameter gas introduction hole 78 and introduces the detection target gas so that the MEA 12 is diffusion-controlled. The contact portion 76 has, for example, a plurality of water vapor introduction holes 79 and introduces uniformly humidified air into the MEA 12. Instead of providing the plurality of water vapor introduction holes 79 in the peripheral part of the MEA 12, a water vapor introduction hole having a diameter larger than that of the gas introduction hole 78 may be provided in the central part of the MEA 12. Reference numeral 80 denotes a pore, which communicates with the gas introduction hole 78, and the pore 81 communicates with the water vapor introduction hole 79. The sensor main body 66 may be disposed above the water reservoir 6 inside the non-moisture permeable pack 54 as indicated by a chain line in FIG.
[0028]
The operation of the second embodiment will be described. The impermeable pack 54 has a slight water vapor permeability, and if the water storage pack 6 is not used, water may be consumed in a short time. On the other hand, if the water vapor permeability is limited by the water reservoir pack 6, the life as the water reservoir can be extended to, for example, 3 years or more. The detection target gas may contact the MEA 12 from the filter 70 through the pore 80 and the gas introduction hole 78 and may flow from the side surface of the MEA 12 to the counter electrode side. Therefore, the detection target gas flowing into the counter electrode is caused to flow from the opening 64 into the gap 60 of the moisture-impermeable pack 54, and this portion is used as a buffer.
[0029]
In the embodiment, a catalyst such as Pt is supported on the carbon paper 18 on the counter electrode side, and the detection target gas that has entered the counter electrode side is removed. However, the catalyst for removing the detection target gas may be provided in the space above the water pool pack 6 or the like. In the embodiment, it is possible to prevent liquid water from moving around and coming into contact with the MEA 12, and to control (select) the water vapor permeability of the water storage pack 6, as in the non-moisture permeable pack 54 of FIGS. 5 and 6. Even when the airtightness of the water is insufficient, the life of the water reservoir can be extended. Moreover, the relative humidity of the water vapor supplied to the MEA 12 can be lower than 100%, and air having a relative humidity of, for example, about 60 to 80% can be uniformly supplied to the MEA 12 from a wider range, so that the entire MEA 12 can be uniformly humidified. The impact applied to the water reservoir pack 6 is absorbed by the foam 8 or the water reservoir pack 6 is fixed by the adhesive portion 44 to prevent the water reservoir pack 6 from being damaged. The detection target gas that wraps around to the counter electrode side due to the gap 31 or the like can escape to the space of the foam 8 above the water reservoir pack 6 or the gap 60 or the like, and can prevent a decrease in output due to the detection target gas wrapping around the counter electrode side. . Since water is accommodated in the water reservoir pack 6, the MEA 12 can be prevented from getting wet with liquid water.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of a gas sensor of an embodiment. FIG. 2 is a sectional view of an MEA used in the embodiment. FIG. 3 is a sectional view showing a state when the gas sensor of the embodiment is laid down. ] Cross-sectional view in the vertical direction of the gas sensor according to the modified example [FIG. 5] Cross-sectional view in the horizontal direction of the gas sensor according to the second embodiment [FIG. 6] Enlarged cross-sectional view of the main part of the gas sensor according to the second embodiment
2 Gas Sensor 4 Metal Can 6 Water Reservoir Pack 7 Fusion Portion 8 Foam 10 Water Vapor Introduction Hole 12 MEA
14 Proton conductor film 15 Detection electrode 16 Counter electrode 17, 18 Carbon paper 20 Metal lid 22 Metal plate 24 Pore 26 Filter material 28 Gas introduction hole 30 Gasket 31 Clearance 32 Caulking part 42 Gas sensor 44 Adhesive part 46 Pore 52 Gas sensor 54 Non Moisture permeable pack 55 Thermoplastic film 56 Aluminum film 60 Gap 62 Moisture permeable portion 63, 64 Opening 66 Sensor body 67, 68 Lead 70 Filter 72, 73 Heat shrink film 74, 76 Contact portion 78 Gas introduction hole 79 Water vapor introduction hole 80, 81 pores

Claims (6)

水溜に収容した水からの水蒸気を、少なくとも検知極と対極とプロトン導電体膜とを有するセンサ本体へ供給し、検知極と対極間の電気的出力から検出対象ガスを検出するようにしたセンサにおいて、
前記水溜を、水を不透過に保持して水蒸気を所定の速度で透過させるための合成樹脂フィルムの水溜パックと、該水溜パックを保持した外ケースとで構成することを特徴とする、プロトン導電体ガスセンサ。
In a sensor that supplies water vapor from water stored in a water reservoir to a sensor body having at least a detection electrode, a counter electrode, and a proton conductor film, and detects a detection target gas from an electrical output between the detection electrode and the counter electrode. ,
The water reservoir is composed of a water reservoir pack of a synthetic resin film for keeping water impermeable and allowing water vapor to pass through at a predetermined speed, and an outer case holding the water reservoir pack. Body gas sensor.
前記合成樹脂フィルムが熱可塑性樹脂のフィルムであることを特徴とする、請求項1のプロトン導電体ガスセンサ。2. The proton conductor gas sensor according to claim 1, wherein the synthetic resin film is a thermoplastic resin film. 前記外ケースに対して水溜パックが動き回ることを防止するように、外ケースに対する水溜パックの移動を制限するための手段を設けたことを特徴とする、請求項1または2のプロトン導電体ガスセンサ。3. The proton conductor gas sensor according to claim 1, further comprising means for restricting movement of the water reservoir pack relative to the outer case so as to prevent the water reservoir pack from moving around with respect to the outer case. 水を不透過に保持して、水蒸気を透過させるための、合成樹脂フィルムの水溜パックを外ケース内に収容すると共に、
該外ケースに、少なくとも検知極と対極とプロトン導電体膜とを有するセンサ本体を取り付けて、該水溜パックからの水蒸気でセンサ本体を加湿し、
かつ前記検知極と対極との間の電気的出力からガスを検出する、ガス検出方法。
While holding the water impermeable and allowing the water vapor to permeate, the synthetic resin film reservoir pack is housed in the outer case,
A sensor body having at least a detection electrode, a counter electrode, and a proton conductor film is attached to the outer case, and the sensor body is humidified with water vapor from the water reservoir pack,
And the gas detection method which detects gas from the electrical output between the said detection electrode and a counter electrode.
前記水溜パックの水蒸気透過性を制御することにより、水溜パックからのセンサ本体の加湿速度を所定の値に制御することを特徴とする、請求項4のガス検出方法。5. The gas detection method according to claim 4, wherein the humidification rate of the sensor body from the water pack is controlled to a predetermined value by controlling the water vapor permeability of the water pack. 前記センサ本体を、検知極側が周囲雰囲気側に配置され、対極側が水溜パックに近い側に配置されるように配置し、
かつセンサ本体の対極側へ回り込んだ検出対象ガスを、前記外ケース内へ逃がすように、前記外ケースにセンサ本体を取り付けて、対極側への検出対象ガスの回り込みを防止することを特徴とする、請求項4または5のガス検出方法。
The sensor body is arranged so that the detection electrode side is arranged on the ambient atmosphere side and the counter electrode side is arranged on the side close to the water reservoir pack,
In addition, the sensor main body is attached to the outer case so that the detection target gas that has entered the counter electrode side of the sensor body escapes into the outer case, thereby preventing the detection target gas from entering the counter electrode side. The gas detection method according to claim 4 or 5.
JP2002029077A 2002-02-06 2002-02-06 Proton conductor gas sensor and gas detection method using the same Expired - Lifetime JP3926164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029077A JP3926164B2 (en) 2002-02-06 2002-02-06 Proton conductor gas sensor and gas detection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029077A JP3926164B2 (en) 2002-02-06 2002-02-06 Proton conductor gas sensor and gas detection method using the same

Publications (2)

Publication Number Publication Date
JP2003232767A JP2003232767A (en) 2003-08-22
JP3926164B2 true JP3926164B2 (en) 2007-06-06

Family

ID=27773555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029077A Expired - Lifetime JP3926164B2 (en) 2002-02-06 2002-02-06 Proton conductor gas sensor and gas detection method using the same

Country Status (1)

Country Link
JP (1) JP3926164B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140911B2 (en) 2005-03-04 2008-08-27 フィガロ技研株式会社 Liquid electrochemical gas sensor
JP2008145223A (en) * 2006-12-08 2008-06-26 Yazaki Corp Liquid electrochemical co gas sensor
JP2008145222A (en) * 2006-12-08 2008-06-26 Yazaki Corp Liquid electrochemical co gas sensor and co gas alarm

Also Published As

Publication number Publication date
JP2003232767A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
US6666963B1 (en) Oxygen sensor
JP6596444B2 (en) Electrochemical cell
US20060292412A1 (en) Thermal-fluids management system for direct methanol fuel cells
CN108780059A (en) Electrochemical sensor
US10816503B2 (en) Electrochemical gas sensor for detecting hydrogen cyanide gas
BR112019000713B1 (en) ELECTROCHEMICAL CELL AND METHOD OF CONSERVING MOISTURE INSIDE AN ELECTROCHEMICAL CELL
US7435321B2 (en) Proton conductor gas sensor
JP3926164B2 (en) Proton conductor gas sensor and gas detection method using the same
US7326489B2 (en) Catalyst design for VRLA batteries
GB2332528A (en) Electrochemical gas sensor without membrane
JP2782837B2 (en) Battery
JP4340218B2 (en) Gas detector
JP2817343B2 (en) Battery
KR20210092287A (en) Catalyst device for lead-acid batteries, and lead-acid batteries
JP2782911B2 (en) Battery
JP2757383B2 (en) Battery
JP2743574B2 (en) Battery
JP2822485B2 (en) Battery
JPH042067A (en) Battery
CN117002704A (en) Integrated reactant tank for scuba and reaction time estimation method
JPH0492373A (en) Gas fuel cell
JPH0287459A (en) Battery
JPH04162374A (en) Battery
JP2010067361A (en) Storing method for membrane element of fuel cell system
JP2000015044A (en) Humidistat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6