JP3926110B2 - Lightweight reinforced porcelain and manufacturing method thereof - Google Patents

Lightweight reinforced porcelain and manufacturing method thereof Download PDF

Info

Publication number
JP3926110B2
JP3926110B2 JP2001056210A JP2001056210A JP3926110B2 JP 3926110 B2 JP3926110 B2 JP 3926110B2 JP 2001056210 A JP2001056210 A JP 2001056210A JP 2001056210 A JP2001056210 A JP 2001056210A JP 3926110 B2 JP3926110 B2 JP 3926110B2
Authority
JP
Japan
Prior art keywords
weight
porcelain
alumina
oxide
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001056210A
Other languages
Japanese (ja)
Other versions
JP2002255627A (en
Inventor
秀治 吉田
和弘 渕野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Prefecture
Original Assignee
Saga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Prefecture filed Critical Saga Prefecture
Priority to JP2001056210A priority Critical patent/JP3926110B2/en
Publication of JP2002255627A publication Critical patent/JP2002255627A/en
Application granted granted Critical
Publication of JP3926110B2 publication Critical patent/JP3926110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度で、かつ軽量化した軽量強化磁器及びその製造方法に関する。
【0002】
【従来の技術】
強化磁器を製造するには、磁器の組成に微細な粒子径のアルミナ粒子を20%〜40%程度、磁器素地中に分散して配合し、磁器素地の強度を増加させる方法が一般にとられている。しかしながら、アルミナ粒子の添加は、アルミナ自身の密度が約4g/cm3もあるためアルミナの配合量が増加するに伴い、磁器素地の嵩密度が増加し、一般に使用されている強化磁器の嵩密度は約2.8g/cm3〜2.9g/cm3と、一般磁器の嵩密度約2.4g/cm3と比べかなり大きくなっている。また、多量のアルミナ粒子が素地中に分散しているため、素地の透光性が大きく減少し、磁器としての美的な付加価値が大きく損なわれる。さらに磁器製品自体の重量が増加し、レストランやホテルで使用されている業務用食器など、また、航空機内で使用される機内食用の食器など磁器製品の運搬や移動時及びその取り扱いにおいて大きな欠点となっている。
【0003】
そのため、それらの欠点を解決し、素地の軽量化を実現するため、焼成中に燃焼し素地中に気孔を形成させる目的で有機物を混入したり、気孔をあらかじめ素地中に形成させる目的で、無機物で耐火性の中空粒子を混入したりしている。しかし、有機物を混入すると陶土の保管期間が長くなった場合、有機物が腐敗して悪臭を放ったり、カビやコケが生えたりして使用できなくなることがある。また、無機物で耐火性の中空粒子を混入した場合は、中空部分すなわち気孔径が大きく十分な素地の強度が得られず、さらに、強度を増加させるために多量のアルミナ粒子を素地中に分散させると、磁器素地の透光性が得られないという問題も生じる。
【0004】
そのため、レストランやホテルで使用されている業務用食器など、また、航空機内で使用される機内食用の食器など強化磁器製品のニーズが増える中、磁器製品の高強度と軽量化の両立、さらに美的付加価値を持った磁器が望まれている。
【0005】
【発明が解決しようとする課題】
本発明は、嵩密度が一般の磁器と同程度もしくはそれ以下であり、しかも平均曲げ強度が一般の磁器より大きい100MPa以上の物性を有し、高い透光性を持った軽量強化磁器の提供とその製造方法の提供を課題とする。
【0006】
【課題を解決するための手段】
本発明の第1の軽量強化磁器は、少なくとも酸化物基準で二酸化珪素25〜60重量%、アルミナ30〜60重量%、五酸化リン5〜20重量%、アルカリ金属酸化物1〜7重量%、アルカリ土類金属酸化物0〜2重量%からなる焼成体素地からなり、該焼成体素地中には径が1〜5μmの微細独立気孔が多数形成され、該焼成体素地の嵩密度が2.6g/cm3 以下で、平均曲げ強度が120MPa以上であることを特徴とする。
【0007】
本発明の第2の軽量強化磁器は、少なくとも酸化物基準で二酸化珪素25〜60重量%、アルミナ30〜60重量%、五酸化リン5〜20重量%、アルカリ金属酸化物1〜7重量%、フッ素177/100.09〜6重量%、アルカリ土類金属酸化物0〜2重量%からなる焼成体素地からなり、該焼成体素地中には径が1〜5μmの微細独立気孔が多数形成され、該焼成体素地の嵩密度が2.5g/cm3 以下で、平均曲げ強度が100MPa以上であることを特徴とする。
【0008】
本発明の第1の軽量強化磁器の製造方法は、珪石、粘土類、長石類、酸化アルミニウムから選ばれると共にリン酸アルミニウムを含有する原料を1200〜1400℃で焼成し、少なくとも酸化物基準で二酸化珪素25〜60重量%、アルミナ30〜60重量%、五酸化リン5〜20重量%、アルカリ金属酸化物1〜7重量%、アルカリ土類金属酸化物0〜2重量%からなり、該焼成体素地中には径が1〜5μmの微細独立気孔が多数形成され、該焼成体素地の嵩密度が2.6g/cm3 以下で、平均曲げ強度が120MPa以上である焼成体素地とすることを特徴とする。
【0009】
本発明の第2の軽量強化磁器の製造方法は、珪石、粘土類、長石類、酸化アルミニウムから選ばれると共にリン酸アルミニウムおよびフッ化アルミニウムを含有する原料を1200〜1400℃で焼成し、少なくとも酸化物基準で二酸化珪素25〜60重量%、アルミナ30〜60重量%、五酸化リン5〜20重量%、アルカリ金属酸化物1〜7重量%、フッ素177/100.09〜6重量%、アルカリ土類金属酸化物0〜2重量%からなり、該焼成体素地中には径が1〜5μmの微細独立気孔が多数形成され、該焼成体素地の嵩密度が2.5g/cm3 以下で、平均曲げ強度が100MPa以上である焼成体素地とすることを特徴とする。
【0010】
【発明の実施の形態】
本発明の第1の軽量強化磁器におけるアルミナは、長石、ペタライト、粘土、イングランドカオリン、オクムラセリサイト、リン酸アルミニウム、酸化アルミニウム、水酸化アルミニウム由来のものとするとよい。
【0011】
アルミナ成分は、焼成後にアルミナ結晶としてそのまま存在して強度の増加に寄与し、またムライト結晶の生成に寄与する。さらに、本発明の軽量強化磁器は、焼成時にリン酸ガラスが形成されることを特徴とするが、アルミナ成分はリン酸ガラス中に熔融してリン酸アルミニウムと共にガラス相形成に寄与し、また、ガラス相の飽和により再結晶化するリン酸アルミニウムの生成に寄与する。本発明の軽量強化磁器にあっては、このリン酸アルミニウムの再結晶化により、強度が増加するものと考えられる。焼成後におけるアルミナ量は、酸化物基準組成で30〜60重量%、好ましくは30〜50重量%、さらに好ましくは35〜45重量%含有させると良い。30重量%未満であると必要な強度が得られず、60重量%以上であると焼結温度が高くなり、素地が磁器化しないという問題が生じる。
【0012】
また、アルミナ源の一部として、粒径1μm〜10μmの酸化アルミニウム粒子を使用すると焼成後にアルミナ結晶としてそのまま存在して強度の増加に寄与するので好ましい。しかしながら、アルミナ成分における酸化アルミニウム粒子の含有量は5重量%〜50重量%、好ましくは10重量%〜40重量%とするとよく、多すぎるとリン酸ガラス相の形成に寄与せず、好ましくない。また、軽量強化磁器の酸化物組成における酸化アルミニウム粒子の含有量は5重量%〜30重量%、好ましくは10重量%〜20重量%とするとよい。多すぎると嵩密度が増大して好ましくない。
【0013】
アルカリ金属酸化物は、長石類、ペタライト等のアルカリ金属含有物由来のものとするとよく、リン酸アルミニウムと共にガラス相形成に寄与する。含有量は、焼成後の酸化物基準組成で1〜7重量%、好ましくは、1〜6重量%、さらに好ましくは、1〜5重量%するように含有させると良い。1重量%未満であると十分にガラス相が形成されず素地が焼結しなくなり、7重量%以上であると焼成中の軟化変形が大きくなるという問題が生じる。
【0014】
軽量強化磁器における素地中に含有される五酸化リンは、リン酸アルミニム由来のものとするとよいが、アルカリ土類金属リン酸塩以外の不水溶性リン酸塩のものであれば使用できる。アルカリ土類金属リン酸塩は、リン酸アルミニウムの再結晶化形成を阻害し、気泡発生機構を阻害するので好ましくなく、また、水溶性リン酸塩は、軽量強化磁器の製造方法として原料を水と混合して陶土泥漿とし、水を除去して陶土とされる際に水と共に除去されるので好ましくない。リン酸アルミニムは焼成に際してアルカリ金属やアルミナ成分と共にリン酸ガラス相の形成に寄与する。そして、ガラス相の飽和現象によりリン酸アルミニウムが再結晶化し、強度の増大が生じるものと考えられる。また、同時に、リン酸ガラス相が形成する際にアルミニウムの配位数やリンの原子価数が変化し、余分な酸素がガス状として放出され、ガラス相中に微細気孔が多数形成され、素地の嵩密度を小さくする作用を示す。焼成後にあって、五酸化リンは酸化物基準組成で5〜20重量%、好ましくは5〜15重量%、さらに好ましくは、5〜10重量%含有させると良い。5重量%未満であると効果が少なく、20重量%以上であるとガラス相が多量に生成し、焼成軟化変形が大きくなり、また、形成される気孔径が大きくなって開気孔となり、素地に吸水性が発生するという問題が生じる。
【0015】
二酸化珪素は、アルミナ源としての長石、ペタライト、粘土、イングランドカオリン、オクムラセリサイトを使用する際に含有されるに至るものであるが、ほとんどが二酸化珪素からなる珪石由来のものとしてもよい。二酸化珪素は、ガラス相の形成やムライト結晶の生成に寄与する。二酸化珪素は、焼成後の酸化物基準組成で25〜60重量%、好ましくは30〜50重量%、さらに好ましくは35〜45重量%含有させると良い。25重量%未満であるとガラス相やムライトの生成が阻害され、素地が磁器化しにくいという問題があり、また、60重量%以上であるとガラス相が生成しすぎ、焼成物の焼成変形が大きくなるという問題が生じる。
【0016】
また、アルカリ土類金属酸化物は、炭酸塩由来のもの又は天然鉱物及び天然鉱物の不純物由来であり、ガラス相形成の補助的な目的として必要に応じて含有させてもよい。含有量は、焼成後の酸化物基準組成で0〜2重量%、好ましくは0〜1重量%、さらに好ましくは0〜0.5重量%含有させると良い。2重量%以上であると焼成中の軟化変形が大きくなり、また、焼成温度幅が狭くなる。
【0017】
また、酸化第二鉄及び酸化チタンは、含有しないことが好ましいが、天然鉱物に不純物として含有されるため1重量%未満とすることが好ましい。1重量%以上含有すると、素地の呈色が灰色または薄い茶色となって美的価値を損なうという問題が生じる
本発明の軽量強化磁器の作製に際して使用できる原料について、生の状態での酸化物組成を表1に、また、1100℃で焼成後の状態での酸化物組成を表2に示しておく。なお、表中、APは燐酸アルミニウム、Al2 3 は酸化アルミニウム粒子、AFはフッ化アルミニウムを示す。
【0018】
【表1】

Figure 0003926110
【0019】
【表2】
Figure 0003926110
【0020】
本発明の第1の軽量強化磁器は、酸化物基準で二酸化珪素25〜60重量%、アルミナ25〜60重量%、五酸化リン5〜20重量%、アルカリ金属酸化物1〜7重量%からなる基本構成を有し、必要に応じてアルカリ土類金属酸化物0〜2重量%を含有するものであるが、本発明におけるリン酸ガラス相の形成と共にリン酸アルミニウムの再結晶化現象を発現させるためには、リン酸アルミニウム100重量部に対して、アルカリ金属酸化物由来の原料をアルカリ金属酸化物換算で5重量部〜60重量部、アルミナ由来の原料をアルミナ換算で135重量部〜910重量部の割合で混合し、焼成するとよい。
【0021】
次に、本発明の第2の軽量強化磁器は、上述した第1の軽量強化磁器における基本組成において、更に、微細気孔量を増加させ素地の嵩密度を減少させる目的として、フッ素成分を含有させるものである。フッ素成分はフッ化アルミニウム由来のものを原料として使用するとよく、含有量は焼成後の酸化物基準組成で0〜6重量%、好ましくは0〜5重量%、さらに好ましくは0〜4重量%含有させると良い。6重量%以上含有させると素地中に気孔が多量に発生し、十分な強度が得られないという問題が生じる。
【0022】
本発明の軽量強化磁器は、原料を水と混合して陶土泥漿とし、水を除去して陶土とされ、成形された後、1200℃〜1400℃の焼成温度で焼成される。通常の磁器の強度は80MPa程度であるのに対して、本発明の第1の軽量強化磁器にあっては120MPa〜240MPaの強度のものとでき、また、第2の軽量強化磁器にあっては100MPa〜190MPaの強度のものとできる。
【0023】
また、本発明の軽量強化磁器には多数の独立微細気泡を有するものとできるが、独立微細気泡としては、その径が1〜5μmとされるとよい。通常の磁器の嵩密度は2.4g/cm3 程度であるのに対して、第1の軽量強化磁器にあっては2.2〜2.6g/cm3 の嵩密度のものとでき、また、第2の軽量強化磁器にあっては2.2〜2.5g/cm3 の嵩密度のものとできる。
【0024】
焼成後の磁器素地は、厚みを1mm〜4mm程度とされるが、磁器特有の透光性を有するものとできる。
【0025】
次に、本発明の軽量強化磁器の製造工程を説明する。
(1) 珪石、長石類及び粘土類又は、リン酸アルミニウム、酸化アルミニウム及び水酸化アルミニウム等の原料や、フッ化アルミニウム等の添加剤を素地組成となるように配合し、ボールミルで平均粒子径が約2μmとなるように粉砕及び混合を行って陶土泥漿とし、調製した泥漿は、フィルタープレスなどで脱水して陶土とする。
(2) 陶土は、ローラーマシン成形などのロクロ成形や、鋳込み成形または、プレス成形等の成形方法で成形し、乾燥後その成形体を約800℃、8時間で素焼きを行い、それに下絵付けなどの加飾を行った後、施釉して1200〜1400℃、好ましくは1250℃〜1350℃、更に好ましくは1280℃〜1330℃で3時間〜24時間で本焼き焼成される。本焼き焼成品は、イングレーズや上絵付けの加飾をされて軽量強化磁器製品となる。
【0026】
また、成形体を1200℃〜1400℃の焼成温度で締め焼きした後、施釉して釉焼を行い軽量強化磁器製品とすることもできるが、下絵とイングレーズや上絵は、加飾を行わない場合もある。
【0027】
【実施例】
以下、実施例により本発明を詳細に説明する。
(実施例1〜34)
下記の表3〜表8に記載の割合でそれぞれ配合し、ポールミルにて湿式法で粉砕・混合し、平均粒子径2μmとした後、フィルターでプレスして陶土を調製した。調製した陶土を鋳込み成形し、自然乾燥させた後、ローラーハースキルンを使用して、焼成温度1300℃、還元雰囲気中で4.5時間本焼き焼成して、本発明の第1及び第2の軽量強化磁器を作製した。
【0028】
なお、下記の表3〜表5における蛙目粘土は土岐口蛙目粘土特級粘土、ペライトはブラジル・ビキタ産ペタライト、アルミナはアルミナ粒子(平均粒子径4μm、日本軽金属(株)製「A−34」)、リン酸アルミニウムはリン酸アルミニウム(太平窯業薬品(株)製「タイボリーL2)、イングランドカオリンはイングランドカオリンSP、益田長石は益田長石FGグレード、フッ化アルミニウムはフッ化アルミニウム(森田化学工業(株)製)である。
【0029】
【表3】
Figure 0003926110
【0030】
【表4】
Figure 0003926110
【0031】
【表5】
Figure 0003926110
【0032】
得られた軽量強化磁器における酸化物組成をそれぞれの原料の酸化物組成と配合量から計算して求めた結果を下記表6〜表11に示す。
【0033】
また、得られた軽量強化磁器の曲げ強度(三点曲げ強度)はJIS R 1601−1995(ファインセラミックスの曲げ強さ試験法)に準拠し、試料寸法を縦7mm×横50mm×高さ5mmとし、(株)島津製作所製「オートグラフAGS−5kND」により測定し、同様に下記表6〜表11に示す。
【0034】
また、吸水率と嵩密度をASTM C 373−88(和訳名、陶器製品の吸水率、嵩密度、見掛け気孔率、見掛け比重の標準試験法)を使用して測定し、同様に下記表6〜表11に示す。
【0035】
また、図1に実施例1で作製した軽量強化磁器断面の粒子構造についての走査型電子顕微鏡(3000倍)写真を示す。図1からわかるように、本発明の軽量強化磁器は、気泡が粒子状に多数点在するものであることが看取される。
【0036】
【表6】
Figure 0003926110
【0037】
【表7】
Figure 0003926110
【0038】
【表8】
Figure 0003926110
【0039】
【表9】
Figure 0003926110
【0040】
【表10】
Figure 0003926110
【0041】
【表11】
Figure 0003926110
【0042】
【発明の効果】
本発明の軽量強化磁器は、焼成体素地が、少なくとも二酸化珪素、アルミナ、五酸化リン、アルカリ金属酸化物からなるか、または、さらに該組成に加えてフッ素からなるものであり、焼成体素地中には微細独立気孔が多数形成されることにより、従来の強化磁器と同等の強度、嵩密度及び高い透光性を兼ね備えたものとできる。すなわち、本発明の軽量強化磁器は、従来の強化磁器と同等以上の平均曲げ強度を有しながら、従来の強化磁器よりも小さい2.6g/cm3以下の嵩密度を持つため、強化磁器製品の重量を軽量化することができ、しかも美しい透光性を持った軽量強化磁器とできる。
【図面の簡単な説明】
【図1】 図1は、本発明における実施例1で作製した軽量強化磁器の断面の粒子構造を示す走査型電子顕微鏡(3000倍)写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lightweight strengthened porcelain having high strength and reduced weight, and a method for manufacturing the same.
[0002]
[Prior art]
In order to manufacture reinforced porcelain, a method of increasing the strength of the porcelain base by generally dispersing about 20% to 40% of alumina particles having a fine particle size in the porcelain base and dispersing it in the porcelain base is used. Yes. However, the addition of alumina particles increases the bulk density of the porcelain body as the amount of alumina increases because the density of the alumina itself is about 4 g / cm 3 , and the bulk density of commonly used reinforced porcelain. the about 2.8g / cm 3 ~2.9g / cm 3 , is considerably larger than the bulk density of about 2.4 g / cm 3 generally porcelain. Further, since a large amount of alumina particles are dispersed in the substrate, the translucency of the substrate is greatly reduced, and the aesthetic added value as a porcelain is greatly impaired. Furthermore, the weight of the porcelain product itself has increased, and there are major drawbacks in the transportation and movement of porcelain products such as commercial tableware used in restaurants and hotels, and in-flight meal tableware used in aircraft, and in its handling. It has become.
[0003]
Therefore, in order to solve those disadvantages and realize weight reduction of the substrate, organic substances are mixed for the purpose of burning during firing to form pores in the substrate, or for the purpose of forming pores in the substrate in advance. And fire-resistant hollow particles are mixed. However, when organic materials are mixed, if the storage period of the clay is prolonged, the organic materials may rot and give off a bad odor, or mold and moss may become unusable. In addition, when inorganic and refractory hollow particles are mixed, the hollow portion, that is, the pore size is large and sufficient substrate strength cannot be obtained, and a large amount of alumina particles are dispersed in the substrate in order to increase the strength. And the problem that the translucency of a porcelain substrate cannot be obtained also arises.
[0004]
Therefore, as the need for reinforced porcelain products such as commercial tableware used in restaurants and hotels, as well as tableware for in-flight meals used in airplanes, both high strength and light weight of porcelain products are compatible, and more aesthetic A porcelain with added value is desired.
[0005]
[Problems to be solved by the invention]
The present invention provides a lightweight reinforced porcelain having a bulk density equal to or less than that of general porcelain, and having an average bending strength of 100 MPa or more higher than that of general porcelain, and having high translucency. It is an object to provide a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
The first lightweight reinforced porcelain of the present invention comprises at least silicon dioxide at 25 to 60% by weight, alumina at 30 to 60% by weight, phosphorus pentoxide at 5 to 20% by weight, alkali metal oxide at 1 to 7% by weight, It consists of a fired body base composed of 0 to 2% by weight of an alkaline earth metal oxide. A large number of fine pores having a diameter of 1 to 5 μm are formed in the fired body base, and the bulk density of the fired body base is 2. It is 6 g / cm 3 or less, and an average bending strength is 120 MPa or more.
[0007]
The second light weight strengthened porcelain of the present invention comprises at least silicon dioxide at 25 to 60% by weight, alumina at 30 to 60% by weight, phosphorus pentoxide at 5 to 20% by weight, alkali metal oxide at 1 to 7% by weight, It consists of a fired body made of 177 / 100.09 to 6% by weight of fluorine and 0 to 2% by weight of an alkaline earth metal oxide. A large number of fine independent pores having a diameter of 1 to 5 μm are formed in the fired body. The sintered body has a bulk density of 2.5 g / cm 3 or less and an average bending strength of 100 MPa or more.
[0008]
The first lightweight reinforced porcelain manufacturing method of the present invention is a method in which a raw material selected from silica, clay, feldspar, and aluminum oxide and containing aluminum phosphate is fired at 1200 to 1400 ° C., and is at least oxide-based. The calcined body comprising 25 to 60% by weight of silicon, 30 to 60% by weight of alumina, 5 to 20% by weight of phosphorus pentoxide, 1 to 7% by weight of alkali metal oxide, and 0 to 2% by weight of alkaline earth metal oxide. A large number of fine pores having a diameter of 1 to 5 μm are formed in the substrate, and the sintered body has a bulk density of 2.6 g / cm 3 or less and an average bending strength of 120 MPa or more. Features.
[0009]
The second method for producing a lightweight reinforced porcelain of the present invention is a method in which a raw material containing aluminum phosphate and aluminum fluoride is fired at 1200 to 1400 ° C. and selected from silica, clay, feldspar, and aluminum oxide, and at least oxidized Silicon dioxide 25-60% by weight, alumina 30-60% by weight, phosphorus pentoxide 5-20% by weight, alkali metal oxide 1-7% by weight, fluorine 177 / 100.09-6% by weight, alkaline earth A number of fine independent pores having a diameter of 1 to 5 μm are formed in the fired body, and the bulk density of the fired body is 2.5 g / cm 3 or less. The sintered body is characterized in that the average bending strength is 100 MPa or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Alumina in the first lightweight reinforced porcelain of the present invention is preferably derived from feldspar, petalite, clay, England kaolin, okumura sericite, aluminum phosphate, aluminum oxide, and aluminum hydroxide.
[0011]
The alumina component is present as it is as alumina crystals after firing and contributes to an increase in strength and also contributes to the formation of mullite crystals. Furthermore, the lightweight strengthened porcelain of the present invention is characterized in that phosphate glass is formed during firing, but the alumina component is melted in phosphate glass and contributes to glass phase formation together with aluminum phosphate, This contributes to the formation of aluminum phosphate that recrystallizes due to the saturation of the glass phase. In the light weight strengthened porcelain of the present invention, it is considered that the strength is increased by recrystallization of the aluminum phosphate. The amount of alumina after firing is preferably 30 to 60% by weight, preferably 30 to 50% by weight, and more preferably 35 to 45% by weight based on the oxide-based composition. If it is less than 30% by weight, the required strength cannot be obtained, and if it is 60% by weight or more, the sintering temperature becomes high and the substrate does not become porcelain.
[0012]
In addition, it is preferable to use aluminum oxide particles having a particle diameter of 1 μm to 10 μm as a part of the alumina source because it exists as alumina crystals after firing and contributes to an increase in strength. However, the content of aluminum oxide particles in the alumina component is 5% to 50% by weight, preferably 10% to 40% by weight. If the content is too large, it does not contribute to the formation of the phosphate glass phase, which is not preferable. In addition, the content of aluminum oxide particles in the oxide composition of the lightweight reinforced porcelain is 5% by weight to 30% by weight, preferably 10% by weight to 20% by weight. Too much is not preferable because the bulk density increases.
[0013]
The alkali metal oxide is preferably derived from an alkali metal-containing material such as feldspar and petalite, and contributes to glass phase formation together with aluminum phosphate. The content may be 1 to 7% by weight, preferably 1 to 6% by weight, and more preferably 1 to 5% by weight based on the oxide-based composition after firing. If the amount is less than 1% by weight, a glass phase is not sufficiently formed and the substrate is not sintered. If the amount is 7% by weight or more, softening deformation during firing increases.
[0014]
The phosphorus pentoxide contained in the substrate in the lightweight reinforced porcelain is preferably derived from aluminum phosphate, but any water-insoluble phosphate other than alkaline earth metal phosphates can be used. Alkaline earth metal phosphates are not preferred because they inhibit the recrystallization formation of aluminum phosphate and hinder the bubble generation mechanism, and water-soluble phosphates are not suitable for the production of lightweight reinforced porcelain. It is not preferable because it is removed together with water when it is mixed with the water to form a clay mud and the water is removed to form a clay. Aluminium phosphate contributes to the formation of a phosphate glass phase together with alkali metal and alumina components during firing. And it is thought that an aluminum phosphate recrystallizes by the saturation phenomenon of a glass phase, and the increase in intensity arises. At the same time, when the phosphate glass phase is formed, the coordination number of aluminum and the valence number of phosphorus are changed, and excess oxygen is released in the form of gas, and a large number of fine pores are formed in the glass phase. The effect | action which makes the bulk density of this small is shown. After firing, phosphorus pentoxide may be contained in an oxide-based composition in an amount of 5 to 20% by weight, preferably 5 to 15% by weight, and more preferably 5 to 10% by weight. If the amount is less than 5% by weight, the effect is small, and if it is 20% by weight or more, a large amount of glass phase is generated, the baking softening deformation is increased, and the formed pore size is increased to become open pores. There arises a problem that water absorption occurs.
[0015]
Silicon dioxide comes to be contained when using feldspar, petalite, clay, England kaolin, and okumura sericite as an alumina source, but most of them may be derived from silica stone made of silicon dioxide. Silicon dioxide contributes to the formation of a glass phase and the generation of mullite crystals. Silicon dioxide may be contained in an oxide-based composition after firing of 25 to 60% by weight, preferably 30 to 50% by weight, and more preferably 35 to 45% by weight. If the amount is less than 25% by weight, the generation of glass phase and mullite is hindered, and there is a problem that the base is difficult to become porcelain. If the amount is 60% by weight or more, the glass phase is excessively generated, and the fired product is greatly deformed. Problem arises.
[0016]
Alkaline earth metal oxides are derived from carbonates or derived from impurities of natural minerals and natural minerals, and may be included as an auxiliary purpose for forming a glass phase if necessary. The content is 0 to 2% by weight, preferably 0 to 1% by weight, more preferably 0 to 0.5% by weight, based on the oxide-based composition after firing. If it is 2% by weight or more, softening deformation during firing becomes large, and the firing temperature width becomes narrow.
[0017]
Moreover, although it is preferable not to contain ferric oxide and titanium oxide, since it is contained as an impurity in a natural mineral, it is preferable to make it less than 1 weight%. When it is contained in an amount of 1% by weight or more, the raw material that can be used in the production of the light-weight reinforced porcelain of the present invention in which the base color becomes gray or light brown and impairs the aesthetic value, the raw oxide composition is Table 1 shows the oxide composition after firing at 1100 ° C. in Table 2. In the table, AP represents aluminum phosphate, Al 2 O 3 represents aluminum oxide particles, and AF represents aluminum fluoride.
[0018]
[Table 1]
Figure 0003926110
[0019]
[Table 2]
Figure 0003926110
[0020]
The first lightweight strengthened porcelain of the present invention comprises 25 to 60% by weight of silicon dioxide, 25 to 60% by weight of alumina, 5 to 20% by weight of phosphorus pentoxide, and 1 to 7% by weight of alkali metal oxide based on oxides. Although it has a basic structure and contains 0 to 2% by weight of an alkaline earth metal oxide as necessary, it causes the recrystallization phenomenon of aluminum phosphate together with the formation of the phosphate glass phase in the present invention. For this purpose, the raw material derived from the alkali metal oxide is 5 to 60 parts by weight in terms of alkali metal oxide and the raw material derived from alumina is 135 to 910 parts by weight in terms of alumina with respect to 100 parts by weight of aluminum phosphate. It is good to mix in the ratio of a part, and to bake.
[0021]
Next, the second lightweight reinforced porcelain of the present invention contains a fluorine component in the basic composition of the first lightweight reinforced porcelain described above for the purpose of further increasing the amount of fine pores and decreasing the bulk density of the substrate. Is. The fluorine component is preferably derived from aluminum fluoride as a raw material, and the content is 0 to 6% by weight, preferably 0 to 5% by weight, more preferably 0 to 4% by weight, based on the oxide-based composition after firing. Good to do. If the content is 6% by weight or more, a large amount of pores are generated in the substrate, resulting in a problem that sufficient strength cannot be obtained.
[0022]
The light weight strengthened porcelain of the present invention is mixed with water to form a clay mud, and after removing the water to form a porcelain clay, it is molded and then fired at a firing temperature of 1200 ° C to 1400 ° C. While the strength of ordinary porcelain is about 80 MPa, the first lightweight strengthened porcelain of the present invention can have a strength of 120 MPa to 240 MPa, and the second lightweight strengthened porcelain The strength can be 100 MPa to 190 MPa.
[0023]
The lightweight reinforced porcelain of the present invention can have a large number of independent fine bubbles, and the diameter of the independent fine bubbles is preferably 1 to 5 μm . The bulk density of ordinary porcelain is about 2.4 g / cm 3 , whereas the first lightweight reinforced porcelain can have a bulk density of 2.2 to 2.6 g / cm 3 , The second lightweight reinforced porcelain can have a bulk density of 2.2 to 2.5 g / cm 3 .
[0024]
The fired porcelain substrate has a thickness of about 1 mm to 4 mm, but may have translucency specific to porcelain.
[0025]
Next, the manufacturing process of the lightweight reinforced porcelain of this invention is demonstrated.
(1) Silica, feldspar and clay, or raw materials such as aluminum phosphate, aluminum oxide and aluminum hydroxide, and additives such as aluminum fluoride are blended to form a base composition, and the average particle size is measured by a ball mill. Crushing and mixing are performed so that the thickness becomes approximately 2 μm to obtain a clay clay, and the prepared slurry is dehydrated with a filter press or the like to obtain a clay.
(2) Porcelain clay is molded by roll molding such as roller machine molding, cast molding or press molding, and after drying, the molded body is unbaked at about 800 ° C for 8 hours, and it is used as an underlay After decorating, it is glazed and fired at 1200 to 1400 ° C., preferably 1250 to 1350 ° C., more preferably 1280 to 1330 ° C. for 3 to 24 hours. The baked and fired product is decorated with inglaze or overpainting to become a lightweight reinforced porcelain product.
[0026]
In addition, after compacting the molded body at a firing temperature of 1200 ° C. to 1400 ° C., it can be glazed and fired to make a lightweight reinforced porcelain product. Sometimes it is not.
[0027]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
(Examples 1-34)
Each of them was blended in the proportions shown in Tables 3 to 8 below, pulverized and mixed by a wet method in a pole mill to obtain an average particle size of 2 μm, and then pressed with a filter to prepare a clay. The prepared porcelain clay is cast-molded and air-dried, and then is baked and fired in a reducing atmosphere at a firing temperature of 1300 ° C. for 4.5 hours using a roller hearth kiln. Lightweight reinforced porcelain was produced.
[0028]
In Tables 3 to 5 below, the clay is a special grade clay of Tokiguchi Sasame clay, perlite is petalite from Bikita, Brazil, alumina is alumina particles (average particle size 4 μm, manufactured by Nippon Light Metal Co., Ltd. “A-34” ”), Aluminum phosphate is aluminum phosphate (“ Tyborry L2 ”manufactured by Taihei Ceramics Co., Ltd.), England Kaolin is England Kaolin SP, Masuda Nagaishi is Masuda Nagaseki FG grade, and aluminum fluoride is Aluminum Fluoride (Morita Chemical Industries ( Co., Ltd.).
[0029]
[Table 3]
Figure 0003926110
[0030]
[Table 4]
Figure 0003926110
[0031]
[Table 5]
Figure 0003926110
[0032]
The results obtained by calculating the oxide composition in the obtained lightweight reinforced porcelain from the oxide composition and blending amount of each raw material are shown in Tables 6 to 11 below.
[0033]
In addition, the bending strength (three-point bending strength) of the obtained lightweight reinforced porcelain conforms to JIS R 1601-1995 (Fine ceramic bending strength test method), and the sample dimensions are 7 mm long x 50 mm wide x 5 mm high. , Measured by “Autograph AGS-5kND” manufactured by Shimadzu Corporation, and similarly shown in Tables 6 to 11 below.
[0034]
The water absorption and bulk density were measured using ASTM C 373-88 (Japanese translation, standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of ceramic products). Table 11 shows.
[0035]
Moreover, the scanning electron microscope (3000 times) photograph about the particle structure of the lightweight reinforcement | strengthening ceramic cross section produced in Example 1 in FIG. 1 is shown. As can be seen from FIG. 1, it can be seen that the light-weight strengthened porcelain of the present invention has many bubbles scattered in the form of particles.
[0036]
[Table 6]
Figure 0003926110
[0037]
[Table 7]
Figure 0003926110
[0038]
[Table 8]
Figure 0003926110
[0039]
[Table 9]
Figure 0003926110
[0040]
[Table 10]
Figure 0003926110
[0041]
[Table 11]
Figure 0003926110
[0042]
【The invention's effect】
In the lightweight reinforced porcelain of the present invention, the fired body is made of at least silicon dioxide, alumina, phosphorus pentoxide, alkali metal oxide, or further made of fluorine in addition to the composition. By forming a large number of fine independent pores, it is possible to have the same strength, bulk density and high translucency as conventional reinforced porcelain. That is, the lightweight reinforced porcelain of the present invention has an average bending strength equal to or higher than that of the conventional reinforced porcelain, but has a bulk density of 2.6 g / cm 3 or less, which is smaller than that of the conventional reinforced porcelain. The weight can be reduced, and it can be made a lightweight reinforced porcelain with beautiful translucency.
[Brief description of the drawings]
FIG. 1 is a scanning electron microscope (3000 times) photograph showing a particle structure of a cross section of a lightweight reinforced porcelain produced in Example 1 of the present invention.

Claims (4)

少なくとも酸化物基準で二酸化珪素25〜60重量%、アルミナ30〜60重量%、五酸化リン5〜20重量%、アルカリ金属酸化物1〜7重量%、アルカリ土類金属酸化物0〜2重量%からなる焼成体素地からなり、該焼成体素地中には径が1〜5μmの微細独立気孔が多数形成され、該焼成体素地の嵩密度が2.6g/cm3 以下で、平均曲げ強度が120MPa以上であることを特徴とする軽量強化磁器。At least the oxide basis of silicon dioxide 25 to 60% by weight of alumina 30-60% by weight, phosphorus pentoxide 5-20 wt%, alkali metal oxides 1-7% by weight, an alkaline earth metal oxide 0-2 wt% A plurality of fine pores having a diameter of 1 to 5 μm are formed in the fired body base, the bulk density of the fired body base is 2.6 g / cm 3 or less, and the average bending strength is A lightweight reinforced porcelain characterized by being 120 MPa or more. 少なくとも酸化物基準で二酸化珪素25〜60重量%、アルミナ30〜60重量%、五酸化リン5〜20重量%、アルカリ金属酸化物1〜7重量%、フッ素177/100.09〜6重量%、アルカリ土類金属酸化物0〜2重量%からなる焼成体素地からなり、該焼成体素地中には径が1〜5μmの微細独立気孔が多数形成され、該焼成体素地の嵩密度が2.5g/cm3 以下で、平均曲げ強度が100MPa以上であることを特徴とする軽量強化磁器。At least the oxide basis of silicon dioxide 25 to 60% by weight of alumina 30-60% by weight, phosphorus pentoxide 5-20 wt%, alkali metal oxides 1-7% by weight, the fluorine 177 / 100.09 to 6 wt%, It consists of a fired body base composed of 0 to 2% by weight of an alkaline earth metal oxide. A large number of fine pores having a diameter of 1 to 5 μm are formed in the fired body base, and the bulk density of the fired body base is 2. A lightweight reinforced porcelain characterized by an average bending strength of 5 MPa / cm 3 or less and an average bending strength of 100 MPa or more. 珪石、粘土類、長石類、酸化アルミニウムから選ばれると共にリン酸アルミニウムを含有する原料を1200〜1400℃で焼成し、少なくとも酸化物基準で二酸化珪素25〜60重量%、アルミナ30〜60重量%、五酸化リン5〜20重量%、アルカリ金属酸化物1〜7重量%、アルカリ土類金属酸化物0〜2重量%からなり、該焼成体素地中には径が1〜5μmの微細独立気孔が多数形成され、該焼成体素地の嵩密度が2.6g/cm3 以下で、平均曲げ強度が120MPa以上である焼成体素地とすることを特徴とする軽量強化磁器の製造方法。 A raw material selected from silica, clay, feldspar, and aluminum oxide and containing aluminum phosphate is fired at 1200 to 1400 ° C., at least 25 to 60% by weight of silicon dioxide based on oxides , 30 to 60% by weight of alumina, It consists of 5 to 20% by weight of phosphorus pentoxide, 1 to 7% by weight of alkali metal oxide, and 0 to 2% by weight of alkaline earth metal oxide. Fine sintered pores having a diameter of 1 to 5 μm are formed in the sintered body. A method for producing a lightweight reinforced porcelain, characterized in that a large number of the fired body bodies have a bulk density of 2.6 g / cm 3 or less and an average bending strength of 120 MPa or more. 珪石、粘土類、長石類、酸化アルミニウムから選ばれると共にリン酸アルミニウムおよびフッ化アルミニウムを含有する原料を1200〜1400℃で焼成し、少なくとも酸化物基準で二酸化珪素25〜60重量%、アルミナ30〜60重量%、五酸化リン5〜20重量%、アルカリ金属酸化物1〜7重量%、フッ素177/100.09〜6重量%、アルカリ土類金属酸化物0〜2重量%からなり、該焼成体素地中には径が1〜5μmの微細独立気孔が多数形成され、該焼成体素地の嵩密度が2.5g/cm3 以下で、平均曲げ強度が100MPa以上である焼成体素地とすることを特徴とする軽量強化磁器の製造方法。 A raw material selected from silica, clay, feldspar, aluminum oxide and containing aluminum phosphate and aluminum fluoride is fired at 1200 to 1400 ° C., at least 25 to 60% by weight of silicon dioxide based on oxides , and 30 to 30 % of alumina. 60% by weight , phosphorus pentoxide 5-20% by weight , alkali metal oxide 1-7% by weight , fluorine 177 / 100.09-6% by weight, alkaline earth metal oxide 0-2% by weight , In the body substrate, a large number of fine independent pores having a diameter of 1 to 5 μm are formed, and the fired body body has a bulk density of 2.5 g / cm 3 or less and an average bending strength of 100 MPa or more. A method of manufacturing a lightweight reinforced porcelain characterized by the following.
JP2001056210A 2001-03-01 2001-03-01 Lightweight reinforced porcelain and manufacturing method thereof Expired - Lifetime JP3926110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001056210A JP3926110B2 (en) 2001-03-01 2001-03-01 Lightweight reinforced porcelain and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001056210A JP3926110B2 (en) 2001-03-01 2001-03-01 Lightweight reinforced porcelain and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002255627A JP2002255627A (en) 2002-09-11
JP3926110B2 true JP3926110B2 (en) 2007-06-06

Family

ID=18916267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001056210A Expired - Lifetime JP3926110B2 (en) 2001-03-01 2001-03-01 Lightweight reinforced porcelain and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3926110B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101265946B1 (en) * 2010-11-26 2013-05-21 한국세라믹기술원 Composite of body for lightweight ceramic ware including glass hollow microsphere and manufacturing method of the body for lightweight ceramic ware
FR3053327A1 (en) * 2016-06-30 2018-01-05 Imertech SINKING AGENT FOR DRY REFRACTORY PARTICULATE COMPOSITION

Also Published As

Publication number Publication date
JP2002255627A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
CN105776861B (en) A kind of bright red nanometer glaze slip of sanitary ceramics and its preparation method and application
CN115010465A (en) Low-temperature fast-fired ceramic rock plate and preparation method thereof
CN106045563A (en) Light blue jun porcelain and firing method thereof
CN105645925A (en) Manufacturing method of ceramic cooker with high thermal shock resistance
CN101795996A (en) Porous ceramic bodies and process for their preparation
CN103803968B (en) Low-k low-temperature co-burning ceramic material and preparation method thereof in one
CN109608045A (en) A kind of wear-resisting high-hardness ceramic glaze and preparation method thereof
JP4408104B2 (en) Strengthened porcelain and manufacturing method thereof
CN106673440A (en) 3D glaze material for light-weight insulating ceramic decorative sheet, and preparation and application method thereof
JPH072536A (en) Fire brick as bed of tin bath
KR20120037293A (en) Glaze composition for ceramic ware comprising ashes from the excrements of earthworm and preparation method thereof
CN114773033B (en) Daily ceramic product with transparent glaze and preparation method thereof
CN108658621A (en) A kind of high purity aluminium oxide lightweight load bearing board and preparation method thereof
CN106277792B (en) A kind of emerald blueness glaze and its method for cooking
JP3926110B2 (en) Lightweight reinforced porcelain and manufacturing method thereof
CN111807702A (en) Method for manufacturing glazed tile with glazed three-dimensional effect
CN112194476A (en) Antibacterial dream porcelain
CN1229299C (en) White ceramic producing method and product by utilizing blast furnace slag
Kingery Sintering from prehistoric times to the present
JPH01108177A (en) Ceramic foam
CN106938911A (en) Ceramic and its preparation technology that Dehua ceramic whiteware is combined with boccaro
JP4220854B2 (en) Water retaining brick that balances strength and water retention
CN107540342A (en) A kind of pseudo-classic exterior wall tile of reddish brown and tool metallic luster and preparation method thereof
CN107892481B (en) Metal glaze prepared by recovering iron impurities from sanitary ceramics and method thereof
JP2003137639A (en) Porcelain clay for ceramic, ceramic, and production method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3926110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term