JP3923888B2 - Pole structure - Google Patents

Pole structure Download PDF

Info

Publication number
JP3923888B2
JP3923888B2 JP2002358897A JP2002358897A JP3923888B2 JP 3923888 B2 JP3923888 B2 JP 3923888B2 JP 2002358897 A JP2002358897 A JP 2002358897A JP 2002358897 A JP2002358897 A JP 2002358897A JP 3923888 B2 JP3923888 B2 JP 3923888B2
Authority
JP
Japan
Prior art keywords
spring member
dynamic vibration
pole
attached
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002358897A
Other languages
Japanese (ja)
Other versions
JP2004190314A (en
Inventor
正彦 藁科
洋 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002358897A priority Critical patent/JP3923888B2/en
Publication of JP2004190314A publication Critical patent/JP2004190314A/en
Application granted granted Critical
Publication of JP3923888B2 publication Critical patent/JP3923888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、道路や鉄道などに併設されるあるいは建築物や敷地内また機械構造物などに設置されるポール本体の振動低減を図るための動吸振器を備えたポール構造物に関する。
【0002】
【従来の技術】
例えば、道路や鉄道などに併設される照明柱、信号柱、送電鉄塔等のポールにおいては、風や地震、または車両の通行に起因する振動によって共振現象を生じ、大きく揺れてポールに取り付けられた照明灯や信号線あるいはポールに損傷が生じることがある。このようなポールの共振を防止するために、ポール本体内部に物理振り子を設け、この物理振り子の振動によりポールの振動を低減化するようにしたものがある(例えば特許文献1参照)。
【0003】
【特許文献1】
特開2001−59543号公報
【0004】
【発明が解決しようとする課題】
ところが、ポール内部に物理振り子を設けたものでは、オイルダンパ等の機構が複雑でありメンテナンスを要する。また、ポールの製作時にポール内に物理振り子を予め組み込みことが必要があるので、振動低減化対策を採用していない既設のポールに対して適用することは困難である。
【0005】
本発明の目的は、簡易な構造で容易に取り付けが行える動吸振器を備えたポール構造物を提供することである。
【0006】
【課題を解決するための手段】
本発明のポール構造物は、ポール本体と、減衰比で1%以上の高減衰能を有しその断面 形状が異方性を有するバネ部材とこのバネ部材の一方端部に取り付けられる重りと前記バネ部材の他方端部を前記ポール本体に取り付ける支持部材とを備えてなる動吸振器とを具備し、前記動吸振器の共振振動数がバネ部材の断面内でほぼ直交する二つの固有モードで異なることを特徴とする。
【0007】
また、前記重りと前記バネ部材との連結位置を固定し、重りの回転慣性を調整することによって動吸振器の固有振動数を調節しする。
【0008】
また、ポール本体と、バネ部材とこのバネ部材の一方端部に取り付けられる重りと前記バネ部材の他方端部を前記ポール本体に取り付ける支持部材とを備えてなる動吸振器とを具備し、前記重りが円環状に位置するように前記動吸振器を複数配置し、円環状に配置された隣り合う重りを前記バネ部材より柔な部材で結合したことを特徴とする。
【0009】
さらに、ポール本体と、バネ部材とこのバネ部材の一方端部に取り付けられる重りと前記バネ部材の他方端部を前記ポール本体に取り付ける支持部材とを備えてなる動吸振器とを具備し、前記重りが円環状に位置するように前記動吸振器を複数配置し、円環状に配置された隣り合う重りを粘弾性体で結合し、各々の重りに取り付けられたバネ部材は前記ポール本体の周囲を包囲して前記ポール本体に取り付けられた1個ないし複数個の支持部材にそれぞれ取り付けられたことを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係るポール構造物の説明図であり、図1(a)は平面図、図1(b)は側面図、図1(c)はバネ部材13の振動方向と固有振動数との説明図である。図1では、2個の動吸振器11がポール本体12に取り付けられたものを示している。動吸振器11は、バネ部材13の一方端に重り14が調整具15により取り付けられて構成されている。そして、バネ部材13の他方端部は支持部材16によりポール本体取り付けられる。バネ部材13としては、減衰比が1%以上のバネ部材が用いられる。例えば、マンガン銅(Mn−Cu)系の合金が用いられる。本発明では、減衰比が1%以上のバネ部材を高減衰能を有するバネ部材ということにする。
【0011】
第1の実施の形態では、動吸振器11のバネ部材13はその断面形状を長方形としたものである。支持部材16はプレート16aと支持具16bとからなり、2個の動吸振器11に対して共通に設けられ、支持具16bでポール本体12の外側を把持して2個の動吸振器11が取り付けられたプレート16aとボルトナットで取り付けられる。調整具15は重り14の取り付け位置を調整するものであり、この調整具15により取付位置を変化させて、プレート16aと重り14の距離を調整することで動吸振器11の固有振動数を調整できるようにしている。調整具15をプレート16aに設けてバネ部材13の長さを調整しても同様に固有振動数の調整ができる。また、バネ部材13に取り付ける重り14の質量を適切に選択して動吸振器11の固有振動数を調整することもできる。
【0012】
また、このような長方形断面を持つバネ部材13を用いた動吸振器11では、図1(c)に示すように、異なる2方向(互いに直交方向)に対して、異なる2個の固有振動数f1、f2を持つことができる。この場合、長方形の横辺aと縦辺bとの関係により固有振動数f1、f2の大きさが変化する。a≧bのときはf1≧f2、a≦bのときはf1≦f2の関係が成り立つ。従って、横辺aおよび縦辺bの大きさを適切に選択することによって、1個の動吸振器11に2個の固有振動数を持たせることができる。バネ部材13のバネ定数をこれら2方向において調整することによってポールの2つの振動モードに動吸振器を同調させるように固有振動数を変化させることができる。以上の説明では、2個の動吸振器11をポール本体12に取り付けた場合について説明したが1個の動吸振器11 をポール本体12に取り付けるようにしても良いし、3個以上の動吸振器11をポール本体12に取り付けるようにしても良い。
【0013】
この第1の実施の形態によれば、1個の動吸振器11に2個の固有振動数を持たせることができるので、制振対象であるポール本体12の2方向に対して1個の動吸振器11で、異なる固有振動数f1、f2で振動する場合の振動抑制を行う二重動吸振器としての機能を果たすことができる。以上の説明では、バネ部材13の断面形状が矩形の場合について説明したが、任意のn個の辺を持った断面形状が異方性を持つn角形(多角形)としても良いし、楕円形状としても良い。また、ねじり振動に対しても並進方向と同時に効果があるようにバネ部材の断面形状をH字型や凹字型等の各種の異方性を有する断面形状としても良い。
【0014】
このような基本構造をもつ、動吸振器11において、図2(a)に示すように2個の重り14a、14bをバネ部材13を挟んで調整具15で保持すると、重りの回転慣性を調整し動吸振器の固有振動数を調整することができる。そして、重り14a、14bの回転慣性を低い側に調整し固有振動数を高くする場合には、図2(b)に示すように、2個の重り14a、14bを上方(支持部材16での支持位置に対して離れる方向)に回動させ、一方、回転慣性を低い側に調整し固有振動数を低くする場合には、図2(c)に示すように、2個の重り14a、14bの下方(支持部材16での支持位置に対して近づく方向)に回動させる。
【0015】
いま、ポール本体12が風や交通振動等により振動を始めたとすると、振動は支持部材16のパネル16aから、バネ部材12を介して重り14に伝達される。ポール本体12の水平面内でのあらゆる振動方向に対してポール本体12の振動が重り14に伝達される。並進方向の振動だけではなく、ポール本体12の周方向のねじり振動に対してもバネ部材12を介して重り14に伝達される。従って、各振動方向においてポール本体の固有モードに同調するようにバネ部材の配置やバネ長さ、バネの断面形状を定めれば1組の制振装置で、ポール本体12の複数の振動方向に対してポール本体12の振動を抑制することができる。以上の説明では、2個の動吸振器11をポール本体12に取り付けた場合について説明したが1個の動吸振器11をポール本体12に取り付けるようにしても良いし、3個以上の動吸振器11をポール本体12に取り付けるようにしても良い。
【0016】
第1の実施の形態によれば、高減衰能を有するバネ部材13が動吸振器11のバネ要素とダンパ要素を兼ねているので、構成部材を少なくすることができ簡易な構造にできる。従って、支持部材16も簡易に構成することができポール本体12への取りつけが容易となる。また、ポール本体12の複数の振動方向例えば並進方向やねじり方向に対してポール本体12の振動を抑制することができる。また、バネ部材13に取り付ける重り14の質量を適切に選択したり、調整具15により重り14の取付位置や回転慣性を調整することにより、動吸振器11の固有振動数を変化させることができるので、多様な寸法を持つポール本体12対して適用することが可能である。また、動吸振器11は支持部材16によりポール本体12に容易に着脱することが可能であるので、既設のポール本体12に対しても容易に適用できる。
【0017】
また、バネ部材13には、高減衰能を有する制振材料として、例えば、Mn−
Cu系合金、Mg合金、高減衰能鋳鉄、Ni−Ti合金、Fe−Mn合金、Zn−Al合金、制振鋼板やナイロン6、PBT、PEなどの減衰比1%以上の減衰能を示す材料が使用される。
【0018】
一般に、構造物は減衰比1%以下で設計されるため、動吸振器の減衰比を1%以上とすることで有意な振動抑制効果が期待できる。特に、ポールは減衰比がやや小さな構造物であるため効果が大きい。また、ポールの減衰比が極端に小さい場合には、動吸振器の減衰が1%以下でも効果が得られる場合もある。
【0019】
図3は本発明の第1の実施の形態に係るポール構造物の例として、街灯に図1に示す動吸振器11を適用した説明図である。この図3は、図1に示した動吸振器11を、ポール本体12の支柱部12aの外側またはポール本体12のアーム部12bの外側に1個または複数個取り付けたものである。
【0020】
図3によれば、ポール本体12が風や交通振動等により共振を生じた場合に、水平方向および鉛直方向の振動に対して適切に制振することができる。また、動吸振器11はポールの外側に取付可能であるので着脱が容易であり、既設の道路灯に対しても容易に取り付けられ制振を行うことができる。また、動吸振器11は保護カバー17で覆われ保護されるので劣化が防止できる。
【0021】
次に、本発明の第2の実施の形態を説明する。図4は本発明の第2の実施の形態に係るポール構造物の説明図であり、図4(a)はポール本体12に取り付けた状態の側面図、図4(b)は図4(a)のC部分の一部切り欠き垂直断面図、図4(c)は図4(a)のC部分の水平断面図である。この第2の実施の形態は、複数個の動吸振器11の重り14を円環状に配置し、円環状に配置された隣り合う重り14を粘弾性体18で結合し、各々の重り14に取り付けられたバネ部材13は、ポール本体12の周囲を包囲して重り14の上方に配置された1個の支持部材16にそれぞれ取り付け、ポール構造物を構成したものである。
【0022】
図4(c)に示すように、4個の動吸振器11の重り14は円弧状に形成され、円環状に配置される。そして、円環状に配置された隣り合う円弧状の重り14を粘弾性体18で結合する。バネ部材13の一方端は円弧状に形成された各々の重り14のほぼ中央部に取り付けられ、図4(b)に示すように、各々のバネ部材13の他方端は上方に傾斜して1個の共通の支持部材16に取り付けられる。1個の支持部材16は、ポール本体12の支柱部12aの周囲を包囲して取り付けられている。粘弾性体18としては、例えば樹脂やゴムなどの材料を用いる。
【0023】
ここで、円弧状の重り14はバネ部材13で懸架されることからバネ部材13が破損した場合には円弧状の重り14が脱落する恐れがあるので、脱落防止部材をバネ部材13に対して併設するようにしても良い。この場合、脱落防止部材は、バネ部材13の機能に影響を与えないように取り付けられる。例えば、繊維部材やチェーン等を弛ませて円弧状の重り14を懸架させる。同様に、円環状に配置された隣り合う円弧状の重り14の間に設けられた粘弾性体18の離脱を防止するための離脱防止部材を設けるようにしても良い。例えば、円弧状の重り14と粘弾性体18とを樹脂で覆い一体的にコーティングあるいはフィルムを巻き付けてカバーを形成するようにする。この場合も粘弾性体18の機能に影響を与えないようにする。また、複数個の動吸振器11を保護カバー17で覆い保護するようにしても良い。
【0024】
第2の実施の形態によれば、ポール本体12が何らかの外力により共振をした際に、その振動が水平面内のいかなる方向に振動した場合においても、各振動方向にある動吸振器が振動することによって、または複数の動吸振器が協調して振動することによって、ポール本体12の複数の振動モードの振動を抑えることができる。また、4個の重り14が粘弾性体18によって円環状に連結されているため、各重りが別々に振動する場合には、各重り間の相対速度に応じた減衰が発生するため、制振効果が大きくなる。粘弾性体18に減衰機能を必要としない場合には、低減衰能の柔な材料を用いてもよい。以上の説明では、4個の動吸振器11によりポール構造物を構成したが、任意の数の動吸振器11を用いても良い。
【0025】
次に、本発明の第3の実施の形態を説明する。図5は本発明の第3の実施の形態に係るポール構造物の説明図であり、図5(a)はポール本体12に取り付けた状態の側面図、図5(b)は図5(a)のD部分の一部切り欠き垂直断面図、図5(c)は図5(a)のD部分の水平断面図である。この第3の実施の形態は、複数個の動吸振器11の重り14を円環状に配置し、円環状に配置された隣り合う重り14を粘弾性体18で結合し、各々の重り14に取り付けられたバネ部材13は、ポール本体12の周囲を包囲して重り14の上方および下方に配置された2個の支持部材16にそれぞれ取り付けたものである。
【0026】
図5(c)に示すように、8個の重り14はクリップ状形状に形成され、2個のバネ部材13の一方端を共通で挟持している。クリップ状形状の重り14は円環状に配置され、円環状に配置された隣り合うクリップ状形状の重り14は粘弾性体18で結合される。そして、図5(b)に示すように、各々のバネ部材13の他方端は上方および下方に傾斜して2個の共通の支持部材16に取り付けられる。2個の支持部材16は、それぞれポール本体12の支柱部12aの周囲を包囲して取り付けられている。
【0027】
以上の説明では、8個の重り14を用いた場合を示しているが、任意の数の重り14を用いても良い。また、第2の実施の形態と同様に、脱落防止部材をバネ部材13に対して併設するようにしても良し、粘弾性体18の離脱を防止するための離脱防止部材を設けるようにしても良い。また、複数個の動吸振器11を保護カバー17で覆い保護するようにしても良い。
【0028】
第3の実施の形態によれば、ポール本体12が何らかの外力により共振が生じた際に、ポール本体12の支柱部12aが水平面内でどの方向に振動した場合においても、振動方向にある動吸振器11または複数の動吸振器11が協調して振動する。従って、ポール本体12の複数の振動モードの振動を抑えることができる。動吸振器11のバネ部材13を上下の支持部材16によって支持するので、動吸振器11の落下防止に効果がある。
【0029】
次に、本発明の第4の実施の形態を説明する。図6は本発明の第4の実施の形態に係るポール構造物の説明図であり、図6(a)はポール本体12に取り付けた状態の側面図、図6(b)は図6(a)のE部分の一部切り欠き垂直断面図、図6(c)は図6(a)のE部分の水平断面図である。この第3の実施の形態は、図4に示した第2の実施の形態に対し、円弧状の重り14に代えて球状の重り14を用い、その個数をn個としたものである。図4に示した第2の実施の形態と同一要素には同一符号を付し重複する説明は省略する。
【0030】
図6(c)に示すように、n個の重り14は球状に形成され、円環状に配置される。そして、円環状に配置された隣り合う円弧状の重り14を粘弾性体18で結合する。バネ部材13の一方端は球状に形成された各々の重り14に取り付けられ、図6(b)に示すように、各々のバネ部材13の他方端は上方に傾斜して1個の共通の支持部材16に取り付けられる。1個の支持部材16は、ポール本体12の支柱部12aの周囲を包囲して取り付けられている。
【0031】
第4の実施の形態の場合においても第2の実施の形態と同様に、脱落防止部材をバネ部材13に対して併設するようにしても良し、粘弾性体18の離脱を防止するための離脱防止部材を設けるようにしても良い。また、複数個の動吸振器11を保護カバー17で覆い保護するようにしても良い。
【0032】
第4の実施の形態によれば、ポール本体12に何らかの外力により共振が生じ、ポール本体12の支柱部12aが水平面内の任意の方向に振動した場合においても、振動方向にある動吸振器11または複数の動吸振器11が協調して振動することによって、ポール本体12の複数の振動モードの振動を抑えることができる。また、n個の重り14は、ポール本体12にねじり振動が生じた際においても、n個の動吸振器11が周方向に振動できる。従って、ねじり振動に対する制振効果も有している。
【0033】
本発明のポール構造物は、道路や鉄道などに併設されるポール、例えば照明灯や信号電光表示盤、標識、カメラ、速度計測装置などの支持ポールや電柱などの構造物で、道路や鉄道以外におけるポール構造物も対象となる。例えば、建物の屋上などに設置される携帯電話中継アンテナや無線局敷地内のアンテナなどのポール状アンテナなどにも適用できる。
【0034】
【発明の効果】
以上説明したように、本発明によれば、構造が簡易で動吸振器の固有振動数の調整が容易で、かつ、複数の振動モードおよび任意の振動方向に対して制振効果を有し、多種の既設ポールに対しても設置が容易な動吸振器を有するポール構造物を提供することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係るポール構造物の説明図。
【図2】 本発明の第1の実施の形態における動吸振器の回転慣性の調整の説明図。
【図3】 本発明の第1の実施の形態における動吸振器を街灯に適用した場合の説明図。
【図4】 本発明の第2の実施の形態に係るポール構造物の説明図。
【図5】 本発明の第3の実施の形態に係るポール構造物の説明図。
【図6】 本発明の第4の実施の形態に係るポール構造物の説明図。
【符号の説明】
11…動吸振器、12…ポール本体、12a…支柱部、12b…アーム部、13…バネ部材、14…重り、15…調整具、16…支持部材、17…保護カバー、
18…粘弾性体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pole structure provided with a dynamic vibration absorber for reducing vibrations of a pole body that is provided alongside a road, a railroad, or the like, or is installed in a building, a site, or a mechanical structure.
[0002]
[Prior art]
For example, in poles such as lighting poles, signal poles, power transmission towers attached to roads, railways, etc., resonance phenomena were caused by wind, earthquake, or vibration caused by vehicle traffic, and they were shaken and attached to the poles. Damage to lighting, signal lines, or poles may occur. In order to prevent such resonance of the pole, there is a structure in which a physical pendulum is provided inside the pole body, and the vibration of the pole is reduced by the vibration of the physical pendulum (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-59543
[Problems to be solved by the invention]
However, in the case where a physical pendulum is provided inside the pole, a mechanism such as an oil damper is complicated and requires maintenance. In addition, since it is necessary to previously incorporate a physical pendulum into the pole when the pole is manufactured, it is difficult to apply it to an existing pole that does not employ measures for reducing vibration.
[0005]
An object of the present invention is to provide a pole structure including a dynamic vibration absorber that can be easily attached with a simple structure.
[0006]
[Means for Solving the Problems]
The pole structure of the present invention includes a pole body, a spring member having a high damping capacity of 1% or more in damping ratio, an anisotropic cross-sectional shape thereof, a weight attached to one end portion of the spring member , A dynamic vibration absorber comprising a support member for attaching the other end of the spring member to the pole body, and the two natural modes in which the resonance frequency of the dynamic vibration absorber is substantially orthogonal within the cross section of the spring member. It is characterized by being different .
[0007]
Further, the natural vibration frequency of the dynamic vibration absorber is adjusted by fixing the connection position between the weight and the spring member and adjusting the rotational inertia of the weight .
[0008]
And a dynamic vibration absorber comprising a pole body, a spring member, a weight attached to one end portion of the spring member, and a support member attaching the other end portion of the spring member to the pole body, A plurality of the dynamic vibration absorbers are arranged so that weights are positioned in an annular shape, and adjacent weights arranged in an annular shape are joined by a member that is more flexible than the spring member .
[0009]
And a dynamic vibration absorber comprising a pole body, a spring member, a weight attached to one end of the spring member, and a support member attaching the other end of the spring member to the pole body, A plurality of the dynamic vibration absorbers are arranged so that the weights are located in an annular shape, and adjacent weights arranged in an annular shape are connected by a viscoelastic body, and a spring member attached to each weight is around the pole body. Are attached to one or more support members attached to the pole body .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is an explanatory view of a pole structure according to a first embodiment of the present invention, FIG. 1 (a) is a plan view, FIG. 1 (b) is a side view, and FIG. It is explanatory drawing of a vibration direction and natural frequency . In FIG. 1, two dynamic vibration absorbers 11 are attached to a pole body 12. The dynamic vibration absorber 11 is configured by attaching a weight 14 to one end of a spring member 13 with an adjusting tool 15. The other end of the spring member 13 is attached to the pole body by the support member 16. As the spring member 13, a spring member having a damping ratio of 1% or more is used. For example, a manganese copper (Mn—Cu) based alloy is used. In the present invention, a spring member having a damping ratio of 1% or more is referred to as a spring member having a high damping capacity.
[0011]
In the first embodiment, the spring member 13 of the dynamic vibration absorber 11 has a rectangular cross-sectional shape . The support member 16 includes a plate 16a and a support 16b, and is provided in common for the two dynamic vibration absorbers 11. The support member 16b grips the outside of the pole body 12 so that the two dynamic vibration absorbers 11 are provided. It is attached with the attached plate 16a and bolts and nuts. The adjusting tool 15 is for adjusting the mounting position of the weight 14, and the adjusting position is changed by the adjusting tool 15 to adjust the natural frequency of the dynamic vibration absorber 11 by adjusting the distance between the plate 16a and the weight 14. I can do it. Even if the adjustment tool 15 is provided on the plate 16a and the length of the spring member 13 is adjusted, the natural frequency can be similarly adjusted. Further, the natural frequency of the dynamic vibration absorber 11 can be adjusted by appropriately selecting the mass of the weight 14 attached to the spring member 13.
[0012]
Further, in the dynamic vibration absorber 11 using the spring member 13 having such a rectangular cross section, as shown in FIG. 1C, two different natural frequencies in two different directions (directions orthogonal to each other). It can have f1 and f2. In this case, the natural frequencies f1 and f2 vary depending on the relationship between the horizontal side a and the vertical side b of the rectangle. The relationship of f1 ≧ f2 holds when a ≧ b, and f1 ≦ f2 holds when a ≦ b. Therefore, by appropriately selecting the sizes of the horizontal side a and the vertical side b, one dynamic vibration absorber 11 can have two natural frequencies. By adjusting the spring constant of the spring member 13 in these two directions, the natural frequency can be changed so that the dynamic vibration absorber is tuned to the two vibration modes of the pole. In the above description, the case where two dynamic vibration absorbers 11 are attached to the pole body 12 has been described. However, one dynamic vibration absorber 11 may be attached to the pole body 12, or three or more dynamic vibration absorbers may be attached. The vessel 11 may be attached to the pole body 12.
[0013]
According to the first embodiment, since one dynamic vibration absorber 11 can have two natural frequencies, one dynamic vibration absorber 11 can be provided with respect to two directions of the pole body 12 that is a vibration control target. The dynamic vibration absorber 11 can serve as a double dynamic vibration absorber that suppresses vibration when vibrating at different natural frequencies f1 and f2. In the above description, the case where the cross-sectional shape of the spring member 13 is rectangular has been described. However, the cross-sectional shape having any n sides may be an anisotropy n-polygon (polygon), or an elliptical shape. It is also good. Further, the cross-sectional shape of the spring member may be a cross-sectional shape having various anisotropies such as an H-shape and a concave-shape so that the torsional vibration is effective at the same time as the translation direction.
[0014]
In the dynamic vibration absorber 11 having such a basic structure, when the two weights 14a and 14b are held by the adjusting tool 15 with the spring member 13 interposed therebetween as shown in FIG. 2A, the rotational inertia of the weight is adjusted. The natural frequency of the dynamic vibration absorber can be adjusted. When the rotational inertia of the weights 14a and 14b is adjusted to the lower side to increase the natural frequency, the two weights 14a and 14b are moved upward (on the support member 16 as shown in FIG. 2B). When the rotation inertia is adjusted to a low side and the natural frequency is lowered, the two weights 14a and 14b are used as shown in FIG. Is rotated downward (in a direction approaching the support position of the support member 16).
[0015]
Now, assuming that the pole body 12 starts to vibrate due to wind or traffic vibration, the vibration is transmitted from the panel 16a of the support member 16 to the weight 14 via the spring member 12. The vibration of the pole body 12 is transmitted to the weight 14 in all vibration directions in the horizontal plane of the pole body 12. Not only the vibration in the translation direction but also the torsional vibration in the circumferential direction of the pole body 12 is transmitted to the weight 14 via the spring member 12. Therefore, if the arrangement of the spring member, the spring length, and the cross-sectional shape of the spring are determined so as to synchronize with the eigenmode of the pole body in each vibration direction, a single vibration damping device can be used in a plurality of vibration directions of the pole body 12. On the other hand, the vibration of the pole body 12 can be suppressed. In the above description, the case where two dynamic vibration absorbers 11 are attached to the pole body 12 has been described. However, one dynamic vibration absorber 11 may be attached to the pole body 12, or three or more dynamic vibration absorbers may be attached. The vessel 11 may be attached to the pole body 12.
[0016]
According to the first embodiment, since the spring member 13 having a high damping capacity serves as both the spring element and the damper element of the dynamic vibration absorber 11, the number of constituent members can be reduced and a simple structure can be achieved. Therefore, the support member 16 can also be configured simply and can be easily attached to the pole body 12. Further, the vibration of the pole body 12 can be suppressed with respect to a plurality of vibration directions of the pole body 12, for example, the translational direction and the twisting direction. Further, the natural frequency of the dynamic vibration absorber 11 can be changed by appropriately selecting the mass of the weight 14 attached to the spring member 13 or adjusting the attachment position and the rotational inertia of the weight 14 with the adjusting tool 15. Therefore, it can be applied to the pole body 12 having various dimensions. Further, since the dynamic vibration absorber 11 can be easily attached to and detached from the pole body 12 by the support member 16, it can be easily applied to the existing pole body 12.
[0017]
Further, the spring member 13 may be made of, for example, Mn− as a damping material having a high damping capacity.
Cu-based alloy, Mg alloy, high damping capacity cast iron, Ni-Ti alloy, Fe-Mn alloy, Zn-Al alloy, damping steel plate, nylon 6, PBT, PE and other materials exhibiting damping capacity of 1% or more Is used.
[0018]
In general, since structures are designed with a damping ratio of 1% or less, a significant vibration suppressing effect can be expected by setting the damping ratio of the dynamic vibration absorber to 1% or more. In particular, the pole is a structure having a slightly small attenuation ratio, so that the effect is great. Further, when the attenuation ratio of the pole is extremely small, the effect may be obtained even if the attenuation of the dynamic vibration absorber is 1% or less.
[0019]
FIG. 3 is an explanatory diagram in which the dynamic vibration absorber 11 shown in FIG. 1 is applied to a streetlight as an example of the pole structure according to the first embodiment of the present invention . In FIG. 3 , one or a plurality of the dynamic vibration absorbers 11 shown in FIG. 1 are attached to the outside of the column portion 12a of the pole body 12 or the outside of the arm portion 12b of the pole body 12.
[0020]
According to FIG. 3 , when the pole body 12 resonates due to wind, traffic vibration, or the like, vibration can be appropriately suppressed with respect to horizontal and vertical vibrations. Moreover, since the dynamic vibration absorber 11 can be attached to the outside of the pole, it can be easily attached and detached, and can be easily attached to an existing road light to perform vibration control. Moreover, since the dynamic vibration absorber 11 is covered and protected by the protective cover 17, deterioration can be prevented.
[0021]
Next, a second embodiment of the present invention will be described. FIG. 4 is an explanatory view of a pole structure according to the second embodiment of the present invention, FIG. 4 (a) is a side view of the pole body 12 attached to the pole body 12, and FIG. 4 (b) is FIG. 4) is a partially cutaway vertical sectional view of a C portion, and FIG. 4C is a horizontal sectional view of the C portion of FIG. In this second embodiment, weights 14 of a plurality of dynamic vibration absorbers 11 are arranged in an annular shape, and adjacent weights 14 arranged in an annular shape are coupled by a viscoelastic body 18. The attached spring members 13 are each attached to one support member 16 that surrounds the periphery of the pole body 12 and is disposed above the weight 14, thereby constituting a pole structure.
[0022]
As shown in FIG.4 (c) , the weight 14 of the four dynamic vibration absorbers 11 is formed in circular arc shape, and is arrange | positioned at annular | circular shape. Then, adjacent arc-shaped weights 14 arranged in an annular shape are coupled by a viscoelastic body 18. One end of the spring member 13 is attached to substantially the center of each of the weights 14 formed in an arc shape, and the other end of each spring member 13 is inclined upward as shown in FIG. Attached to the common support member 16. One support member 16 is attached so as to surround the support 12 a of the pole body 12. As the viscoelastic body 18, for example, a material such as resin or rubber is used.
[0023]
Here, since the arcuate weight 14 is suspended by the spring member 13, the arcuate weight 14 may fall off when the spring member 13 is damaged. It may be arranged side by side. In this case, the drop-off preventing member is attached so as not to affect the function of the spring member 13. For example, a fiber member, a chain, etc. are slackened and the circular weight 14 is suspended. Similarly, a detachment preventing member for preventing the detachment of the viscoelastic body 18 provided between the adjacent arcuate weights 14 arranged in an annular shape may be provided. For example, the arc-shaped weight 14 and the viscoelastic body 18 are covered with a resin, and a cover or a film is integrally wound thereon to form a cover. Also in this case, the function of the viscoelastic body 18 is not affected. Further, a plurality of dynamic vibration absorbers 11 may be covered and protected by the protective cover 17.
[0024]
According to the second embodiment, when the pole body 12 resonates due to some external force, the dynamic vibration absorber in each vibration direction vibrates even when the vibration vibrates in any direction within the horizontal plane. By virtue of the above, or when the plurality of dynamic vibration absorbers vibrate in cooperation, the vibration of the plurality of vibration modes of the pole body 12 can be suppressed. Further, since the four weights 14 are connected in an annular shape by the viscoelastic body 18, when the weights vibrate separately, the damping corresponding to the relative speed between the weights occurs, so that the vibration damping is performed. The effect is increased. When the viscoelastic body 18 does not require a damping function, a soft material having a low damping capacity may be used. In the above description, the pole structure is configured by the four dynamic vibration absorbers 11. However, any number of the dynamic vibration absorbers 11 may be used.
[0025]
Next, a third embodiment of the present invention will be described. FIG. 5 is an explanatory view of a pole structure according to a third embodiment of the present invention. FIG. 5 (a) is a side view of the pole body 12 attached to the pole body 12, and FIG. ) Is a partially cutaway vertical sectional view of a D portion, and FIG. 5C is a horizontal sectional view of the D portion of FIG. In this third embodiment, weights 14 of a plurality of dynamic vibration absorbers 11 are arranged in an annular shape, adjacent weights 14 arranged in an annular shape are connected by viscoelastic bodies 18, and each weight 14 is connected to each weight 14. The attached spring members 13 are attached to two support members 16 which surround the pole body 12 and are arranged above and below the weight 14, respectively.
[0026]
As shown in FIG. 5C , the eight weights 14 are formed in a clip shape and sandwich one end of the two spring members 13 in common. The clip-shaped weights 14 are arranged in an annular shape, and the adjacent clip-shaped weights 14 arranged in an annular shape are connected by a viscoelastic body 18. Then, as shown in FIG. 5B , the other end of each spring member 13 is inclined upward and downward and attached to two common support members 16. The two support members 16 are attached so as to surround the support 12 a of the pole body 12.
[0027]
In the above description, the case where eight weights 14 are used is shown, but any number of weights 14 may be used. Further, similarly to the second embodiment, a drop-off prevention member may be provided along with the spring member 13, or a removal prevention member for preventing the viscoelastic body 18 from being detached may be provided. good. Further, a plurality of dynamic vibration absorbers 11 may be covered and protected by the protective cover 17.
[0028]
According to the third embodiment, when the pole body 12 is resonated by some external force, the dynamic vibration absorption is in the vibration direction regardless of the direction in which the column 12a of the pole body 12 vibrates in the horizontal plane. The vibration absorber 11 or the plurality of dynamic vibration absorbers 11 vibrate in cooperation. Therefore, the vibration of the plurality of vibration modes of the pole body 12 can be suppressed. Since the spring member 13 of the dynamic vibration absorber 11 is supported by the upper and lower support members 16, the dynamic vibration absorber 11 is effectively prevented from falling.
[0029]
Next, a fourth embodiment of the present invention will be described. 6A and 6B are explanatory views of a pole structure according to the fourth embodiment of the present invention. FIG. 6A is a side view of the pole body 12 attached to the pole body 12, and FIG. FIG. 6C is a horizontal sectional view of the E portion of FIG. 6A. In the third embodiment, a spherical weight 14 is used in place of the arc-shaped weight 14 and the number thereof is n, compared to the second embodiment shown in FIG. The same elements as those of the second embodiment shown in FIG.
[0030]
As shown in FIG. 6C , the n weights 14 are formed in a spherical shape and are arranged in an annular shape. Then, adjacent arc-shaped weights 14 arranged in an annular shape are coupled by a viscoelastic body 18. One end of each spring member 13 is attached to each weight 14 formed in a spherical shape, and the other end of each spring member 13 is inclined upward as shown in FIG. It is attached to the member 16. One support member 16 is attached so as to surround the support 12 a of the pole body 12.
[0031]
Also in the case of the fourth embodiment, as in the second embodiment, a drop-off prevention member may be provided along with the spring member 13, and the detachment for preventing the viscoelastic body 18 from detaching. A prevention member may be provided. Further, a plurality of dynamic vibration absorbers 11 may be covered and protected by the protective cover 17.
[0032]
According to the fourth embodiment, even when resonance occurs in the pole body 12 due to some external force and the column portion 12a of the pole body 12 vibrates in an arbitrary direction in the horizontal plane, the dynamic vibration absorber 11 is in the vibration direction. Or the vibration of the several vibration mode of the pole main body 12 can be suppressed because the some dynamic vibration absorber 11 vibrates in cooperation. Further, the n weights 14 can vibrate the n dynamic vibration absorbers 11 in the circumferential direction even when torsional vibration occurs in the pole body 12. Therefore, it also has a damping effect against torsional vibration.
[0033]
The pole structure of the present invention is a pole attached to a road or a railway, for example, a structure such as a support pole or a power pole such as an illumination lamp, a signal lightning display panel, a sign, a camera, a speed measuring device, etc. This also applies to the pole structure. For example, the present invention can be applied to a pole-shaped antenna such as a mobile phone relay antenna installed on a rooftop of a building or an antenna in a radio station site.
[0034]
【The invention's effect】
As described above, according to the present invention, the structure is simple, the adjustment of the natural frequency of the dynamic vibration absorber is easy, and the vibration suppression effect is provided for a plurality of vibration modes and arbitrary vibration directions. It is possible to provide a pole structure having a dynamic vibration absorber that can be easily installed even for various types of existing poles.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a pole structure according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram for adjusting the rotational inertia of the dynamic vibration absorber according to the first embodiment of the present invention.
FIG. 3 is an explanatory diagram when the dynamic vibration absorber according to the first embodiment of the present invention is applied to a streetlight .
FIG. 4 is an explanatory diagram of a pole structure according to a second embodiment of the present invention.
FIG. 5 is an explanatory diagram of a pole structure according to a third embodiment of the present invention.
FIG. 6 is an explanatory diagram of a pole structure according to a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Dynamic vibration absorber, 12 ... Pole main body, 12a ... Support | pillar part, 12b ... Arm part, 13 ... Spring member, 14 ... Weight, 15 ... Adjustment tool, 16 ... Support member, 17 ... Protective cover,
18 ... Viscoelastic body

Claims (4)

ポール本体と、減衰比で1%以上の高減衰能を有しその断面形状が異方性を有するバネ部材とこのバネ部材の一方端部に取り付けられる重りと前記バネ部材の他方端部を前記ポール本体に取り付ける支持部材とを備えてなる動吸振器とを具備し、前記動吸振器の共振振動数がバネ部材の断面内でほぼ直交する二つの固有モードで異なることを特徴とするポール構造物。Wherein the pawl body, the other end of the cross-sectional shape having at least 1% of a high damping capacity is a spring member having anisotropy in damping ratio and weight attached to one end of the spring member and the spring member And a dynamic vibration absorber having a support member attached to the pole body , wherein the resonance frequency of the dynamic vibration absorber is different in two eigenmodes substantially orthogonal within the cross section of the spring member. object. 前記重りと前記バネ部材との連結位置を固定し、重りの回転慣性を調整することによって動吸振器の固有振動数を調節することを特徴とする請求項1記載のポール構造物。The pole structure according to claim 1 , wherein the natural frequency of the dynamic vibration absorber is adjusted by fixing a connection position between the weight and the spring member and adjusting a rotational inertia of the weight . ポール本体と、バネ部材とこのバネ部材の一方端部に取り付けられる重りと前記バネ部材の他方端部を前記ポール本体に取り付ける支持部材とを備えてなる動吸振器とを具備し、前記重りが円環状に位置するように前記動吸振器を複数配置し、円環状に配置された隣り合う重りを前記バネ部材より柔な部材で結合したことを特徴とするポール構造物。 A dynamic vibration absorber comprising a pole body, a spring member, a weight attached to one end portion of the spring member, and a support member attaching the other end portion of the spring member to the pole body, and the weight A pole structure characterized in that a plurality of the dynamic vibration absorbers are arranged so as to be positioned in an annular shape, and adjacent weights arranged in an annular shape are joined by a member softer than the spring member . ポール本体と、バネ部材とこのバネ部材の一方端部に取り付けられる重りと前記バネ部材の他方端部を前記ポール本体に取り付ける支持部材とを備えてなる動吸振器とを具備し、前記重りが円環状に位置するように前記動吸振器を複数配置し、円環状に配置された隣り合う重りを粘弾性体で結合し、各々の重りに取り付けられたバネ部材は前記ポール本体の周囲を包囲して前記ポール本体に取り付けられた1個ないし複数個の支持部材にそれぞれ取り付けられたことを特徴とするポール構造物。 A dynamic vibration absorber comprising a pole body, a spring member, a weight attached to one end portion of the spring member, and a support member attaching the other end portion of the spring member to the pole body, and the weight A plurality of the dynamic vibration absorbers are arranged so as to be positioned in an annular shape, and adjacent weights arranged in an annular shape are connected by a viscoelastic body, and a spring member attached to each weight surrounds the periphery of the pole body A pole structure attached to one or more support members attached to the pole body .
JP2002358897A 2002-12-11 2002-12-11 Pole structure Expired - Fee Related JP3923888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358897A JP3923888B2 (en) 2002-12-11 2002-12-11 Pole structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358897A JP3923888B2 (en) 2002-12-11 2002-12-11 Pole structure

Publications (2)

Publication Number Publication Date
JP2004190314A JP2004190314A (en) 2004-07-08
JP3923888B2 true JP3923888B2 (en) 2007-06-06

Family

ID=32758452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358897A Expired - Fee Related JP3923888B2 (en) 2002-12-11 2002-12-11 Pole structure

Country Status (1)

Country Link
JP (1) JP3923888B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130785B2 (en) * 2007-05-17 2013-01-30 Jfeスチール株式会社 Damping method and apparatus for tower structure
BE1018193A3 (en) * 2008-06-20 2010-07-06 Waumans Julien Maria J DEVICE FOR DAMPING THE VIBRATIONS OF A MAST.
JP5014292B2 (en) * 2008-09-16 2012-08-29 オイレス工業株式会社 Dynamic vibration absorber
DE102012222191A1 (en) * 2012-12-04 2014-06-05 Wobben Properties Gmbh Vibration-limiting module and device, building segment for a construction device and wind turbine with a vibration-limiting module
JP6112038B2 (en) * 2014-02-24 2017-04-12 マツダ株式会社 Engine piston structure and manufacturing method thereof
KR101937636B1 (en) * 2018-08-28 2019-04-09 주식회사 태평양 Pillar decreased vibration
ES2955376A1 (en) * 2022-04-26 2023-11-30 Setga S L U AUXILIARY DEVICE TO INCREASE DAMPING IN LIGHT MASTS (Machine-translation by Google Translate, not legally binding)
JP7122488B1 (en) * 2022-06-26 2022-08-19 山崎 明美 Pole damping device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242654U (en) * 1985-08-30 1987-03-14
JPS6249038U (en) * 1985-09-12 1987-03-26
JPH04151042A (en) * 1990-10-15 1992-05-25 Nkk Corp Vibrationproof type street lamp
JP2002129775A (en) * 2000-10-24 2002-05-09 Matsushita Electric Works Ltd Pole-shaped structure

Also Published As

Publication number Publication date
JP2004190314A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP3923888B2 (en) Pole structure
US7165870B2 (en) Vibration dampening device for light fixtures
CN101709567A (en) Mass damping device of rigid connection space lever of stay cable
CA2286986C (en) Pivoting tuned vibration absorber and system utilizing same
CN111130040B (en) Composite spacing ring-nutation damper for controlling integral galloping of lead
JP5130785B2 (en) Damping method and apparatus for tower structure
JP4623696B2 (en) Damping device for parallel cable
JP5544380B2 (en) Vibration control device for column and column
JP2001349094A (en) Synchronous pendulum type vibration control device
JP2001220923A (en) Seismic control support structure for ground-based installation
JP2006250177A (en) Vibration control device
JP3544756B2 (en) Elasto-plastic damper device
JP3082408B2 (en) Damping device
JP3086139B2 (en) Pole with vibration suppression device
JPH029190B2 (en)
JPH08121531A (en) Swing preventive device
JP3080329B2 (en) Anti-vibration device
JP2004169515A (en) Cable damper
JP3331085B2 (en) Pole with vibration suppression device
JPS591376Y2 (en) air beacon device
JPH1025141A (en) Aggregate and damping concrete
JP2503356Y2 (en) Vibration control device for structures
JP4883740B2 (en) Vibration control device
JP2008082453A (en) Damping device, and road bridge and pedestrian bridge with superior damping performance
JP2004068360A (en) Cable vibration-proofing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

LAPS Cancellation because of no payment of annual fees