JP2003314414A - Bypass air control device of intake control device - Google Patents

Bypass air control device of intake control device

Info

Publication number
JP2003314414A
JP2003314414A JP2002118853A JP2002118853A JP2003314414A JP 2003314414 A JP2003314414 A JP 2003314414A JP 2002118853 A JP2002118853 A JP 2002118853A JP 2002118853 A JP2002118853 A JP 2002118853A JP 2003314414 A JP2003314414 A JP 2003314414A
Authority
JP
Japan
Prior art keywords
air control
control device
air
bypass air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002118853A
Other languages
Japanese (ja)
Other versions
JP3925287B2 (en
Inventor
Yasushi Kondo
靖史 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2002118853A priority Critical patent/JP3925287B2/en
Publication of JP2003314414A publication Critical patent/JP2003314414A/en
Application granted granted Critical
Publication of JP3925287B2 publication Critical patent/JP3925287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bypass air control device which assures the accurate and stable control of bypass air amount and the stable operation of an air control valve for a long period. <P>SOLUTION: A downstream side bypass air passage 5A is opened in the bottom part 6A of a sliding valve chamber 6 having the air control valve 10 movably disposed therein, and a control hole 7 is opened in the side wall 6B of the sliding valve chamber 6. The control hole 7 is communicated with the upstream side bypass air passage 5C. In the air control valve 10, a recessed hole 10B is provided in the tip end face facing the bottom part 6A of the sliding valve chamber 6. The opening part 5B of a downstream side bypass air passage 5A to the bottom part 6A of the sliding valve chamber 6 is disposed facing the inside of the opening part 10C of the recessed hole 10B opening to the tip face 10A of the air control valve 10. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機関へ供給する空気量
を制御するスロットルボデー等の吸気制御装置に関し、
そのうち特に、絞り弁の上流と下流とを吸気通路を迂回
してバイパスエアー通路にて連絡するとともに該バイパ
スエアー通路を流れる空気量が空気制御弁によって制御
されるバイパスエアー制御装置に関する。かかるバイパ
スエアー制御装置は、機関のアイドリング運転時におけ
るアイドリング用の空気あるいは機関の低温始動時にお
ける始動用の空気を制御する際、等において用いられ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control device such as a throttle body for controlling the amount of air supplied to an engine,
In particular, the present invention relates to a bypass air control device that connects the upstream side and the downstream side of a throttle valve by a bypass air passage, bypassing an intake passage, and controls the amount of air flowing through the bypass air passage by an air control valve. Such a bypass air control device is used, for example, when controlling the idling air during idling operation of the engine or the starting air during cold starting of the engine.

【0002】[0002]

【従来の技術】従来のバイパスエアー制御装置は、図4
に示される。1は内部を吸気通路2が貫通して穿設され
たスロットルボデーであり、該吸気通路は、スロットル
ボデー1に回転自在に支承された絞り弁軸3に取着され
た絞り弁4によって開閉され、これによって機関に向か
う空気量が制御される。5は吸気通路2を迂回して絞り
弁4の上流側の吸気通路2Aと絞り弁4の下流側の吸気
通路2Bとを連絡するバイパスエアー通路であり、この
バイパスエアー通路5の途中には摺動弁室6が形成され
る。そして、摺動弁室6によって区分される下流側バイ
パスエアー通路5Aの下流は、絞り弁4より下流側の吸
気通路2B内に開口し、上流は開口部5Bをもって摺動
弁室6の底部6Aに開口する。一方、摺動弁室6の側壁
6Bには制御孔7が穿設されて開口するもので、これら
制御孔7は上流側バイパスエアー通路5Cを介して絞り
弁4より上流側の吸気通路2A内に開口される。8は摺
動弁室6内に軸方向移動自在に配置される筒状をなす空
気制御弁であり、空気制御弁8の摺動弁室6の底部6A
に臨む先端面8Aは平坦状に形成され、空気制御弁8が
摺動弁室6内を軸方向に移動することにより、その先端
面8Aが底部6Aに当接、若しくは近接配置され、一方
空気制御弁8の側部8Bは制御孔7の摺動弁室6内への
開口を制御する。かかる空気制御弁8は外方に延びる操
作杆8Cを備え、この操作杆8Cが操作されることによ
って空気制御弁8は摺動弁室6内を軸方向に往復動され
る。
2. Description of the Related Art A conventional bypass air control device is shown in FIG.
Shown in. Reference numeral 1 denotes a throttle body having an intake passage 2 penetrating therethrough, and the intake passage is opened and closed by a throttle valve 4 attached to a throttle valve shaft 3 rotatably supported by the throttle body 1. , Which controls the amount of air going to the engine. Reference numeral 5 denotes a bypass air passage that bypasses the intake passage 2 and connects the intake passage 2A on the upstream side of the throttle valve 4 and the intake passage 2B on the downstream side of the throttle valve 4. A bypass air passage 5 is provided in the middle of the bypass air passage 5. The valve operating chamber 6 is formed. The downstream side of the downstream bypass air passage 5A divided by the sliding valve chamber 6 opens into the intake passage 2B on the downstream side of the throttle valve 4, and the upstream side has an opening 5B with a bottom portion 6A of the sliding valve chamber 6. To open. On the other hand, the side wall 6B of the sliding valve chamber 6 is provided with control holes 7 which are opened. The control holes 7 are located in the intake passage 2A upstream of the throttle valve 4 via the upstream bypass air passage 5C. To be opened. Reference numeral 8 denotes a cylindrical air control valve which is arranged in the sliding valve chamber 6 so as to be movable in the axial direction, and the bottom portion 6A of the sliding valve chamber 6 of the air control valve 8 is provided.
The front end surface 8A that faces the bottom surface is formed flat, and the air control valve 8 moves axially in the sliding valve chamber 6 so that the front end surface 8A is brought into contact with or close to the bottom portion 6A. The side portion 8B of the control valve 8 controls the opening of the control hole 7 into the sliding valve chamber 6. The air control valve 8 is provided with an operating rod 8C extending outward, and by operating the operating rod 8C, the air control valve 8 is reciprocated in the sliding valve chamber 6 in the axial direction.

【0003】かかる従来のバイパスエアー制御装置によ
ると、操作杆8Cによって空気制御弁8が図4において
左方へ動作されると、空気制御弁8の先端面8Aは摺動
弁室6の底部6Aに当接又は近接して配置され、一方制
御孔7は空気制御弁8の側部8Bによって閉塞制御され
る。以上によると、上流側バイパスエアー通路5Cから
下流側バイパスエアー通路5Aに向かう空気流れは空気
制御弁8によって遮断されるので、バイパスエアー通路
5を介して絞り弁4より下流側の吸気通路2B内へ空気
の供給が行なわれない。一方、空気制御弁8が操作杆8
Cによって図4において右方へ動作されると、空気制御
弁8の側部8Bが制御孔7を開放するもので、これによ
ると上流側バイパスエアー通路5Cを流れる空気は前記
制御孔7の開口に応じて制御され、この制御された空気
が摺動弁室6、下流側バイパスエアー通路5Aを介して
絞り弁4より下流側の吸気通路2B内に供給され、これ
によって機関のアイドリング運転に必要なアイドリング
空気量あるいは機関の始動運転に適した始動用空気量の
供給を行なうことができる。尚、制御孔7によって制御
される空気量は空気制御弁8の移動による制御孔7の開
口度によって決定される。
According to such a conventional bypass air control device, when the air control valve 8 is operated to the left in FIG. 4 by the operating rod 8C, the front end surface 8A of the air control valve 8 has a bottom portion 6A of the sliding valve chamber 6. The control hole 7 is closed and controlled by the side 8B of the air control valve 8. According to the above, the air flow from the upstream side bypass air passage 5C to the downstream side bypass air passage 5A is blocked by the air control valve 8, so that the inside of the intake passage 2B downstream of the throttle valve 4 via the bypass air passage 5. Air is not supplied to. On the other hand, the air control valve 8 is operated by the operating rod 8.
When operated to the right in FIG. 4 by C, the side portion 8B of the air control valve 8 opens the control hole 7. According to this, the air flowing through the upstream bypass air passage 5C opens the control hole 7. Is controlled in accordance with the above, and the controlled air is supplied into the intake passage 2B on the downstream side of the throttle valve 4 via the sliding valve chamber 6 and the downstream bypass air passage 5A, which is necessary for the idling operation of the engine. It is possible to supply a proper idling air amount or a starting air amount suitable for starting operation of the engine. The amount of air controlled by the control hole 7 is determined by the opening degree of the control hole 7 due to the movement of the air control valve 8.

【0004】[0004]

【発明が解決しようとする課題】かかる従来のバイパス
エアー制御装置によると、以下の問題を有する。第1に
は、長期間に渡って正確な空気量の制御が困難である。
これは、機関からの吹き返しによるカーボン粒子を含ん
だ空気が下流側バイパスエアー通路5Aから開口部5B
を介して摺動弁室6内へいきおいよく進入し、このカー
ボン含有の空気は空気制御弁8の平坦状の先端面8Aに
衝突した後に、側方に向かって方向を変えて流れる。こ
こで空気中に含まれるカーボン粒子について着目する
と、カーボン粒子は空気に比較してその質量の差から大
なる慣性モーメントを有するものであり、側方に向かっ
て流れるカーボン粒子は摺動弁室6の側壁6Bに開口す
る制御孔7に付着し易いものである。そして、長期に渡
る使用時にあっては、前記カーボン粒子が制御孔7の開
口を減少させることになり、正確な空気制御を行なえな
いという不具合を生ずる。第2には長期間に渡って空気
制御弁8の円滑な作動を維持できない。すなわち、前記
カーボン粒子は、空気制御弁8の平坦状の先端面8Aに
衝突した際、先端面8Aに付着し、一方側方に向かうカ
ーボン粒子は摺動弁室6の側壁6Bに付着する。これに
よると、これらカーボン粒子は空気制御弁8と摺動弁室
6との摺動部分に進入することがあり、空気制御弁8の
円滑な作動が阻害される。かかる不具合は、特に空気制
御弁8を電動モータ、感熱膨縮部材(ワックスエレメン
ト)によって自動的に操作するものにおいて大きな問題
となる。そして前記不具合によると、バイパスエアー制
御装置のメンテナンス作業の頻度を多くする必要があ
る。
The conventional bypass air control device as described above has the following problems. First, it is difficult to accurately control the air amount over a long period of time.
This is because the air containing carbon particles due to blowback from the engine passes from the downstream bypass air passage 5A to the opening 5B.
The carbon-containing air rushes into the sliding valve chamber 6 through the air passage, and collides with the flat tip surface 8A of the air control valve 8 and then changes its direction laterally. Focusing on the carbon particles contained in the air, the carbon particles have a large moment of inertia due to the difference in mass compared to the air, and the carbon particles flowing toward the side are the sliding valve chambers 6 It easily adheres to the control hole 7 opening on the side wall 6B. Then, during long-term use, the carbon particles reduce the opening of the control hole 7, which causes a problem that accurate air control cannot be performed. Secondly, the smooth operation of the air control valve 8 cannot be maintained for a long period of time. That is, when the carbon particles collide with the flat front end surface 8A of the air control valve 8, the carbon particles adhere to the front end surface 8A, and the carbon particles heading to one side adhere to the side wall 6B of the sliding valve chamber 6. According to this, these carbon particles may enter the sliding portion between the air control valve 8 and the sliding valve chamber 6, and the smooth operation of the air control valve 8 is hindered. Such a problem becomes a serious problem particularly in the case where the air control valve 8 is automatically operated by an electric motor or a heat-sensitive expansion / contraction member (wax element). According to the above-mentioned problem, it is necessary to increase the maintenance work frequency of the bypass air control device.

【0005】本発明になるバイパスエアー制御装置は前
記不具合に鑑み成されたもので、従来のバイパスエアー
制御装置を大きく変えることなく、安定したバイパス空
気量の制御と安定した空気制御弁の作動とを長期間に渡
って保証することのできる吸気制御装置におけるバイパ
スエアー制御装置を提供することにある。
The bypass air control device according to the present invention has been made in view of the above-mentioned problems. It is possible to control a stable bypass air amount and a stable operation of the air control valve without largely changing the conventional bypass air control device. It is an object of the present invention to provide a bypass air control device in an intake air control device that can ensure the above-mentioned over a long period of time.

【0006】[0006]

【課題を解決する為の手段】本発明になる吸気制御装置
におけるバイパスエアー制御装置は、前記目的達成の為
に、内部を吸気通路が貫通して穿設されるとともに該吸
気通路が絞り弁によって開閉制御されるスロットルボデ
ーと、絞り弁を迂回して絞り弁より上流側の吸気通路と
絞り弁より下流側の吸気通路とを連絡するバイパスエア
ー通路と、バイパスエアー通路に配置され、上流から下
流に向かう空気量と制御する空気制御弁を備えるバイパ
スエアー制御装置と、よりなる吸気制御装置において、
筒状の空気制御弁が軸方向に移動自在に配置される摺動
弁室の底部に絞り弁より下流側の吸気通路に連なる下流
側バイパスエアー通路を開口するとともに、摺動弁室の
側壁に、絞り弁より上流側の吸気通路に開口する上流側
バイパスエアー通路に連なる制御孔が穿設され、更に前
記空気制御弁の摺動弁室の底部に臨む先端面には凹孔が
穿設され、前記下流側バイパスエアー通路の摺動弁室の
底部への開口部を空気制御弁の先端面への凹孔の開口部
内に臨んで配置したことを第1の特徴とする。
In order to achieve the above object, a bypass air control device in an intake control device according to the present invention has an intake passage penetrating the inside thereof and the intake passage is formed by a throttle valve. A throttle body that is controlled to open and close, a bypass air passage that bypasses the throttle valve and connects the intake passage upstream of the throttle valve and the intake passage downstream of the throttle valve, and the bypass air passage that is arranged in the bypass air passage, In the intake air control device, which includes a bypass air control device including an air control valve for controlling the amount of air toward
A cylindrical bypass valve is provided at the bottom of the sliding valve chamber where it is movably arranged in the axial direction, and a downstream bypass air passage communicating with the intake passage on the downstream side of the throttle valve is opened and at the side wall of the sliding valve chamber. A control hole communicating with an upstream bypass air passage opening in an intake passage upstream of the throttle valve is formed, and a concave hole is formed in a front end surface of the air control valve facing the bottom of the sliding valve chamber. The first feature is that the opening to the bottom of the sliding valve chamber of the downstream bypass air passage is arranged so as to face the opening of the concave hole to the front end surface of the air control valve.

【0007】又、本発明は、前記第1の特徴に加え、前
記空気制御弁に形成される凹孔の底部を半球状に形成し
たことを第2の特徴とする。
In addition to the first characteristic, the present invention has a second characteristic that the bottom portion of the concave hole formed in the air control valve is formed in a hemispherical shape.

【0008】又、本発明は、前記第1の特徴に加え、前
記空気制御弁に形成される凹孔の底部を平坦状に形成し
たことを第3の特徴とする。
In addition to the first characteristic, the present invention has a third characteristic in that the bottom of the recessed hole formed in the air control valve is formed flat.

【0009】更に、本発明は、前記第1の特徴に加え、
前記空気制御弁に形成される凹孔の底部を円錐状に形成
したことを第4の特徴とする。
Further, in addition to the first feature, the present invention provides
A fourth feature is that the bottom of the recess formed in the air control valve is formed in a conical shape.

【0010】更に又、本発明は、前記第1の特徴に加
え、前記、空気制御弁を円筒形状に形成するとともに、
空気制御弁を収納する摺動弁室を円形筒孔に形成し、前
記円形筒孔と、下流側バイパスエアー通路の摺動弁室へ
の開口部と空気制御弁に形成される凹孔とを同芯に形成
したことを第5の特徴とする。
Further, in addition to the first feature of the present invention, the air control valve is formed in a cylindrical shape, and
A sliding valve chamber accommodating the air control valve is formed in a circular cylindrical hole, and the circular cylindrical hole, an opening of the downstream bypass air passage to the sliding valve chamber, and a concave hole formed in the air control valve are formed. The fifth characteristic is that they are formed concentrically.

【0011】[0011]

【作用】本発明の第1の特徴によると、下流側バイパス
エアー通路を流れる速い流速をもったカーボン含有の吹
き返しによる空気は、空気制御弁の凹孔内へと確実に導
入され、凹孔の底部に速い流速をもって衝突するカーボ
ン粒子は凹孔の底部に付着して捕獲される。一方、凹孔
に衝突してその速度エネルギーが減少した空気中に含ま
れるカーボン粒子は機関の吸入工程で摺動弁室から下流
側バイパスエアー通路に向かって流れる空気とともに絞
り弁より下流側の吸気通路内へと再び吸出される。
According to the first feature of the present invention, the air containing the carbon-containing blowback having a high flow velocity flowing through the downstream bypass air passage is surely introduced into the concave hole of the air control valve, and The carbon particles that collide with the bottom with a high flow velocity are attached and captured on the bottom of the recess. On the other hand, the carbon particles contained in the air that has collided with the concave hole and whose velocity energy has decreased are the intake air on the downstream side of the throttle valve along with the air flowing from the sliding valve chamber toward the downstream bypass air passage in the intake process of the engine. It is sucked again into the passage.

【0012】又、本発明の第2の特徴によると、凹孔の
底部が半球状に形成されているので、凹孔内に進入する
カーボン含有の空気は半球状の底部によって渦流を生じ
るとともにその速度エネルギーが減少され、カーボン粒
子を半球状の底部に付着させて捕獲するとともに再び絞
り弁より下流側の吸気通路内へ吸出できる。
According to the second aspect of the present invention, since the bottom of the recess is formed in a hemispherical shape, the carbon-containing air entering the recess produces a vortex by the hemispherical bottom. The velocity energy is reduced, and the carbon particles can be attached to the hemispherical bottom and captured, and can be sucked again into the intake passage downstream of the throttle valve.

【0013】又、本発明の第3の特徴によると、凹孔内
に進入するカーボン含有の空気は平坦状の底部に衝突
し、その速度エネルギーを大きく減少できる。従って、
カーボン粒子をこの底部に捕獲できるとともに絞り弁よ
り下流側の吸気通路内への吸出性を向上できる。
Further, according to the third feature of the present invention, the carbon-containing air entering the recess collides with the flat bottom portion, and the velocity energy thereof can be greatly reduced. Therefore,
The carbon particles can be captured in this bottom portion and the sucking property into the intake passage downstream of the throttle valve can be improved.

【0014】更に本発明の第4の特徴によると、カーボ
ン粒子の捕獲性及び絞り弁より下流側の吸気通路内への
吸出性は第2の特徴と略同等であるが、凹孔の製作を容
易にできる。
Further, according to the fourth feature of the present invention, the trapping property of the carbon particles and the suction property into the intake passage on the downstream side of the throttle valve are substantially the same as those of the second feature, but the concave hole is manufactured. You can easily.

【0015】更に本発明の第5の特徴によると、下流側
バイパスエアー通路の開口部を空気制御弁の凹孔内へ正
確にして安価に開口配置できる。
Further, according to the fifth feature of the present invention, the opening portion of the downstream bypass air passage can be accurately and inexpensively arranged in the concave hole of the air control valve.

【0016】[0016]

【実施例】以下、本発明になる吸気制御装置におけるバ
イパスエアー制御装置の一実施例を図1により説明す
る。尚、図4と同一構造部分については同一符号を使用
して説明を省略する。10は摺動弁室6内に軸方向移動
自在に配置された空気制御弁であり、空気制御弁10の
摺動弁室6の底部6Aに臨む先端面10Aには空気制御
弁10内に向かって凹孔10Bが凹設される。そして、
下流側バイパスエアー通路5Aの開口部5Bは空気制御
弁10の凹孔10Bの先端面10Aへの開口部10C内
に臨んで配置される。前記において、開口部10C内に
臨むとは、開口部10Cが、凹孔10Bの開口部10C
の投影面内に位置することである。より具体的には、下
流側バイパスエアー通路5Aと、摺動弁室6とが円形孔
で形成されるとともに円形孔よりなる凹孔10Bを含む
空気制御弁10が円筒形状に形成されるとともに前記、
下流側バイパスエアー通路5Aと摺動弁室6と凹孔10
Bを含む空気制御弁10とがその長手の軸芯方向におい
て同芯に形成され、その時、開口部5Bを含む下流側バ
イパスエアー通路5Aの直径dが開口部10Cを含む凹
孔10Bの直径Dより小径若しくは同径に形成される。
(尚、凹孔10Bと空気制御弁10とは同芯に形成され
る。又、操作杆10Dは空気制御弁10と一体的に形成
される。)
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a bypass air control device in an intake air control device according to the present invention will be described below with reference to FIG. The same reference numerals are used for the same structural parts as in FIG. Reference numeral 10 denotes an air control valve that is arranged in the sliding valve chamber 6 so as to be movable in the axial direction. A tip surface 10A of the air control valve 10 facing the bottom portion 6A of the sliding valve chamber 6 faces the inside of the air control valve 10. The recessed hole 10B is recessed. And
The opening 5B of the downstream bypass air passage 5A is arranged so as to face the opening 10C of the recessed hole 10B of the air control valve 10 to the tip surface 10A. In the above description, "to face the inside of the opening 10C" means that the opening 10C is the opening 10C of the recessed hole 10B.
It is located in the projection plane of. More specifically, the downstream side bypass air passage 5A and the sliding valve chamber 6 are formed in a circular hole, and the air control valve 10 including a concave hole 10B formed of a circular hole is formed in a cylindrical shape. ,
Downstream bypass air passage 5A, sliding valve chamber 6 and concave hole 10
The air control valve 10 including B is formed concentrically in the longitudinal axis direction, and at that time, the diameter d of the downstream bypass air passage 5A including the opening 5B is the diameter D of the recessed hole 10B including the opening 10C. The diameter is smaller or the same.
(Note that the recessed hole 10B and the air control valve 10 are formed concentrically. The operating rod 10D is formed integrally with the air control valve 10.)

【0017】以上よりなるバイパスエアー制御装置によ
ると、従来と同様に、空気制御弁10がもっとも左方に
あって、その先端面10Aが摺動弁室6の底部6Aの近
傍配置された状態で、上流側バイパスエアー通路5Cか
ら下流側バイパスエアー通路5Aに向かう空気流れは空
気制御弁10の側部10Eが制御孔7を閉塞保持するこ
とから遮断され、一方空気制御弁10が右方へ動作さ
れ、側部10Eが制御孔7を開放すると、制御孔7の開
放度に応じたバイパスエアーがバイパスエアー通路5を
介して絞り弁4より下流側の吸気通路2B内へと供給さ
れる。
According to the bypass air control device constructed as described above, the air control valve 10 is at the leftmost position and the tip surface 10A thereof is disposed near the bottom portion 6A of the sliding valve chamber 6 as in the conventional case. The air flow from the upstream bypass air passage 5C to the downstream bypass air passage 5A is blocked by the side portion 10E of the air control valve 10 closing and holding the control hole 7, while the air control valve 10 moves to the right. When the side portion 10E opens the control hole 7, the bypass air according to the degree of opening of the control hole 7 is supplied into the intake passage 2B on the downstream side of the throttle valve 4 via the bypass air passage 5.

【0018】ここで、かかるバイパスエアーの供給時に
おいて、機関からの吹き返しによるカーボン粒子を含む
空気は、下流側バイパスエアー通路5Aから開口部5B
を介して速い速度エネルギーをもって摺動弁室6内へ進
入する。ここで、本発明になるバイパスエアー制御装置
にあっては、前記下流側バイパスエアー通路5Aの開口
部5Bを、空気制御弁10の凹孔10B内に臨んで開口
させたことにより、この速い速度エネルギーを有するカ
ーボン粒子を含んだ空気は、開口部10Cを介していき
おいよく凹孔10B内へ進入する。そして、凹孔10B
内に進入する前記空気は、凹孔10Bが袋孔であること
から、乱流を生ずるもので、これによると、凹孔10B
の内壁に衝突するカーボン粒子は凹孔10Bの内壁に付
着して捕獲される。一方、前記空気中に含まれる残余の
カーボン粒子は、凹孔10B内に生起する乱流によって
その速度エネルギーが減少することによって摺動弁室6
から下流側バイパスエアー通路5Aに向かう空気流れに
よって再び絞り弁4より下流側の吸気通路2B内へと吸
出される。以上の如く、本発明によると、機関の吹き返
しによって生ずるカーボン粒子を含む空気が摺動弁室6
内へ速い速度エネルギーをもって進入したとしても、こ
のカーボン粒子を確実に空気制御弁10の凹孔10Bに
て捕獲できるとともに、残余のカーボン粒子の速度エネ
ルギーを減少させて再び絞り弁4より下流側の吸気通路
2B内へ吸出させることができたので、摺動弁室6に開
口する制御孔7へのカーボン粒子の付着を大きく低減で
き、もって長期間に渡って安定して正確なバイパスエア
ーの供給、制御が可能となったものである。又、前記に
よると、摺動弁室6と空気制御弁10との摺動部分にお
けるカーボン粒子の付着も抑止できるもので、これによ
って長期間に渡って安定した空気制御弁10の動作を得
られるものである。更に、前記によって長期間に渡る安
定したバイパスエアーの制御及び空気制御弁10の動作
性の安定化を図ることができたことによると、バイパス
エアー制御装置のメンテナンス頻度を少なくすることが
でき、メンテナンス性を大きく向上できた。又、本発明
によれば、従来の空気制御弁10に対し、単に凹孔10
Bを追加工することによって達成できるので、汎用性が
高く、且つその製造コストの上昇は極めて小なるもので
ある。更に本発明によれば、開口部5Bを含む下流側バ
イパスエアー通路5Aと、摺動弁室6と、凹孔10Bを
含む空気制御弁10とを同芯に形成したもので、これに
よると、より確実にして且つ安価に、下流側バイパスエ
アー通路5Aの開口部5Bを空気制御弁10の凹孔10
B内に臨んで配置できる。このとき、開口部5Bを含む
下流側バイパスエアー通路5Aの直径dを開口部10C
を含む凹孔10Bの直径Dより小径に形成することによ
り前記を達成できる。
Here, when the bypass air is supplied, the air containing carbon particles blown back from the engine flows from the downstream bypass air passage 5A to the opening 5B.
Enters into the sliding valve chamber 6 with high velocity energy via. Here, in the bypass air control device according to the present invention, the opening portion 5B of the downstream side bypass air passage 5A faces the inside of the recessed hole 10B of the air control valve 10 and is opened. The air containing the carbon particles having energy enters the concave hole 10B steadily through the opening 10C. And the recessed hole 10B
The air entering the inside causes a turbulent flow because the concave hole 10B is a blind hole.
The carbon particles that collide with the inner wall of the recess are attached to and captured by the inner wall of the recessed hole 10B. On the other hand, the residual carbon particles contained in the air have their velocity energy reduced by the turbulent flow generated in the recess 10B, so that the sliding valve chamber 6
Is sucked into the intake passage 2B on the downstream side of the throttle valve 4 again by the air flow from the downstream side bypass air passage 5A. As described above, according to the present invention, the air containing the carbon particles generated by the blowback of the engine causes the sliding valve chamber 6 to flow.
Even if the carbon particles enter the inside with a high velocity energy, the carbon particles can be reliably captured by the concave hole 10B of the air control valve 10, and the velocity energy of the remaining carbon particles can be reduced so that the carbon particles on the downstream side of the throttle valve 4 again. Since the air can be sucked out into the intake passage 2B, the adhesion of carbon particles to the control hole 7 opening in the sliding valve chamber 6 can be greatly reduced, so that stable and accurate supply of bypass air can be achieved over a long period of time. , Control has become possible. Further, according to the above, it is possible to prevent the carbon particles from adhering to the sliding portion between the sliding valve chamber 6 and the air control valve 10, and thereby the stable operation of the air control valve 10 can be obtained for a long period of time. It is a thing. Further, since it is possible to stably control bypass air over a long period of time and stabilize the operability of the air control valve 10 as described above, it is possible to reduce the maintenance frequency of the bypass air control device and perform maintenance. I was able to greatly improve the property. Further, according to the present invention, as compared with the conventional air control valve 10, the concave hole 10 is simply used.
Since it can be achieved by additionally processing B, the versatility is high and the increase in the manufacturing cost is extremely small. Further, according to the present invention, the downstream bypass air passage 5A including the opening 5B, the sliding valve chamber 6, and the air control valve 10 including the recessed hole 10B are formed concentrically. The opening 5B of the downstream bypass air passage 5A can be more reliably and inexpensively connected to the recess 10 of the air control valve 10.
It can be placed facing B. At this time, the diameter d of the downstream bypass air passage 5A including the opening 5B is set to the opening 10C.
The above can be achieved by forming the concave hole 10B having a diameter smaller than the diameter D of the concave hole 10B.

【0019】又、空気制御弁10の凹孔10Bの底部の
形状を図1に示す如く半球状に形成すると、凹孔10B
の底部において渦流をより積極的に形成でき、カーボン
粒子の凹孔10B内への付着性及びカーボン粒子に対す
る速度エネルギーの減少効果を達成できる。
If the bottom of the recess 10B of the air control valve 10 is formed in a hemispherical shape as shown in FIG. 1, the recess 10B is formed.
It is possible to more positively form a vortex flow at the bottom of the, and to achieve the effect of adhering the carbon particles into the concave holes 10B and the effect of reducing velocity energy for the carbon particles.

【0020】更に図2に示される如く、空気制御弁10
の凹孔10Bの底部を、平坦状に形成したことによる
と、カーボン粒子を含む吹き返しの空気を底部に向けて
直交して衝突させることができ、底部へのカーボンの付
着性をより一層高めることができる。
Further, as shown in FIG. 2, the air control valve 10
By forming the bottom portion of the recessed hole 10B in a flat shape, blowback air containing carbon particles can be made to collide in a direction orthogonal to the bottom portion, and the adhesion of carbon to the bottom portion can be further enhanced. You can

【0021】更に又、図3に示される如く、空気制御弁
10の凹孔10Bの底部を、円錐状に形成したことによ
ると、カーボン粒子に対する付着性及び速度エネルギー
の減少性は底部が半球状のものと略同一なるものである
が凹孔10Bの形成をドリル加工で行なうことができる
ので、空気制御弁の製造を安価で簡単に実施できる。
尚、凹孔10Bの底部の形状は前記実施例によって限定
されるものでない。
Furthermore, as shown in FIG. 3, since the bottom of the recessed hole 10B of the air control valve 10 is formed in a conical shape, the adhesion to carbon particles and the reduction of velocity energy have a hemispherical bottom. Although it is substantially the same as the one described above, since the recessed hole 10B can be formed by drilling, the air control valve can be manufactured inexpensively and easily.
The shape of the bottom of the recess 10B is not limited to the above-mentioned embodiment.

【0022】[0022]

【発明の効果】以上の如く、本発明になる吸気制御装置
におけるバイパスエアー制御装置によると、筒状の空気
制御弁が軸方向に移動自在に配置される摺動弁室の底部
に絞り弁より下流側の吸気通路に連なる下流側バイパス
エアー通路を開口するとともに、摺動弁室の側壁に、絞
り弁より上流側の吸気通路に開口する上流側バイパスエ
アー通路に連なる制御孔が穿設され、更に前記空気制御
弁の摺動弁室の底部に臨む先端面には凹孔が穿設され、
前記下流側バイパスエアー通路の摺動弁室の底部への開
口部を空気制御弁の先端面への凹孔の開口部内に臨んで
配置したので、機関の吹き返しによってカーボン粒子を
含む空気が空気制御弁内に進入したとしても、カーボン
粒子を空気制御弁内の凹孔内に効果的に付着できるとと
もにカーボン粒子が有する速度エネルギーを減少でき
て、再び絞り弁より下流側の吸気通路内へ吸出させるこ
とができ、これによって制御孔に対するカーボン粒子の
付着を抑止でき、長期間に渡って安定したバイパスエア
ーの正確な制御を達成できる。又、併せて空気制御弁と
摺動弁室との摺動部におけるカーボン粒子の付着を低減
でき、これによって長期間に渡って安定して良好な空気
制御弁の操作を行なうことができる。又、上記によれば
メンテナンスの作業頻度を減少でき、メンテナンス性の
向上に寄与できる。更に凹孔は従来の空気制御弁に対
し、付加的に設けられるものでその実施は極めて容易で
ある。
As described above, according to the bypass air control device in the intake air control device according to the present invention, the cylindrical air control valve is provided at the bottom of the sliding valve chamber in which it is axially movably arranged, rather than the throttle valve. While opening a downstream bypass air passage communicating with the downstream intake passage, a control hole communicating with an upstream bypass air passage opening in the intake passage upstream of the throttle valve is formed in the side wall of the sliding valve chamber. Further, a concave hole is formed in the tip surface of the air control valve which faces the bottom of the sliding valve chamber,
Since the opening to the bottom of the sliding valve chamber of the downstream side bypass air passage is arranged so as to face the opening of the concave hole to the tip surface of the air control valve, air containing carbon particles is controlled by the blowback of the engine. Even if it enters the valve, the carbon particles can be effectively adhered to the concave holes in the air control valve, the velocity energy of the carbon particles can be reduced, and the carbon particles can be sucked again into the intake passage downstream of the throttle valve. As a result, carbon particles can be prevented from adhering to the control holes, and stable and accurate control of bypass air can be achieved over a long period of time. In addition, carbon particles can be reduced from adhering to the sliding portion between the air control valve and the sliding valve chamber, which enables stable and good operation of the air control valve for a long period of time. Further, according to the above, the frequency of maintenance work can be reduced, which contributes to improvement of maintainability. Further, the concave hole is provided in addition to the conventional air control valve, and its implementation is extremely easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる吸気制御装置におけるバイパスエ
アー制御装置の一実施例を示す縦断面図。
FIG. 1 is a longitudinal sectional view showing an embodiment of a bypass air control device in an intake air control device according to the present invention.

【図2】本発明のバイパスエアー制御装置に用いられる
空気制御弁の他の実施例を示す要部縦断面図。
FIG. 2 is a longitudinal sectional view of a main part showing another embodiment of the air control valve used in the bypass air control device of the present invention.

【図3】本発明のバイパスエアー制御装置に用いられる
空気制御弁の更に他の実施例を示す要部縦断面図。
FIG. 3 is a longitudinal sectional view of a main part showing still another embodiment of the air control valve used in the bypass air control device of the present invention.

【図4】従来のバイパスエアー制御装置を示す縦断面
図。
FIG. 4 is a vertical sectional view showing a conventional bypass air control device.

【符号の説明】[Explanation of symbols]

4 絞り弁 5 バイパスエアー通路 5A 下流側バイパスエアー通路 5B 下流側バイパスエアー通路の摺動弁室6の底部
6Aへの開口部 5C 上流側バイパスエアー通路 6 摺動弁室 6A 摺動弁室6の底部 6B 摺動弁室6の側壁 7 制御孔 10 空気制御弁 10B 凹孔
4 Throttle valve 5 Bypass air passage 5A Downstream bypass air passage 5B Downstream bypass air passage Sliding valve chamber 6 to bottom 6A 5C Upstream bypass air passage 6 Sliding valve chamber 6A Sliding valve chamber 6 Bottom 6B Side wall 7 of sliding valve chamber 6 Control hole 10 Air control valve 10B Recessed hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内部を吸気通路が貫通して穿設されると
ともに該吸気通路が絞り弁によって開閉制御されるスロ
ットルボデーと、絞り弁を迂回して絞り弁より上流側の
吸気通路と絞り弁より下流側の吸気通路とを連絡するバ
イパスエアー通路と、バイパスエアー通路に配置され、
上流から下流に向かう空気量と制御する空気制御弁を備
えるバイパスエアー制御装置と、よりなる吸気制御装置
において、筒状の空気制御弁10が軸方向に移動自在に
配置される摺動弁室6の底部6Aに絞り弁4より下流側
の吸気通路2Bに連なる下流側バイパスエアー通路5A
を開口するとともに、摺動弁室6の側壁6Bに、絞り弁
4より上流側の吸気通路2Aに開口する上流側バイパス
エアー通路5Cに連なる制御孔7が穿設され、更に前記
空気制御弁の摺動弁室6の底部6Aに臨む先端面10A
には凹孔10Bが穿設され、前記下流側バイパスエアー
通路の摺動弁室6の底部6Aへの開口部5Bを空気制御
弁10の先端面10Aへの凹孔10Bの開口部10C内
に臨んで配置したことを特徴とする吸気制御装置におけ
るバイパスエアー制御装置。
1. A throttle body in which an intake passage is bored through the inside and the intake passage is controlled to be opened and closed by a throttle valve, an intake passage bypassing the throttle valve and upstream of the throttle valve, and a throttle valve. Located in the bypass air passage, which connects the more downstream intake passage, and the bypass air passage,
In a suction air control device including a bypass air control device having an air control valve for controlling the amount of air flowing from upstream to downstream, a sliding valve chamber 6 in which a tubular air control valve 10 is arranged so as to be axially movable. A bypass side bypass air passage 5A connected to the intake passage 2B on the downstream side of the throttle valve 4 at the bottom portion 6A of the
And a side wall 6B of the sliding valve chamber 6 is provided with a control hole 7 connected to an upstream bypass air passage 5C opening to the intake passage 2A upstream of the throttle valve 4, and the air control valve Tip surface 10A facing the bottom portion 6A of the sliding valve chamber 6
A recessed hole 10B is bored in the bottom side 6A of the sliding valve chamber 6 of the downstream bypass air passage, and a recessed hole 10B is formed in the opening 10C of the recessed hole 10B to the tip surface 10A of the air control valve 10. A bypass air control device in an intake air control device, which is arranged facing each other.
【請求項2】 前記空気制御弁に形成される凹孔10B
の底部を半球状に形成したことを特徴とする請求項1記
載の吸気制御装置におけるバイパスエアー制御装置。
2. A recessed hole 10B formed in the air control valve.
The bypass air control device in the intake control device according to claim 1, wherein a bottom portion of the intake air control device is formed in a hemispherical shape.
【請求項3】 前記空気制御弁に形成される凹孔10B
の底部を平坦状に形成したことを特徴とする請求項1記
載の吸気制御装置におけるバイパスエアー制御装置。
3. A recessed hole 10B formed in the air control valve.
The bypass air control device in the intake control device according to claim 1, wherein a bottom portion of the intake air control device is formed flat.
【請求項4】 前記空気制御弁に形成される凹孔10B
の底部を円錐状に形成したことを特徴とする請求項1記
載の吸気制御装置におけるバイパスエアー制御装置。
4. A recessed hole 10B formed in the air control valve.
The bypass air control device in the intake control device according to claim 1, wherein a bottom portion of the intake air control device has a conical shape.
【請求項5】 前記、空気制御弁を円筒形状に形成する
とともに、空気制御弁10を収納する摺動弁室6を円形
筒孔に形成し、前記円形筒孔と、下流側バイパスエアー
通路5Aの摺動弁室6への開口部5Bと空気制御弁10
に形成される凹孔10Bとを同芯に形成したことを特徴
とする請求項1記載の吸気制御装置におけるバイパスエ
アー制御装置。
5. The air control valve is formed in a cylindrical shape, and the sliding valve chamber 6 for accommodating the air control valve 10 is formed in a circular cylindrical hole, and the circular cylindrical hole and the downstream bypass air passage 5A. 5B to the sliding valve chamber 6 and the air control valve 10
The bypass air control device in the intake control device according to claim 1, wherein the concave hole 10 </ b> B formed in the same is formed concentrically.
JP2002118853A 2002-04-22 2002-04-22 Bypass air control device in intake control device Expired - Lifetime JP3925287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118853A JP3925287B2 (en) 2002-04-22 2002-04-22 Bypass air control device in intake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118853A JP3925287B2 (en) 2002-04-22 2002-04-22 Bypass air control device in intake control device

Publications (2)

Publication Number Publication Date
JP2003314414A true JP2003314414A (en) 2003-11-06
JP3925287B2 JP3925287B2 (en) 2007-06-06

Family

ID=29535575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118853A Expired - Lifetime JP3925287B2 (en) 2002-04-22 2002-04-22 Bypass air control device in intake control device

Country Status (1)

Country Link
JP (1) JP3925287B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056709A (en) * 2005-08-23 2007-03-08 Keihin Corp Air bypass control device in throttle body
CN113431678A (en) * 2021-05-27 2021-09-24 株式会社三国 Carbon deposition prevention structure of throttle body
CN115200137A (en) * 2022-07-14 2022-10-18 珠海横琴润霖生物科技有限公司 Ultraviolet ray sterilizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056709A (en) * 2005-08-23 2007-03-08 Keihin Corp Air bypass control device in throttle body
JP4523520B2 (en) * 2005-08-23 2010-08-11 株式会社ケーヒン Air bypass control device for throttle body
CN113431678A (en) * 2021-05-27 2021-09-24 株式会社三国 Carbon deposition prevention structure of throttle body
CN115200137A (en) * 2022-07-14 2022-10-18 珠海横琴润霖生物科技有限公司 Ultraviolet ray sterilizer
CN115200137B (en) * 2022-07-14 2023-09-01 珠海横琴润霖生物科技有限公司 Ultraviolet sterilizer

Also Published As

Publication number Publication date
JP3925287B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US9322308B2 (en) Ejector
US4497335A (en) Control valve of exhaust gas recirculation apparatus
JP2001518593A (en) Silencer with bypass resonator
JP2004282009A5 (en)
JP2003314414A (en) Bypass air control device of intake control device
TWI620901B (en) Exhaust pressure and exhaust flow controller
CZ211797A3 (en) Intake device for internal combustion engine
JP2001146984A (en) Broadband variable conductance valve
JP2007321801A (en) Solenoid valve
JP2019069425A (en) Fluid discharge mechanism, and fluid spray device to vehicle camera or sensor
JP2011106405A (en) Intake device for internal combustion engine
JPH0257772A (en) Flow control valve
KR20180002050U (en) Tools for replacing automobile parts
JPH11280946A (en) Constant flow rate solenoid
KR101888276B1 (en) Actuator for variable valve of intake manifold
KR0175323B1 (en) Idling air amount control apparatus for an automobile
JP2002081571A (en) Flow control valve
JPH06264900A (en) Vacuum generating device
JP4282862B2 (en) Downdraft type constant vacuum vaporizer
JP2012233531A (en) Pressure control device
JP3044234U (en) Cutting fluid / gas supply device
JPH07217501A (en) Air-fuel ratio control device for carburetor
JP2003314711A (en) Valve element used for pilot valve of positioner and insertion structure of valve element for pilot valve
JP2538194Y2 (en) Variable air duct
JP2003326423A (en) Component feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6