JP3925287B2 - Bypass air control device in intake control device - Google Patents

Bypass air control device in intake control device Download PDF

Info

Publication number
JP3925287B2
JP3925287B2 JP2002118853A JP2002118853A JP3925287B2 JP 3925287 B2 JP3925287 B2 JP 3925287B2 JP 2002118853 A JP2002118853 A JP 2002118853A JP 2002118853 A JP2002118853 A JP 2002118853A JP 3925287 B2 JP3925287 B2 JP 3925287B2
Authority
JP
Japan
Prior art keywords
air control
control device
air
valve
bypass air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002118853A
Other languages
Japanese (ja)
Other versions
JP2003314414A (en
Inventor
靖史 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2002118853A priority Critical patent/JP3925287B2/en
Publication of JP2003314414A publication Critical patent/JP2003314414A/en
Application granted granted Critical
Publication of JP3925287B2 publication Critical patent/JP3925287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、機関へ供給する空気量を制御するスロットルボデー等の吸気制御装置に関し、そのうち特に、絞り弁の上流と下流とを吸気通路を迂回してバイパスエアー通路にて連絡するとともに該バイパスエアー通路を流れる空気量が空気制御弁によって制御されるバイパスエアー制御装置に関する。かかるバイパスエアー制御装置は、機関のアイドリング運転時におけるアイドリング用の空気あるいは機関の低温始動時における始動用の空気を制御する際、等において用いられる。
【0002】
【従来の技術】
従来のバイパスエアー制御装置は、図4に示される。1は内部を吸気通路2が貫通して穿設されたスロットルボデーであり、該吸気通路は、スロットルボデー1に回転自在に支承された絞り弁軸3に取着された絞り弁4によって開閉され、これによって機関に向かう空気量が制御される。5は吸気通路2を迂回して絞り弁4の上流側の吸気通路2Aと絞り弁4の下流側の吸気通路2Bとを連絡するバイパスエアー通路であり、このバイパスエアー通路5の途中には摺動弁室6が形成される。そして、摺動弁室6によって区分される下流側バイパスエアー通路5Aの下流は、絞り弁4より下流側の吸気通路2B内に開口し、上流は開口部5Bをもって摺動弁室6の底部6Aに開口する。一方、摺動弁室6の側壁6Bには制御孔7が穿設されて開口するもので、これら制御孔7は上流側バイパスエアー通路5Cを介して絞り弁4より上流側の吸気通路2A内に開口される。8は摺動弁室6内に軸方向移動自在に配置される筒状をなす空気制御弁であり、空気制御弁8の摺動弁室6の底部6Aに臨む先端面8Aは平坦状に形成され、空気制御弁8が摺動弁室6内を軸方向に移動することにより、その先端面8Aが底部6Aに当接、若しくは近接配置され、一方空気制御弁8の側部8Bは制御孔7の摺動弁室6内への開口を制御する。かかる空気制御弁8は外方に延びる操作杆8Cを備え、この操作杆8Cが操作されることによって空気制御弁8は摺動弁室6内を軸方向に往復動される。
【0003】
かかる従来のバイパスエアー制御装置によると、操作杆8Cによって空気制御弁8が図4において左方へ動作されると、空気制御弁8の先端面8Aは摺動弁室6の底部6Aに当接又は近接して配置され、一方制御孔7は空気制御弁8の側部8Bによって閉塞制御される。以上によると、上流側バイパスエアー通路5Cから下流側バイパスエアー通路5Aに向かう空気流れは空気制御弁8によって遮断されるので、バイパスエアー通路5を介して絞り弁4より下流側の吸気通路2B内へ空気の供給が行なわれない。一方、空気制御弁8が操作杆8Cによって図4において右方へ動作されると、空気制御弁8の側部8Bが制御孔7を開放するもので、これによると上流側バイパスエアー通路5Cを流れる空気は前記制御孔7の開口に応じて制御され、この制御された空気が摺動弁室6、下流側バイパスエアー通路5Aを介して絞り弁4より下流側の吸気通路2B内に供給され、これによって機関のアイドリング運転に必要なアイドリング空気量あるいは機関の始動運転に適した始動用空気量の供給を行なうことができる。尚、制御孔7によって制御される空気量は空気制御弁8の移動による制御孔7の開口度によって決定される。
【0004】
【発明が解決しようとする課題】
かかる従来のバイパスエアー制御装置によると、以下の問題を有する。第1には、長期間に渡って正確な空気量の制御が困難である。これは、機関からの吹き返しによるカーボン粒子を含んだ空気が下流側バイパスエアー通路5Aから開口部5Bを介して摺動弁室6内へいきおいよく進入し、このカーボン含有の空気は空気制御弁8の平坦状の先端面8Aに衝突した後に、側方に向かって方向を変えて流れる。ここで空気中に含まれるカーボン粒子について着目すると、カーボン粒子は空気に比較してその質量の差から大なる慣性モーメントを有するものであり、側方に向かって流れるカーボン粒子は摺動弁室6の側壁6Bに開口する制御孔7に付着し易いものである。そして、長期に渡る使用時にあっては、前記カーボン粒子が制御孔7の開口を減少させることになり、正確な空気制御を行なえないという不具合を生ずる。第2には長期間に渡って空気制御弁8の円滑な作動を維持できない。すなわち、前記カーボン粒子は、空気制御弁8の平坦状の先端面8Aに衝突した際、先端面8Aに付着し、一方側方に向かうカーボン粒子は摺動弁室6の側壁6Bに付着する。これによると、これらカーボン粒子は空気制御弁8と摺動弁室6との摺動部分に進入することがあり、空気制御弁8の円滑な作動が阻害される。かかる不具合は、特に空気制御弁8を電動モータ、感熱膨縮部材(ワックスエレメント)によって自動的に操作するものにおいて大きな問題となる。そして前記不具合によると、バイパスエアー制御装置のメンテナンス作業の頻度を多くする必要がある。
【0005】
本発明になるバイパスエアー制御装置は前記不具合に鑑み成されたもので、従来のバイパスエアー制御装置を大きく変えることなく、安定したバイパス空気量の制御と安定した空気制御弁の作動とを長期間に渡って保証することのできる吸気制御装置におけるバイパスエアー制御装置を提供することにある。
【0006】
【課題を解決する為の手段】
本発明になる吸気制御装置におけるバイパスエアー制御装置は、前記目的達成の為に、内部を吸気通路が貫通して穿設されるとともに該吸気通路が絞り弁によって開閉制御されるスロットルボデーと、絞り弁を迂回して絞り弁より上流側の吸気通路と絞り弁より下流側の吸気通路とを連絡するバイパスエアー通路と、バイパスエアー通路に配置され、上流から下流に向かう空気量制御する空気制御弁を備えるバイパスエアー制御装置と、よりなる吸気制御装置において、筒状の空気制御弁が軸方向に移動自在に配置される摺動弁室の底部に絞り弁より下流側の吸気通路に連なる下流側バイパスエアー通路を開口するとともに、摺動弁室の側壁に、絞り弁より上流側の吸気通路に開口する上流側バイパスエアー通路に連なる制御孔が穿設され、更に前記空気制御弁の摺動弁室の底部に臨む先端面には凹孔が穿設され、前記下流側バイパスエアー通路の摺動弁室の底部への開口部の開口面積を空気制御弁の先端面への凹孔の開口部の開口面積よりも小さく形成し、下流側バイパスエアー通路の開口部が空気制御弁の凹孔の開口部内に臨むよう配置したことを第1の特徴とする。
【0007】
又、本発明は、前記第1の特徴に加え、前記空気制御弁に形成される凹孔の底部を半球状に形成したことを第2の特徴とする。
【0008】
又、本発明は、前記第1の特徴に加え、前記空気制御弁に形成される凹孔の底部を平坦状に形成したことを第3の特徴とする。
【0009】
更に、本発明は、前記第1の特徴に加え、前記空気制御弁に形成される凹孔の底部を円錐状に形成したことを第4の特徴とする。
【0010】
更に又、本発明は、前記第1の特徴に加え、前記、空気制御弁を円筒形状に形成するとともに、空気制御弁を収納する摺動弁室を円形筒孔に形成し、前記円形筒孔と、下流側バイパスエアー通路の摺動弁室への開口部と空気制御弁に形成される凹孔とを同芯に形成したことを第5の特徴とする。
【0011】
【作用】
本発明の第1の特徴によると、下流側バイパスエアー通路を流れる速い流速をもったカーボン含有の吹き返しによる空気は、空気制御弁の凹孔内へと確実に導入され、凹孔の底部に速い流速をもって衝突するカーボン粒子は凹孔の底部に付着して捕獲される。一方、凹孔に衝突してその速度エネルギーが減少した空気中に含まれるカーボン粒子は機関の吸入工程で摺動弁室から下流側バイパスエアー通路に向かって流れる空気とともに絞り弁より下流側の吸気通路内へと再び吸出される。
【0012】
又、本発明の第2の特徴によると、凹孔の底部が半球状に形成されているので、凹孔内に進入するカーボン含有の空気は半球状の底部によって渦流を生じるとともにその速度エネルギーが減少され、カーボン粒子を半球状の底部に付着させて捕獲するとともに再び絞り弁より下流側の吸気通路内へ吸出できる。
【0013】
又、本発明の第3の特徴によると、凹孔内に進入するカーボン含有の空気は平坦状の底部に衝突し、その速度エネルギーを大きく減少できる。従って、カーボン粒子をこの底部に捕獲できるとともに絞り弁より下流側の吸気通路内への吸出性を向上できる。
【0014】
更に本発明の第4の特徴によると、カーボン粒子の捕獲性及び絞り弁より下流側の吸気通路内への吸出性は第2の特徴と略同等であるが、凹孔の製作を容易にできる。
【0015】
更に本発明の第5の特徴によると、下流側バイパスエアー通路の開口部を空気制御弁の凹孔内へ正確にして安価に開口配置できる。
【0016】
【実施例】
以下、本発明になる吸気制御装置におけるバイパスエアー制御装置の一実施例を図1により説明する。尚、図4と同一構造部分については同一符号を使用して説明を省略する。10は摺動弁室6内に軸方向移動自在に配置された空気制御弁であり、空気制御弁10の摺動弁室6の底部6Aに臨む先端面10Aには空気制御弁10内に向かって凹孔10Bが凹設される。そして、下流側バイパスエアー通路5Aの開口部5Bは空気制御弁10の凹孔10Bの先端面10Aへの開口部10C内に臨んで配置される。前記において、開口部10C内に臨むとは、開口部10Cが、凹孔10Bの開口部10Cの投影面内に位置することである。より具体的には、下流側バイパスエアー通路5Aと、摺動弁室6とが円形孔で形成されるとともに円形孔よりなる凹孔10Bを含む空気制御弁10が円筒形状に形成されるとともに前記、下流側バイパスエアー通路5Aと摺動弁室6と凹孔10Bを含む空気制御弁10とがその長手の軸芯方向において同芯に形成され、その時、開口部5Bを含む下流側バイパスエアー通路5Aの直径dが開口部10Cを含む凹孔10Bの直径Dより小径に形成される。(尚、凹孔10Bと空気制御弁10とは同芯に形成される。又、操作杆10Dは空気制御弁10と一体的に形成される。)
【0017】
以上よりなるバイパスエアー制御装置によると、従来と同様に、空気制御弁10がもっとも左方にあって、その先端面10Aが摺動弁室6の底部6Aの近傍配置された状態で、上流側バイパスエアー通路5Cから下流側バイパスエアー通路5Aに向かう空気流れは空気制御弁10の側部10Eが制御孔7を閉塞保持することから遮断され、一方空気制御弁10が右方へ動作され、側部10Eが制御孔7を開放すると、制御孔7の開放度に応じたバイパスエアーがバイパスエアー通路5を介して絞り弁4より下流側の吸気通路2B内へと供給される。
【0018】
ここで、かかるバイパスエアーの供給時において、機関からの吹き返しによるカーボン粒子を含む空気は、下流側バイパスエアー通路5Aから開口部5Bを介して速い速度エネルギーをもって摺動弁室6内へ進入する。ここで、本発明になるバイパスエアー制御装置にあっては、前記下流側バイパスエアー通路5Aの開口部5Bを、空気制御弁10の凹孔10B内に臨んで開口させたことにより、この速い速度エネルギーを有するカーボン粒子を含んだ空気は、開口部10Cを介していきおいよく凹孔10B内へ進入する。そして、凹孔10B内に進入する前記空気は、凹孔10Bが袋孔であることから、乱流を生ずるもので、これによると、凹孔10Bの内壁に衝突するカーボン粒子は凹孔10Bの内壁に付着して捕獲される。一方、前記空気中に含まれる残余のカーボン粒子は、凹孔10B内に生起する乱流によってその速度エネルギーが減少することによって摺動弁室6から下流側バイパスエアー通路5Aに向かう空気流れによって再び絞り弁4より下流側の吸気通路2B内へと吸出される。以上の如く、本発明によると、機関の吹き返しによって生ずるカーボン粒子を含む空気が摺動弁室6内へ速い速度エネルギーをもって進入したとしても、このカーボン粒子を確実に空気制御弁10の凹孔10Bにて捕獲できるとともに、残余のカーボン粒子の速度エネルギーを減少させて再び絞り弁4より下流側の吸気通路2B内へ吸出させることができたので、摺動弁室6に開口する制御孔7へのカーボン粒子の付着を大きく低減でき、もって長期間に渡って安定して正確なバイパスエアーの供給、制御が可能となったものである。又、前記によると、摺動弁室6と空気制御弁10との摺動部分におけるカーボン粒子の付着も抑止できるもので、これによって長期間に渡って安定した空気制御弁10の動作を得られるものである。更に、前記によって長期間に渡る安定したバイパスエアーの制御及び空気制御弁10の動作性の安定化を図ることができたことによると、バイパスエアー制御装置のメンテナンス頻度を少なくすることができ、メンテナンス性を大きく向上できた。又、本発明によれば、従来の空気制御弁10に対し、単に凹孔10Bを追加工することによって達成できるので、汎用性が高く、且つその製造コストの上昇は極めて小なるものである。更に本発明によれば、開口部5Bを含む下流側バイパスエアー通路5Aと、摺動弁室6と、凹孔10Bを含む空気制御弁10とを同芯に形成したもので、これによると、より確実にして且つ安価に、下流側バイパスエアー通路5Aの開口部5Bを空気制御弁10の凹孔10B内に臨んで配置できる。このとき、開口部5Bを含む下流側バイパスエアー通路5Aの直径dを開口部10Cを含む凹孔10Bの直径Dより小径に形成することにより前記を達成できる。
【0019】
又、空気制御弁10の凹孔10Bの底部の形状を図1に示す如く半球状に形成すると、凹孔10Bの底部において渦流をより積極的に形成でき、カーボン粒子の凹孔10B内への付着性及びカーボン粒子に対する速度エネルギーの減少効果を達成できる。
【0020】
更に図2に示される如く、空気制御弁10の凹孔10Bの底部を、平坦状に形成したことによると、カーボン粒子を含む吹き返しの空気を底部に向けて直交して衝突させることができ、底部へのカーボンの付着性をより一層高めることができる。
【0021】
更に又、図3に示される如く、空気制御弁10の凹孔10Bの底部を、円錐状に形成したことによると、カーボン粒子に対する付着性及び速度エネルギーの減少性は底部が半球状のものと略同一なるものであるが凹孔10Bの形成をドリル加工で行なうことができるので、空気制御弁の製造を安価で簡単に実施できる。尚、凹孔10Bの底部の形状は前記実施例によって限定されるものでない。
【0022】
【発明の効果】
以上の如く、本発明になる吸気制御装置におけるバイパスエアー制御装置によると、筒状の空気制御弁が軸方向に移動自在に配置される摺動弁室の底部に絞り弁より下流側の吸気通路に連なる下流側バイパスエアー通路を開口するとともに、摺動弁室の側壁に、絞り弁より上流側の吸気通路に開口する上流側バイパスエアー通路に連なる制御孔が穿設され、更に前記空気制御弁の摺動弁室の底部に臨む先端面には凹孔が穿設され、前記下流側バイパスエアー通路の摺動弁室の底部への開口部の開口面積を空気制御弁の先端面への凹孔の開口部の開口面積よりも小さく形成し、下流側バイパスエアー通路の開口部が空気制御弁の凹孔の開口部内に臨むよう配置したので、機関の吹き返しによってカーボン粒子を含む空気が空気制御弁内に進入したとしても、カーボン粒子を空気制御弁内の凹孔内に効果的に付着できるとともにカーボン粒子が有する速度エネルギーを減少できて、再び絞り弁より下流側の吸気通路内へ吸出させることができ、これによって制御孔に対するカーボン粒子の付着を抑止でき、長期間に渡って安定したバイパスエアーの正確な制御を達成できる。又、併せて空気制御弁と摺動弁室との摺動部におけるカーボン粒子の付着を低減でき、これによって長期間に渡って安定して良好な空気制御弁の操作を行なうことができる。又、上記によればメンテナンスの作業頻度を減少でき、メンテナンス性の向上に寄与できる。更に凹孔は従来の空気制御弁に対し、付加的に設けられるものでその実施は極めて容易である。
【図面の簡単な説明】
【図1】 本発明になる吸気制御装置におけるバイパスエアー制御装置の一実施例を示す縦断面図。
【図2】 本発明のバイパスエアー制御装置に用いられる空気制御弁の他の実施例を示す要部縦断面図。
【図3】 本発明のバイパスエアー制御装置に用いられる空気制御弁の更に他の実施例を示す要部縦断面図。
【図4】 従来のバイパスエアー制御装置を示す縦断面図。
【符号の説明】
4 絞り弁
5 バイパスエアー通路
5A 下流側バイパスエアー通路
5B 下流側バイパスエアー通路の摺動弁室6の底部6Aへの開口部
5C 上流側バイパスエアー通路
6 摺動弁室
6A 摺動弁室6の底部
6B 摺動弁室6の側壁
7 制御孔
10 空気制御弁
10B 凹孔
[0001]
[Industrial application fields]
The present invention relates to an intake control device such as a throttle body that controls the amount of air supplied to an engine, and in particular, connects the upstream and downstream of a throttle valve by bypassing an intake passage through a bypass air passage and the bypass air. The present invention relates to a bypass air control device in which the amount of air flowing through a passage is controlled by an air control valve. Such a bypass air control device is used, for example, when controlling idling air during engine idling operation or starting air during engine cold start.
[0002]
[Prior art]
A conventional bypass air control device is shown in FIG. Reference numeral 1 denotes a throttle body having an intake passage 2 penetrating therethrough. The intake passage is opened and closed by a throttle valve 4 attached to a throttle valve shaft 3 rotatably supported on the throttle body 1. This controls the amount of air going to the engine. A bypass air passage 5 bypasses the intake passage 2 and connects the intake passage 2A upstream of the throttle valve 4 and the intake passage 2B downstream of the throttle valve 4. A valve operating chamber 6 is formed. The downstream bypass air passage 5A divided by the sliding valve chamber 6 opens in the intake passage 2B downstream from the throttle valve 4, and the upstream has an opening 5B and the bottom 6A of the sliding valve chamber 6 is opened. Open to. On the other hand, control holes 7 are formed in the side wall 6B of the sliding valve chamber 6 so as to open. These control holes 7 are located in the intake passage 2A upstream of the throttle valve 4 via the upstream bypass air passage 5C. Is opened. 8 is a cylindrical air control valve disposed in the sliding valve chamber 6 so as to be movable in the axial direction, and the front end surface 8A of the air control valve 8 facing the bottom 6A of the sliding valve chamber 6 is formed flat. When the air control valve 8 moves in the sliding valve chamber 6 in the axial direction, its front end surface 8A is in contact with or close to the bottom portion 6A, while the side 8B of the air control valve 8 has a control hole. 7 is controlled to open into the sliding valve chamber 6. The air control valve 8 is provided with an operating rod 8C extending outward, and the air control valve 8 is reciprocated in the axial direction in the sliding valve chamber 6 by operating the operating rod 8C.
[0003]
According to such a conventional bypass air control device, when the air control valve 8 is moved leftward in FIG. 4 by the operating rod 8C, the front end surface 8A of the air control valve 8 contacts the bottom 6A of the sliding valve chamber 6. Alternatively, the control hole 7 is closed and controlled by the side portion 8B of the air control valve 8. According to the above, since the air flow from the upstream bypass air passage 5C toward the downstream bypass air passage 5A is blocked by the air control valve 8, the air flow in the intake passage 2B downstream from the throttle valve 4 via the bypass air passage 5 Air is not supplied. On the other hand, when the air control valve 8 is moved to the right in FIG. 4 by the operating rod 8C, the side portion 8B of the air control valve 8 opens the control hole 7. According to this, the upstream bypass air passage 5C is opened. The flowing air is controlled according to the opening of the control hole 7, and this controlled air is supplied into the intake passage 2B downstream of the throttle valve 4 through the sliding valve chamber 6 and the downstream bypass air passage 5A. Thus, it is possible to supply the idling air amount necessary for the engine idling operation or the starting air amount suitable for the engine starting operation. The amount of air controlled by the control hole 7 is determined by the opening degree of the control hole 7 due to the movement of the air control valve 8.
[0004]
[Problems to be solved by the invention]
Such a conventional bypass air control device has the following problems. First, it is difficult to accurately control the amount of air over a long period of time. This is because air containing carbon particles blown back from the engine enters the sliding valve chamber 6 through the downstream bypass air passage 5A through the opening 5B, and the air containing the carbon is supplied to the air control valve 8. After colliding with the flat front end surface 8A, the direction of flow changes to the side. When attention is paid to the carbon particles contained in the air, the carbon particles have a large moment of inertia from the difference in mass compared to the air, and the carbon particles flowing toward the side are in the sliding valve chamber 6. It is easy to adhere to the control hole 7 opened in the side wall 6B. In use over a long period of time, the carbon particles reduce the opening of the control hole 7, resulting in a problem that accurate air control cannot be performed. Secondly, the smooth operation of the air control valve 8 cannot be maintained over a long period of time. That is, when the carbon particles collide with the flat front end surface 8A of the air control valve 8, the carbon particles adhere to the front end surface 8A, and the carbon particles directed to one side adhere to the side wall 6B of the sliding valve chamber 6. According to this, these carbon particles may enter the sliding portion between the air control valve 8 and the sliding valve chamber 6, and the smooth operation of the air control valve 8 is hindered. Such inconvenience becomes a serious problem particularly when the air control valve 8 is automatically operated by an electric motor and a heat-sensitive expansion / contraction member (wax element). And according to the said malfunction, it is necessary to increase the frequency of the maintenance work of a bypass air control apparatus.
[0005]
The bypass air control device according to the present invention has been made in view of the above-mentioned problems, and stable control of the bypass air amount and stable operation of the air control valve can be performed for a long time without greatly changing the conventional bypass air control device. It is an object of the present invention to provide a bypass air control device in an intake control device that can be guaranteed over a wide range.
[0006]
[Means for solving the problems]
In order to achieve the above object, the bypass air control device in the intake control device according to the present invention includes a throttle body in which an intake passage passes through and is controlled to be opened and closed by a throttle valve, and a throttle A bypass air passage that bypasses the valve and connects the intake passage upstream of the throttle valve and the intake passage downstream of the throttle valve, and an air control that is disposed in the bypass air passage and controls the amount of air flowing upstream to downstream A bypass air control device including a valve, and an intake control device comprising: a cylindrical air control valve disposed downstream of the throttle valve at a bottom portion of a sliding valve chamber in which the cylindrical air control valve is movably disposed in the axial direction. The side bypass air passage is opened, and a control hole connected to the upstream bypass air passage that opens to the intake passage upstream of the throttle valve is formed in the side wall of the sliding valve chamber. Further, the the distal end surface facing the bottom of the slide valve chamber of the air control valve recessed hole is bored, the opening area of the opening to the bottom of the sliding valve chamber of the downstream bypass air passage of the air control valve is formed smaller than the opening area of the opening of the concave hole of the distal end surface, the opening of the downstream bypass air passage to the first, characterized in that arranged extraordinary useless in the opening of the concave hole of the air control valve.
[0007]
In addition to the first feature, the second feature of the present invention is that the bottom of the concave hole formed in the air control valve is formed in a hemispherical shape.
[0008]
In addition to the first feature, the present invention has a third feature that the bottom of the concave hole formed in the air control valve is formed flat.
[0009]
Furthermore, the present invention is characterized in that, in addition to the first feature, the bottom of the concave hole formed in the air control valve is formed in a conical shape.
[0010]
Furthermore, in addition to the first feature, the present invention forms the air control valve in a cylindrical shape, and forms a sliding valve chamber for housing the air control valve in a circular cylindrical hole. A fifth feature is that the opening to the sliding valve chamber of the downstream bypass air passage and the concave hole formed in the air control valve are formed concentrically.
[0011]
[Action]
According to the first feature of the present invention, the air by the carbon-containing blow-back with a fast flow velocity flowing through the downstream bypass air passage is surely introduced into the concave hole of the air control valve, and is fast at the bottom of the concave hole. The carbon particles that collide with the flow velocity are attached to the bottom of the concave hole and captured. On the other hand, the carbon particles contained in the air that collided with the concave holes and the velocity energy thereof decreased decreased along with the air flowing from the sliding valve chamber toward the downstream bypass air passage in the engine intake process. It is sucked out again into the passage.
[0012]
Further, according to the second feature of the present invention, since the bottom of the concave hole is formed in a hemispherical shape, the carbon-containing air entering the concave hole generates a vortex by the hemispherical bottom and the velocity energy is increased. The carbon particles are reduced and attached to the bottom of the hemispherical surface, and can be sucked again into the intake passage downstream of the throttle valve.
[0013]
Further, according to the third feature of the present invention, the carbon-containing air entering the concave hole collides with the flat bottom portion, and the velocity energy can be greatly reduced. Accordingly, the carbon particles can be captured at the bottom, and the sucking performance into the intake passage on the downstream side of the throttle valve can be improved.
[0014]
Further, according to the fourth feature of the present invention, the capture property of the carbon particles and the suction property into the intake passage downstream from the throttle valve are substantially the same as the second feature, but the production of the recessed hole can be facilitated. .
[0015]
Furthermore, according to the fifth feature of the present invention, the opening of the downstream bypass air passage can be accurately and inexpensively arranged in the recessed hole of the air control valve.
[0016]
【Example】
An embodiment of a bypass air control device in an intake air control device according to the present invention will be described below with reference to FIG. In addition, about the same structure part as FIG. 4, the description is abbreviate | omitted using the same code | symbol. Reference numeral 10 denotes an air control valve disposed in the sliding valve chamber 6 so as to be axially movable. A tip surface 10A of the air control valve 10 facing the bottom 6A of the sliding valve chamber 6 faces the air control valve 10. Thus, the recessed hole 10B is recessed. The opening 5B of the downstream bypass air passage 5A is disposed facing the opening 10C to the tip surface 10A of the recessed hole 10B of the air control valve 10. In the above description, facing the opening 10C means that the opening 10C is located in the projection plane of the opening 10C of the concave hole 10B. More specifically, the downstream side bypass air passage 5A and the sliding valve chamber 6 are formed with circular holes, and the air control valve 10 including a concave hole 10B made of a circular hole is formed in a cylindrical shape and the above-mentioned. The downstream bypass air passage 5A, the sliding valve chamber 6, and the air control valve 10 including the concave hole 10B are formed concentrically in the longitudinal axial direction, and at that time, the downstream bypass air passage including the opening 5B The diameter d of 5A is formed smaller than the diameter D of the concave hole 10B including the opening 10C. (Note that the recessed hole 10B and the air control valve 10 are formed concentrically. The operating rod 10D is formed integrally with the air control valve 10.)
[0017]
According to the bypass air control device constructed as described above, the air control valve 10 is located on the leftmost side, and the front end surface 10A thereof is disposed in the vicinity of the bottom 6A of the sliding valve chamber 6 as in the conventional case. The air flow from the bypass air passage 5C toward the downstream bypass air passage 5A is blocked by the side portion 10E of the air control valve 10 closing and holding the control hole 7, while the air control valve 10 is operated to the right side. When the part 10 </ b> E opens the control hole 7, bypass air corresponding to the degree of opening of the control hole 7 is supplied into the intake passage 2 </ b> B downstream from the throttle valve 4 via the bypass air passage 5.
[0018]
Here, when supplying the bypass air, the air containing carbon particles blown back from the engine enters the sliding valve chamber 6 from the downstream bypass air passage 5A through the opening 5B with high velocity energy. Here, in the bypass air control device according to the present invention, the opening 5B of the downstream bypass air passage 5A is opened facing the recessed hole 10B of the air control valve 10, so that this high speed is achieved. Air containing carbon particles having energy enters into the concave hole 10B through the opening 10C. The air entering the concave hole 10B generates turbulent flow because the concave hole 10B is a bag hole. According to this, the carbon particles that collide with the inner wall of the concave hole 10B are in the concave hole 10B. It is attached to the inner wall and captured. On the other hand, the remaining carbon particles contained in the air are reduced again by the air flow from the sliding valve chamber 6 toward the downstream bypass air passage 5A because the velocity energy is reduced by the turbulent flow generated in the concave hole 10B. The air is sucked into the intake passage 2B on the downstream side of the throttle valve 4. As described above, according to the present invention, even if air containing carbon particles generated by blowback of the engine enters the sliding valve chamber 6 with fast velocity energy, the carbon particles are surely inserted into the concave hole 10B of the air control valve 10. Since the velocity energy of the remaining carbon particles can be reduced and sucked again into the intake passage 2B on the downstream side of the throttle valve 4, the control hole 7 opening in the sliding valve chamber 6 can be obtained. Thus, the adhesion of carbon particles can be greatly reduced, and the supply and control of bypass air can be stably and accurately performed over a long period of time. Further, according to the above, it is possible to suppress the adhesion of carbon particles at the sliding portion between the sliding valve chamber 6 and the air control valve 10, thereby obtaining a stable operation of the air control valve 10 over a long period of time. Is. Further, according to the above, stable control of the bypass air over a long period of time and stabilization of the operability of the air control valve 10 can be achieved, so that the maintenance frequency of the bypass air control device can be reduced, and maintenance can be performed. I was able to greatly improve the performance. Further, according to the present invention, this can be achieved by simply adding the concave hole 10B to the conventional air control valve 10, so that the versatility is high and the manufacturing cost is extremely small. Furthermore, according to the present invention, the downstream bypass air passage 5A including the opening 5B, the sliding valve chamber 6, and the air control valve 10 including the recessed hole 10B are formed concentrically. The opening 5B of the downstream bypass air passage 5A can be disposed to face the recessed hole 10B of the air control valve 10 more reliably and inexpensively. At this time, the above can be achieved by forming the diameter d of the downstream bypass air passage 5A including the opening 5B smaller than the diameter D of the concave hole 10B including the opening 10C.
[0019]
Further, if the shape of the bottom of the concave hole 10B of the air control valve 10 is formed in a hemispherical shape as shown in FIG. 1, a vortex can be more actively formed at the bottom of the concave hole 10B, and the carbon particles enter the concave hole 10B. Adhesiveness and speed energy reduction effect on carbon particles can be achieved.
[0020]
Further, as shown in FIG. 2, according to the bottom of the concave hole 10 </ b> B of the air control valve 10 being formed in a flat shape, blown-back air containing carbon particles can collide perpendicularly toward the bottom, The adherence of carbon to the bottom can be further enhanced.
[0021]
Furthermore, as shown in FIG. 3, when the bottom of the concave hole 10B of the air control valve 10 is formed in a conical shape, the adhesion to carbon particles and the reduction in velocity energy are as follows. Although it is substantially the same, since the formation of the concave hole 10B can be performed by drilling, the manufacture of the air control valve can be easily performed at low cost. In addition, the shape of the bottom part of the concave hole 10B is not limited by the said Example.
[0022]
【The invention's effect】
As described above, according to the bypass air control device in the intake control device of the present invention, the intake passage on the downstream side of the throttle valve at the bottom of the sliding valve chamber in which the cylindrical air control valve is movably disposed in the axial direction. A control hole connected to the upstream bypass air passage that opens to the intake passage upstream of the throttle valve is formed in the side wall of the sliding valve chamber, and the air control valve A concave hole is formed in the tip surface facing the bottom of the sliding valve chamber, and the opening area of the opening of the downstream bypass air passage to the bottom of the sliding valve chamber is recessed to the tip surface of the air control valve. is formed smaller than the opening area of the opening of the hole, the opening portion of the downstream bypass air passage has extraordinary useless placed in the opening of the concave hole of the air control valve, air air control containing carbon particles by blow back of the engine Enter the valve However, the carbon particles can be effectively adhered to the concave holes in the air control valve and the velocity energy of the carbon particles can be reduced, and can be sucked again into the intake passage downstream of the throttle valve. Therefore, the adhesion of the carbon particles to the control hole can be suppressed, and the stable control of the bypass air that is stable over a long period of time can be achieved. In addition, the adhesion of carbon particles at the sliding portion between the air control valve and the sliding valve chamber can be reduced, whereby the air control valve can be operated stably and satisfactorily for a long period of time. Moreover, according to the above, the maintenance work frequency can be reduced, which can contribute to the improvement of maintainability. Further, the concave hole is provided in addition to the conventional air control valve, and its implementation is very easy.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a bypass air control device in an intake air control device according to the present invention.
FIG. 2 is a longitudinal sectional view of an essential part showing another embodiment of an air control valve used in the bypass air control device of the present invention.
FIG. 3 is a longitudinal sectional view of an essential part showing still another embodiment of the air control valve used in the bypass air control device of the present invention.
FIG. 4 is a longitudinal sectional view showing a conventional bypass air control device.
[Explanation of symbols]
4 Throttle valve 5 Bypass air passage 5A Downstream bypass air passage 5B Opening 5C to the bottom 6A of the sliding valve chamber 6 in the downstream bypass air passage Upstream bypass air passage 6 Sliding valve chamber 6A In the sliding valve chamber 6 Bottom 6B Side wall 7 of sliding valve chamber 6 Control hole 10 Air control valve 10B Concave hole

Claims (5)

内部を吸気通路が貫通して穿設されるとともに該吸気通路が絞り弁によって開閉制御されるスロットルボデーと、絞り弁を迂回して絞り弁より上流側の吸気通路と絞り弁より下流側の吸気通路とを連絡するバイパスエアー通路と、バイパスエアー通路に配置され、上流から下流に向かう空気量制御する空気制御弁を備えるバイパスエアー制御装置と、よりなる吸気制御装置において、筒状の空気制御弁10が軸方向に移動自在に配置される摺動弁室6の底部6Aに絞り弁4より下流側の吸気通路2Bに連なる下流側バイパスエアー通路5Aを開口するとともに、摺動弁室6の側壁6Bに、絞り弁4より上流側の吸気通路2Aに開口する上流側バイパスエアー通路5Cに連なる制御孔7が穿設され、更に前記空気制御弁の摺動弁室6の底部6Aに臨む先端面10Aには凹孔10Bが穿設され、前記下流側バイパスエアー通路の摺動弁室6の底部6Aへの開口部5Bの開口面積を空気制御弁10の先端面10Aへの凹孔10Bの開口部10Cの開口面積よりも小さく形成し、下流側バイパスエアー通路の開口部5Bが空気制御弁の凹孔の開口部10C内に臨むよう配置したことを特徴とする吸気制御装置におけるバイパスエアー制御装置。A throttle body that is penetrated by an intake passage and is controlled to be opened and closed by a throttle valve, and an intake passage that bypasses the throttle valve and that is upstream of the throttle valve and intake air that is downstream of the throttle valve a bypass air passage for communicating the passage, is disposed in the bypass air passage, and a bypass air control device including an air control valve for controlling the amount of air directed from the upstream to the downstream, in a more composed intake control device, a cylindrical air control A downstream bypass air passage 5A connected to the intake passage 2B downstream of the throttle valve 4 is opened at the bottom 6A of the sliding valve chamber 6 in which the valve 10 is movably disposed in the axial direction. A control hole 7 connected to the upstream bypass air passage 5C that opens to the intake passage 2A upstream of the throttle valve 4 is formed in the side wall 6B, and further, the bottom 6 of the sliding valve chamber 6 of the air control valve. The concave hole 10B on the distal end surface 10A facing is bored, concave opening area of the opening 5B of the bottom section 6A of the sliding valve chamber 6 of the downstream bypass air passage to the distal end surface 10A of the air control valve 10 It is formed smaller than the opening area of the opening 10C of the hole 10B, the intake control device in which the opening 5B of the downstream bypass air passage, characterized in that arranged extraordinary useless in the opening 10C of the concave hole of the air control valve Bypass air control device. 前記空気制御弁に形成される凹孔10Bの底部を半球状に形成したことを特徴とする請求項1記載の吸気制御装置におけるバイパスエアー制御装置。  The bypass air control device in an intake control device according to claim 1, wherein the bottom of the concave hole 10B formed in the air control valve is formed in a hemispherical shape. 前記空気制御弁に形成される凹孔10Bの底部を平坦状に形成したことを特徴とする請求項1記載の吸気制御装置におけるバイパスエアー制御装置。  The bypass air control device in an intake control device according to claim 1, wherein a bottom portion of the concave hole 10B formed in the air control valve is formed flat. 前記空気制御弁に形成される凹孔10Bの底部を円錐状に形成したことを特徴とする請求項1記載の吸気制御装置におけるバイパスエアー制御装置。  The bypass air control device for an intake air control device according to claim 1, wherein the bottom of the concave hole 10B formed in the air control valve is formed in a conical shape. 前記、空気制御弁を円筒形状に形成するとともに、空気制御弁10を収納する摺動弁室6を円形筒孔に形成し、前記円形筒孔と、下流側バイパスエアー通路5Aの摺動弁室6への開口部5Bと空気制御弁10に形成される凹孔10Bとを同芯に形成したことを特徴とする請求項1記載の吸気制御装置におけるバイパスエアー制御装置。  The air control valve is formed in a cylindrical shape, and the sliding valve chamber 6 that houses the air control valve 10 is formed in a circular cylindrical hole. The circular cylindrical hole and the sliding valve chamber of the downstream bypass air passage 5A are formed. The bypass air control device in the intake control device according to claim 1, wherein an opening 5 </ b> B to 6 and a concave hole 10 </ b> B formed in the air control valve 10 are formed concentrically.
JP2002118853A 2002-04-22 2002-04-22 Bypass air control device in intake control device Expired - Lifetime JP3925287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118853A JP3925287B2 (en) 2002-04-22 2002-04-22 Bypass air control device in intake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118853A JP3925287B2 (en) 2002-04-22 2002-04-22 Bypass air control device in intake control device

Publications (2)

Publication Number Publication Date
JP2003314414A JP2003314414A (en) 2003-11-06
JP3925287B2 true JP3925287B2 (en) 2007-06-06

Family

ID=29535575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118853A Expired - Lifetime JP3925287B2 (en) 2002-04-22 2002-04-22 Bypass air control device in intake control device

Country Status (1)

Country Link
JP (1) JP3925287B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523520B2 (en) * 2005-08-23 2010-08-11 株式会社ケーヒン Air bypass control device for throttle body
CN113431678B (en) * 2021-05-27 2023-03-21 株式会社三国 Carbon deposition prevention structure of throttle body
CN115200137B (en) * 2022-07-14 2023-09-01 珠海横琴润霖生物科技有限公司 Ultraviolet sterilizer

Also Published As

Publication number Publication date
JP2003314414A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
US4497335A (en) Control valve of exhaust gas recirculation apparatus
JP3925287B2 (en) Bypass air control device in intake control device
JP2004282009A5 (en)
JP2006037947A (en) Pre-cleaner
JP3923665B2 (en) EGR device for supercharged engine
JP2001146984A (en) Broadband variable conductance valve
JP2006077757A (en) Fuel return valve structure for engine
JP2008038700A (en) Valve actuating mechanism
JP2011106405A (en) Intake device for internal combustion engine
JP3902344B2 (en) Air intake duct
JP2019069425A (en) Fluid discharge mechanism, and fluid spray device to vehicle camera or sensor
JP2007321801A (en) Solenoid valve
EP1686256B1 (en) Exhaust gas recycling valve for a vehicle
JP2000054924A (en) Air intake duct
JPH0658153A (en) Intake air flow control device for internal combustion engine
JPH0338440B2 (en)
JP3479756B2 (en) Exhaust gas recirculation device
JP2636376B2 (en) Intake device for internal combustion engine
KR100588559B1 (en) Turbo-charger system
WO2007119379A1 (en) Exhaust pressure control valve
JP2004052701A (en) Throttle body for fuel injection system
JP4282862B2 (en) Downdraft type constant vacuum vaporizer
KR100384004B1 (en) Air cleaner for vehicle
JP2765189B2 (en) Vacuum ejector for electronic component mounting machine
JP2006083790A (en) Mounting structure of fuel injection valve on throttle body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6