JP2004190314A - Pole structure - Google Patents

Pole structure Download PDF

Info

Publication number
JP2004190314A
JP2004190314A JP2002358897A JP2002358897A JP2004190314A JP 2004190314 A JP2004190314 A JP 2004190314A JP 2002358897 A JP2002358897 A JP 2002358897A JP 2002358897 A JP2002358897 A JP 2002358897A JP 2004190314 A JP2004190314 A JP 2004190314A
Authority
JP
Japan
Prior art keywords
dynamic vibration
pole
spring member
attached
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002358897A
Other languages
Japanese (ja)
Other versions
JP3923888B2 (en
Inventor
Masahiko Warashina
正彦 藁科
Hiroshi Katayama
洋 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002358897A priority Critical patent/JP3923888B2/en
Publication of JP2004190314A publication Critical patent/JP2004190314A/en
Application granted granted Critical
Publication of JP3923888B2 publication Critical patent/JP3923888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pole structure equipped with a vibration reducing means easily mountable with simple structure. <P>SOLUTION: A spring member 13 of a dynamic vibration absorber 11 is formed of a spring member with high damping capacity. A weight 14 is mounted to one end part of the spring member 13, and a support member 16 for mounting to a pole body 12 is mounted to the other end part of the spring member 13. The natural frequency adjustment of the dynamic vibration absorber 11 is made by adjusting the mounting position of the weight 14 by an adjusting tool 15 or selecting the mass of the weight 14. Furthermore, each plane direction can have different natural frequency by changing the cross-sectional shape of the spring member 13, and synchronization to a plurality of vibration modes can be attained by a single dynamic vibration absorber 11. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、道路や鉄道などに併設されるあるいは建築物や敷地内また機械構造物などに設置されるポール本体の振動低減を図るための動吸振器を備えたポール構造物に関する。
【0002】
【従来の技術】
例えば、道路や鉄道などに併設される照明柱、信号柱、送電鉄塔等のポールにおいては、風や地震、または車両の通行に起因する振動によって共振現象を生じ、大きく揺れてポールに取り付けられた照明灯や信号線あるいはポールに損傷が生じることがある。このようなポールの共振を防止するために、ポール本体内部に物理振り子を設け、この物理振り子の振動によりポールの振動を低減化するようにしたものがある(例えば特許文献1参照)。
【0003】
【特許文献1】
特開2001−59543号公報
【0004】
【発明が解決しようとする課題】
ところが、ポール内部に物理振り子を設けたものでは、オイルダンパ等の機構が複雑でありメンテナンスを要する。また、ポールの製作時にポール内に物理振り子を予め組み込みことが必要があるので、振動低減化対策を採用していない既設のポールに対して適用することは困難である。
【0005】
本発明の目的は、簡易な構造で容易に取り付けが行える動吸振器を備えたポール構造物を提供することである。
【0006】
【課題を解決するための手段】
本発明のポール構造物は、道路や鉄道などに併設されるポール本体と、振動を吸振する高減衰能を有するバネ部材の一方端部に重りが取り付けられた動吸振器と、動吸振器のバネ部材の他方端部を前記ポール本体に取り付ける支持部材とを備えたことを特徴とする。
【0007】
動吸振器のバネ部材は、減衰比が1%以上の高減衰能を有するバネ部材で形成され、バネ部材の一方端部に重りが取り付けられ、バネ部材の他方端部は支持部材によりポール本体に取り付けられる。動吸振器の固有振動数の調整は、調整具を重りの取り付け位置あるいは前記支持部材位置あるいは両位置に設けてバネ部材の長さを調整して、または、重りの質量や回転慣性を選択調整して行われる。さらに、バネ部材の断面形状に異方性を持たせることにより、振動方向で異なった固有振動数を持たせ、単一の動吸振器で複数の振動モードに同調させる。
【0008】
動吸振器は、ポール本体の支柱部外側またはアーム部外側、ポール本体の内部に1個または複数個取り付けられる。例えば、複数個の動吸振器のバネ部材の一方端に取り付けられた重りがポール本体の外側に向くように放射状に配置し、放射状の中心側でこれら複数個のバネ部材の他方端を支持部材で結合して、これら動吸振器のバネ部材がポールの支柱部に取り付ける。これにより、複数方向の振動モードに対応でき、また、動吸振器を多重化により制振効果を増すこともできる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係るポール構造物の説明図であり、図1(a)は平面図、図1(b)は側面図である。図1では、2個の動吸振器11がポール本体12に取り付けられたものを示している。動吸振器11は、バネ部材13の一方端に重り14が調整具15により取り付けられて構成されている。そして、バネ部材13の他方端部は支持部材16によりポール本体取り付けられる。バネ部材13としては、減衰比が1%以上のバネ部材が用いられる。例えば、マンガン銅(Mn−Cu)系の合金が用いられる。本発明では、減衰比が1%以上のバネ部材を高減衰能を有するバネ部材ということにする。
【0010】
第1の実施の形態では、動吸振器11のバネ部材13はその断面形状が円形で形成されている。支持部材16はプレート16aと支持具16bとからなり、2個の動吸振器11に対して共通に設けられ、支持具16bでポール本体12の外側を把持して2個の動吸振器11が取り付けられたプレート16aとボルトナットで取り付けられる。調整具15は重り14の取り付け位置を調整するものであり、この調整具15により取付位置を変化させて、プレート16aと重り14の距離を調整することで動吸振器11の固有振動数を調整できるようにしている。調整具15をプレート16aに設けてバネ部材13の長さを調整しても同様に固有振動数の調整ができる。また、バネ部材13に取り付ける重り14の質量を適切に選択して動吸振器11の固有振動数を調整することもできる。
【0011】
さらに、動吸振器11の回転慣性を調整し動吸振器の固有振動数を調整する場合には、図2(a)に示すように2個の重り14a、14bをバネ部材13を挟んで調整具15で保持した動吸振器11を用意する。そして、回転慣性を低い側に調整し固有振動数を高くする場合には、図2(b)に示すように、2個の重り14a、14bを上方(支持部材16での支持位置に対して離れる方向)に回動させ、一方、回転慣性を低い側に調整し固有振動数を低くする場合には、図2(c)に示すように、2個の重り14a、14bをの下方(支持部材16での支持位置に対して近づく方向)に回動させる。
【0012】
いま、ポール本体12が風や交通振動等により振動を始めたとすると、振動は支持部材16のパネル16aから、バネ部材12を介して重り14に伝達される。ポール本体12の水平面内でのあらゆる振動方向に対してポール本体12の振動が重り14に伝達される。並進方向の振動だけではなく、ポール本体12の周方向のねじり振動に対してもバネ部材12を介して重り14に伝達される。従って、各振動方向においてポール本体の固有モードに同調するようにバネ部材の配置やバネ長さ、バネの断面形状を定めれば1組の制振装置で、ポール本体12の複数の振動方向に対してポール本体12の振動を抑制することができる。以上の説明では、2個の動吸振器11をポール本体12に取り付けた場合について説明したが1個の動吸振器11をポール本体12に取り付けるようにしても良いし、3個以上の動吸振器11をポール本体12に取り付けるようにしても良い。
【0013】
第1の実施の形態によれば、高減衰能を有するバネ部材13が動吸振器11のバネ要素とダンパ要素を兼ねているので、構成部材を少なくすることができ簡易な構造にできる。従って、支持部材16も簡易に構成することができポール本体12への取りつけが容易となる。また、ポール本体12の複数の振動方向例えば並進方向やねじり方向に対してポール本体12の振動を抑制することができる。また、バネ部材13に取り付ける重り14の質量を適切に選択したり、調整具15により重り14の取付位置や回転慣性を調整することにより、動吸振器11の固有振動数を変化させることができるので、多様な寸法を持つポール本体12対して適用することが可能である。また、動吸振器11は支持部材16によりポール本体12に容易に着脱することが可能であるので、既設のポール本体12に対しても容易に適用できる。
【0014】
また、バネ部材13には、高減衰能を有する制振材料として、例えば、Mn−Cu系合金、Mg合金、高減衰能鋳鉄、Ni−Ti合金、Fe−Mn合金、Zn−Al合金、制振鋼板やナイロン6、PBT、PEなどの減衰比1%以上の減衰能を示す材料が使用される。
【0015】
一般に、構造物は減衰比1%以下で設計されるため、動吸振器の減衰比を1%以上とすることで有意な振動抑制効果が期待できる。特に、ポールは減衰比がやや小さな構造物であるため効果が大きい。また、ポールの減衰比が極端に小さい場合には、動吸振器の減衰が1%以下でも効果が得られる場合もある。
【0016】
次に、本発明の第2の実施の形態を説明する。図3は本発明の第2の実施の形態に係るポール構造物の説明図であり、図3(a)は平面図、図3(b)は側面図、図3(c)はバネ部材13の振動方向と固有振動数との説明図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、バネ部材13の断面形状を円形に代えて矩形(四角形)としたものである。図1と同一要素には同一符号を付し重複する説明は省略する。
【0017】
矩形断面を持つバネ部材13を用いた動吸振器11では、図3(c)に示すように、異なる2方向(互いに直交方向)に対して、異なる2個の固有振動数f1、f2を持つことができる。この場合、矩形の横辺aと縦辺bとの関係により固有振動数f1、f2の大きさが変化する。a≧bのときはf1≧f2、a≦bのときはf1≦f2の関係が成り立つ。従って、横辺aおよび縦辺bの大きさを適切に選択することによって、1個の動吸振器11に2個の固有振動数を持たせることができる。バネ部材13のバネ定数をこれら2方向において調整することによってポールの2つの振動モードに動吸振器を同調させるように固有振動数を変化させることができる。以上の説明では、2個の動吸振器11をポール本体12に取り付けた場合について説明したが1個の動吸振器11をポール本体12に取り付けるようにしても良いし、3個以上の動吸振器11をポール本体12に取り付けるようにしても良い。
【0018】
この第2の実施の形態によれば、1個の動吸振器11に2個の固有振動数を持たせることができるので、制振対象であるポール本体12の2方向に対して1個の動吸振器11で、異なる固有振動数f1、f2で振動する場合の振動抑制を行うことができる。以上の説明では、バネ部材13の断面形状が矩形の場合について説明したが、任意のn個の辺を持つn角形(多角形)としても楕円でも良い。また、ねじり振動に対しても並進方向と同時に効果があるようにバネ部材の断面形状をH字型や凹字型等の各種の断面形状としても良い。
【0019】
次に、本発明の第3の実施の形態を説明する。図4は本発明の第3の実施の形態に係るポール構造物の説明図である。この第3の実施の形態は、図1に示した第1の実施の形態または図3に示した第2の実施の形態における動吸振器11を、ポール本体12の支柱部12aの外側またはポール本体12のアーム部12bの外側に1個または複数個取り付けたものである。
【0020】
図4において、ポール本体12の支柱部12aの外側には、バネ部材13と重り14と調整具15とが縦に配列された2個の縦型の動吸振器11が共通の支持部材16で鉛直方向(上下方向)にそれぞれ取り付けられ、保護カバー17で覆われ保護されるように構成されている。一方、ポール本体12のアーム部12bの外側には、バネ部材13と重り14と調整具15とが横に配列された2個の横型の動吸振器11が共通の支持部材16で水平方向(左右方向)にそれぞれ取り付けられ、保護カバー17で覆われ保護されるように構成されている。
【0021】
すなわち、水平方向に振動しやすいポール本体12の支柱部12aに対しては動吸振器11のバネ部材13が垂直になるように設置し、鉛直方向に振動しやすいポール本体12のアーム部12bにおいては、動吸振器11のバネ部材13が水平になるように設置する。
【0022】
第3の実施の形態によれば、ポール本体12が風や交通振動等により共振を生じた場合に、水平方向および鉛直方向の振動に対して適切に制振することができる。また、動吸振器11はポールの外側に取付可能であるので着脱が容易であり、既設の道路灯に対しても容易に取り付けられ制振を行うことができる。また、動吸振器11は保護カバー17で覆われ保護されるので劣化が防止できる。
【0023】
次に、本発明の第4の実施の形態を説明する。図5は本発明の第4の実施の形態に係るポール構造物の説明図であり、図5(a)は動吸振器11部分の平面図、図5(b)は側面図である。この第4の実施の形態は、図1に示した第1の実施の形態または図3に示した第2の実施の形態における4個の動吸振器11を十字に組み合わせ、十字の中心部でこれらの4個の動吸振器11を結合し、動吸振器11のバネ部材13がポール本体12の支柱部12aと垂直になる位置に取り付けたものである。なお、図5では調整具15の図示を省略している。
【0024】
図5(a)に示すように、制振材料を用いたバネ部材13と重り14とから構成される4個の動吸振器11を、1個の共通の支持部材16にて十字に組み合わせて、これらをポール本体12の支柱部12aに取り付ける。この場合、動吸振器11のバネ部材13がポール本体12の支柱部12aと垂直になる位置に取り付ける。
【0025】
ポール本体12が風や交通振動等により、水平方向や上下方向の振動だけでなくねじり振動を生じた場合に、4個の動吸振器11に対してポール本体12の支柱部12aの周方向にその振動が伝わる。4個の動吸振器11には周方向に対してモーメントが働き、その振動を吸収できるので、ポール本体12のねじり振動も抑制することができる。
【0026】
また、動吸振器11は4個ではなく任意の数を用いてもよい。すなわち、複数個の動吸振器を、バネ部材13の一方端の重り14が外側に向くように同一水平面に放射状に配置し、放射状の中心部でこれらの複数個のバネ部材13の他方端を支持部材16で結合する。そして、これらを動吸振器11のバネ部材13がポール本体12の支柱部12aと垂直になるように取り付ける。
【0027】
第4の実施の形態によれば、ポール本体12が風や交通振動等により、水平方向や上下方向の振動に対してだけでなく、ねじり振動の共振を生じた場合であっても、ポール本体12のねじり振動を抑制することができる。また、第3の実施の形態に示したように、動吸振器11を保護カバー17で覆い保護するようにした場合には動吸振器11の劣化を防止できる。
【0028】
次に、本発明の第5の実施の形態を説明する。図6は本発明の第5の実施の形態に係るポール構造物の説明図であり、図6(a)は側面図、図6(b)は図6(a)のA部分の内部拡大図である。この第5の実施の形態は、複数個の動吸振器11をポール本体12の支柱部12aの内部に設け、ポール構造物を構成したものである。
【0029】
図6(b)に示すように、4個の動吸振器11が共通の支持部材16で2個一組となってポール本体12の支柱部12aの内壁に取り付けられている。4個の動吸振器11は、それぞれ制振材料を用いた円形断面を持つバネ部材13を有し、バネ部材の一方端に重り14が調整具15により取り付けられている。そして、2個の動吸振器11が一組となって共通の支持部材16でポール本体12の支柱部12aの内壁に取り付けられている。
【0030】
第5の実施の形態によれば、動吸振器11をポール本体12の支柱部12aの内部に設けたので、景観を損なうことなく制振を行うことができる。
【0031】
次に、本発明の第6の実施の形態を説明する。図7は本発明の第6の実施の形態に係るポール構造物の説明図であり、図7(a)は側面図、図7(b)は図7(a)のB部分の一部切り欠き垂直断面図、図7(c)は図7(a)のB部分の水平断面図である。この第6の実施の形態は、図6に示した第5の実施の形態に対し、動吸振器11のバネ部材13の断面形状を円形に代えて矩形としたものである。図6に示した同一要素には同一符号を付し重複する説明は省略する。
【0032】
図7(b)に示すように、バネ部材13の断面形状が矩形に形成された2個の動吸振器11が、それぞれ支持部材16でポール本体12の支柱部12aの内壁に取り付けられている。図7(c)に示すように、2個の動吸振器11は、それぞれ制振材料を用いた矩形断面を持つバネ部材13を有し、バネ部材の一方端に重り14が取り付けられている。また、重り14はクリップ状形状に形成され、バネ部材13を挟持してバネ部材13に取り付けられる。従って、重り14はバネ部材13に容易に位置を調整して取り付けることができる。
【0033】
第6の実施の形態によれば、矩形断面を持つバネ部材13を使用することにより、特定の方向について制振を行うことが可能である。また、バネ部材13の長さや重り14の位置または質量を適切に選択することにより、固有振動数の異なるポール本体12に対して容易に適用できる。
【0034】
次に、本発明の第7の実施の形態を説明する。図8は本発明の第7の実施の形態に係るポール構造物の説明図であり、図8(a)はポール本体12に取り付けた状態の側面図、図8(b)は図8(a)のC部分の一部切り欠き垂直断面図、図8(c)は図8(a)のC部分の水平断面図である。この第7の実施の形態は、複数個の動吸振器11の重り14を円環状に配置し、円環状に配置された隣り合う重り14を粘弾性体18で結合し、各々の重り14に取り付けられたバネ部材13は、ポール本体12の周囲を包囲して重り14の上方に配置された1個の支持部材16にそれぞれ取り付け、ポール構造物を構成したものである。
【0035】
図8(c)に示すように、4個の動吸振器11の重り14は円弧状に形成され、円環状に配置される。そして、円環状に配置された隣り合う円弧状の重り14を粘弾性体18で結合する。バネ部材13の一方端は円弧状に形成された各々の重り14のほぼ中央部に取り付けられ、図8(b)に示すように、各々のバネ部材13の他方端は上方に傾斜して1個の共通の支持部材16に取り付けられる。1個の支持部材16は、ポール本体12の支柱部12aの周囲を包囲して取り付けられている。粘弾性体18としては、例えば樹脂やゴムなどの材料を用いる。
【0036】
ここで、円弧状の重り14はバネ部材13で懸架されることからバネ部材13が破損した場合には円弧状の重り14が脱落する恐れがあるので、脱落防止部材をバネ部材13に対して併設するようにしても良い。この場合、脱落防止部材は、バネ部材13の機能に影響を与えないように取り付けられる。例えば、繊維部材やチェーン等を弛ませて円弧状の重り14を懸架させる。同様に、円環状に配置された隣り合う円弧状の重り14の間に設けられた粘弾性体18の離脱を防止するための離脱防止部材を設けるようにしても良い。例えば、円弧状の重り14と粘弾性体18とを樹脂で覆い一体的にコーティングあるいはフィルムを巻き付けてカバーを形成するようにする。この場合も粘弾性体18の機能に影響を与えないようにする。また、第3の実施の形態に示したように、複数個の動吸振器11を保護カバー17で覆い保護するようにしても良い。
【0037】
第7の実施の形態によれば、ポール本体12が何らかの外力により共振をした際に、その振動が水平面内のいかなる方向に振動した場合においても、各振動方向にある動吸振器が振動することによって、または複数の動吸振器が協調して振動することによって、ポール本体12の複数の振動モードの振動を抑えることができる。また、4個の重り14が粘弾性体18によって円環状に連結されているため、各重りが別々に振動する場合には、各重り間の相対速度に応じた減衰が発生するため、制振効果が大きくなる。粘弾性体18に減衰機能を必要としない場合には、低減衰能の柔な材料を用いてもよい。以上の説明では、4個の動吸振器11によりポール構造物を構成したが、任意の数の動吸振器11を用いても良い。
【0038】
次に、本発明の第8の実施の形態を説明する。図9は本発明の第8の実施の形態に係るポール構造物の説明図であり、図9(a)はポール本体12に取り付けた状態の側面図、図9(b)は図9(a)のD部分の一部切り欠き垂直断面図、図9(c)は図9(a)のD部分の水平断面図である。この第8の実施の形態は、複数個の動吸振器11の重り14を円環状に配置し、円環状に配置された隣り合う重り14を粘弾性体18で結合し、各々の重り14に取り付けられたバネ部材13は、ポール本体12の周囲を包囲して重り14の上方および下方に配置された2個の支持部材16にそれぞれ取り付けたものである。
【0039】
図9(c)に示すように、8個の重り14はクリップ状形状に形成され、2個のバネ部材13の一方端を共通で挟持している。クリップ状形状の重り14は円環状に配置され、円環状に配置された隣り合うクリップ状形状の重り14は粘弾性体18で結合される。そして、図9(b)に示すように、各々のバネ部材13の他方端は上方および下方に傾斜して2個の共通の支持部材16に取り付けられる。2個の支持部材16は、それぞれポール本体12の支柱部12aの周囲を包囲して取り付けられている。
【0040】
以上の説明では、8個の重り14を用いた場合を示しているが、任意の数の重り14を用いても良い。また、第7の実施の形態と同様に、脱落防止部材をバネ部材13に対して併設するようにしても良し、粘弾性体18の離脱を防止するための離脱防止部材を設けるようにしても良い。また、第3の実施の形態に示したように、複数個の動吸振器11を保護カバー17で覆い保護するようにしても良い。
【0041】
第8の実施の形態によれば、ポール本体12が何らかの外力により共振が生じた際に、ポール本体12の支柱部12aが水平面内でどの方向に振動した場合においても、振動方向にある動吸振器11または複数の動吸振器11が協調して振動する。従って、ポール本体12の複数の振動モードの振動を抑えることができる。動吸振器11のバネ部材13を上下の支持部材16によって支持するので、動吸振器11の落下防止に効果がある。
【0042】
次に、本発明の第9の実施の形態を説明する。図10は本発明の第9の実施の形態に係るポール構造物の説明図であり、図10(a)はポール本体12に取り付けた状態の側面図、図10(b)は図10(a)のE部分の一部切り欠き垂直断面図、図10(c)は図10(a)のE部分の水平断面図である。この第9の実施の形態は、図8に示した第7の実施の形態に対し、円弧状の重り14に代えて球状の重り14を用い、その個数をn個としたものである。図8に示した第7の実施の形態と同一要素には同一符号を付し重複する説明は省略する。
【0043】
図10(c)に示すように、n個の重り14は球状に形成され、円環状に配置される。そして、円環状に配置された隣り合う円弧状の重り14を粘弾性体18で結合する。バネ部材13の一方端は球状に形成された各々の重り14に取り付けられ、図10(b)に示すように、各々のバネ部材13の他方端は上方に傾斜して1個の共通の支持部材16に取り付けられる。1個の支持部材16は、ポール本体12の支柱部12aの周囲を包囲して取り付けられている。
【0044】
第9の実施の形態の場合においても第7の実施の形態と同様に、脱落防止部材をバネ部材13に対して併設するようにしても良し、粘弾性体18の離脱を防止するための離脱防止部材を設けるようにしても良い。また、第3の実施の形態に示したように、複数個の動吸振器11を保護カバー17で覆い保護するようにしても良い。
【0045】
第9の実施の形態によれば、ポール本体12が何らかの外力により共振が生じた際に、ポール本体12の支柱部12aが水平面内の任意の方向に振動した場合においても、振動方向にある動吸振器11または複数の動吸振器11が協調して振動することによって、ポール本体12の複数の振動モードの振動を抑えることができる。また、n個の重り14は、ポール本体12にねじり振動が生じた際においても、n個の動吸振器11が周方向に振動できる。従って、ねじり振動に対する制振効果も有している。
【0046】
本発明のポール構造物は、道路や鉄道などに併設されるポール、例えば照明灯や信号電光表示盤、標識、カメラ、速度計測装置などの支持ポールや電柱などの構造物で、道路や鉄道以外におけるポール構造物も対象となる。例えば、建物の屋上などに設置される携帯電話中継アンテナや無線局敷地内のアンテナなどのポール状アンテナなどにも適用できる。
【0047】
【発明の効果】
以上説明したように、本発明によれば、構造が簡易で動吸振器の固有振動数の調整が容易で、かつ、複数の振動モードおよび任意の振動方向に対して制振効果を有し、多種の既設ポールに対しても設置が容易な動吸振器を有するポール構造物を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るポール構造物の説明図。
【図2】本発明の第1の実施の形態における動吸振器の回転慣性の調整の説明図。
【図3】本発明の第2の実施の形態に係るポール構造物の説明図。
【図4】本発明の第3の実施の形態に係るポール構造物の説明図。
【図5】本発明の第4の実施の形態に係るポール構造物の説明図。
【図6】本発明の第5の実施の形態に係るポール構造物の説明図。
【図7】本発明の第6の実施の形態に係るポール構造物の説明図。
【図8】本発明の第7の実施の形態に係るポール構造物の説明図。
【図9】本発明の第8の実施の形態に係るポール構造物の説明図。
【図10】本発明の第9の実施の形態に係るポール構造物の説明図。
【符号の説明】
11…動吸振器、12…ポール本体、12a…支柱部、12b…アーム部、13…バネ部材、14…重り、15…調整具、16…支持部材、17…保護カバー、18…粘弾性体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pole structure provided with a dynamic vibration absorber for reducing vibration of a pole body installed alongside a road or a railway, or installed in a building, a site, a mechanical structure, or the like.
[0002]
[Prior art]
For example, in poles such as lighting poles, signal poles, power transmission towers, etc. attached to roads and railways, resonance phenomena occur due to vibrations caused by wind, earthquakes, or traffic of vehicles, and the poles are shaken greatly and attached to the poles. Lights, signal lines or poles may be damaged. In order to prevent such a resonance of the pole, there is a method in which a physical pendulum is provided inside the pole body, and the vibration of the pole is reduced by the vibration of the physical pendulum (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-59543 A
[Problems to be solved by the invention]
However, in the case where the physical pendulum is provided inside the pole, a mechanism such as an oil damper is complicated and requires maintenance. In addition, since it is necessary to previously incorporate a physical pendulum into the pole at the time of manufacturing the pole, it is difficult to apply the present invention to an existing pole that does not employ a vibration reduction measure.
[0005]
An object of the present invention is to provide a pole structure having a dynamic vibration absorber that can be easily attached with a simple structure.
[0006]
[Means for Solving the Problems]
The pole structure of the present invention includes a pole body attached to a road or a railway, a dynamic vibration absorber in which a weight is attached to one end of a spring member having high damping capacity for absorbing vibration, and a dynamic vibration absorber. A support member for attaching the other end of the spring member to the pole body.
[0007]
The spring member of the dynamic vibration absorber is formed of a spring member having a high damping ability with an attenuation ratio of 1% or more, a weight is attached to one end of the spring member, and the other end of the spring member is supported by a pole body by a support member. Attached to. Adjustment of the natural frequency of the dynamic vibration absorber can be achieved by adjusting the length of the spring member by providing an adjuster at the mounting position of the weight or at the support member position or at both positions, or by selectively adjusting the mass or the rotational inertia of the weight. It is done. Furthermore, by giving anisotropy to the cross-sectional shape of the spring member, different natural frequencies are provided in the vibration direction, and a single dynamic vibration absorber tunes to a plurality of vibration modes.
[0008]
One or a plurality of dynamic vibration absorbers are attached to the outside of the pole portion or the arm portion of the pole body, and inside the pole body. For example, the weights attached to one ends of the spring members of the plurality of dynamic vibration absorbers are radially arranged so as to face the outside of the pole body, and the other ends of the plurality of spring members are supported at the radial center side by a support member. And the spring members of these dynamic vibration absorbers are attached to the poles of the pole. Thereby, it is possible to cope with vibration modes in a plurality of directions, and it is possible to increase the vibration damping effect by multiplexing the dynamic vibration absorbers.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. FIG. 1 is an explanatory view of a pole structure according to a first embodiment of the present invention. FIG. 1 (a) is a plan view, and FIG. 1 (b) is a side view. FIG. 1 shows a structure in which two dynamic vibration absorbers 11 are attached to a pole body 12. The dynamic vibration absorber 11 is configured such that a weight 14 is attached to one end of a spring member 13 by an adjustment tool 15. The other end of the spring member 13 is attached to the pole body by the support member 16. As the spring member 13, a spring member having a damping ratio of 1% or more is used. For example, a manganese copper (Mn-Cu) -based alloy is used. In the present invention, a spring member having a damping ratio of 1% or more is referred to as a spring member having high damping ability.
[0010]
In the first embodiment, the spring member 13 of the dynamic vibration absorber 11 has a circular cross section. The support member 16 is composed of a plate 16a and a support 16b, and is provided in common to the two dynamic vibration absorbers 11. The support 16b grips the outside of the pole body 12 and the two dynamic vibration absorbers 11 It is attached with the attached plate 16a and bolts and nuts. The adjusting tool 15 adjusts the mounting position of the weight 14, and changes the mounting position with the adjusting tool 15 to adjust the distance between the plate 16a and the weight 14, thereby adjusting the natural frequency of the dynamic vibration absorber 11. I can do it. Even if the adjusting tool 15 is provided on the plate 16a and the length of the spring member 13 is adjusted, the natural frequency can be adjusted similarly. In addition, the natural frequency of the dynamic vibration absorber 11 can be adjusted by appropriately selecting the mass of the weight 14 attached to the spring member 13.
[0011]
Further, when adjusting the natural inertia of the dynamic vibration absorber by adjusting the rotational inertia of the dynamic vibration absorber 11, the two weights 14a and 14b are adjusted with the spring member 13 interposed therebetween as shown in FIG. The dynamic vibration absorber 11 held by the tool 15 is prepared. When the rotational inertia is adjusted to a lower side to increase the natural frequency, as shown in FIG. 2B, the two weights 14a and 14b are moved upward (with respect to the position supported by the support member 16). 2 (c), while the rotational inertia is adjusted to a lower side to lower the natural frequency, as shown in FIG. 2 (c), the two weights 14a, 14b are placed below (supported). (In a direction approaching the support position of the member 16).
[0012]
Now, assuming that the pole body 12 starts vibrating due to wind, traffic vibration, or the like, the vibration is transmitted from the panel 16 a of the support member 16 to the weight 14 via the spring member 12. The vibration of the pole body 12 is transmitted to the weight 14 in all directions of vibration of the pole body 12 in the horizontal plane. Not only the translational vibration but also the circumferential torsional vibration of the pole body 12 is transmitted to the weight 14 via the spring member 12. Therefore, if the arrangement of the spring members, the spring length, and the cross-sectional shape of the spring are determined so as to synchronize with the eigenmode of the pole body in each vibration direction, one set of vibration suppression devices can be used in a plurality of vibration directions of the pole body 12. On the other hand, the vibration of the pole body 12 can be suppressed. In the above description, the case where two dynamic vibration absorbers 11 are attached to the pole body 12 has been described. However, one dynamic vibration absorber 11 may be attached to the pole body 12, or three or more dynamic vibration absorbers may be attached. The vessel 11 may be attached to the pole body 12.
[0013]
According to the first embodiment, since the spring member 13 having a high damping capacity also serves as the spring element and the damper element of the dynamic vibration absorber 11, the number of constituent members can be reduced and a simple structure can be achieved. Therefore, the support member 16 can also be configured simply, and can be easily attached to the pole body 12. Further, the vibration of the pole body 12 can be suppressed in a plurality of vibration directions of the pole body 12, for example, the translation direction and the torsion direction. The proper frequency of the dynamic vibration absorber 11 can be changed by appropriately selecting the mass of the weight 14 attached to the spring member 13 or adjusting the mounting position and the rotational inertia of the weight 14 by the adjuster 15. Therefore, the present invention can be applied to the pole body 12 having various dimensions. Further, since the dynamic vibration absorber 11 can be easily attached to and detached from the pole body 12 by the support member 16, the dynamic vibration absorber 11 can be easily applied to the existing pole body 12.
[0014]
The spring member 13 includes, as a damping material having a high damping ability, for example, a Mn-Cu alloy, a Mg alloy, a high damping cast iron, a Ni-Ti alloy, a Fe-Mn alloy, a Zn-Al alloy, A material having a damping capacity of 1% or more, such as a vibration steel plate, nylon 6, PBT, or PE, is used.
[0015]
Generally, since the structure is designed with a damping ratio of 1% or less, a significant vibration suppression effect can be expected by setting the damping ratio of the dynamic vibration absorber to 1% or more. In particular, since the pole is a structure having a slightly smaller damping ratio, the effect is large. When the damping ratio of the pole is extremely small, the effect may be obtained even when the damping of the dynamic vibration absorber is 1% or less.
[0016]
Next, a second embodiment of the present invention will be described. 3A and 3B are explanatory views of a pole structure according to a second embodiment of the present invention. FIG. 3A is a plan view, FIG. 3B is a side view, and FIG. FIG. 4 is an explanatory diagram of a vibration direction and a natural frequency of the present invention. The second embodiment is different from the first embodiment shown in FIG. 1 in that the cross-sectional shape of the spring member 13 is rectangular (quadrangle) instead of circular. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.
[0017]
As shown in FIG. 3C, the dynamic vibration absorber 11 using the spring member 13 having a rectangular cross section has two different natural frequencies f1 and f2 in two different directions (directions orthogonal to each other). be able to. In this case, the magnitudes of the natural frequencies f1 and f2 change depending on the relationship between the horizontal side a and the vertical side b of the rectangle. When a ≧ b, f1 ≧ f2, and when a ≦ b, f1 ≦ f2 holds. Therefore, by appropriately selecting the size of the horizontal side a and the vertical side b, one dynamic vibration absorber 11 can have two natural frequencies. By adjusting the spring constant of the spring member 13 in these two directions, the natural frequency can be changed so as to tune the dynamic vibration absorber to the two vibration modes of the pole. In the above description, the case where two dynamic vibration absorbers 11 are attached to the pole body 12 has been described. However, one dynamic vibration absorber 11 may be attached to the pole body 12, or three or more dynamic vibration absorbers may be attached. The vessel 11 may be attached to the pole body 12.
[0018]
According to the second embodiment, since one dynamic vibration absorber 11 can have two natural frequencies, one dynamic vibration absorber 11 can be provided in one direction with respect to two directions of the pole body 12 to be damped. The dynamic vibration absorber 11 can suppress vibration when vibrating at different natural frequencies f1 and f2. In the above description, the case where the cross-sectional shape of the spring member 13 is rectangular has been described, but it may be an n-sided polygon (polygon) having arbitrary n sides or an ellipse. Also, the cross-sectional shape of the spring member may be various cross-sectional shapes such as an H-shape or a concave shape so that the torsion vibration is effective simultaneously with the translation direction.
[0019]
Next, a third embodiment of the present invention will be described. FIG. 4 is an explanatory view of a pole structure according to a third embodiment of the present invention. The third embodiment is different from the first embodiment shown in FIG. 1 or the dynamic vibration absorber 11 in the second embodiment shown in FIG. One or a plurality is attached to the outside of the arm portion 12b of the main body 12.
[0020]
In FIG. 4, two vertical dynamic vibration absorbers 11 in which a spring member 13, a weight 14, and an adjuster 15 are vertically arranged are supported by a common support member 16 on the outer side of a pole 12 a of a pole body 12. It is configured to be attached in the vertical direction (up and down direction) and to be covered and protected by the protective cover 17. On the other hand, on the outer side of the arm portion 12b of the pole body 12, two horizontal dynamic vibration absorbers 11 in which a spring member 13, a weight 14, and an adjuster 15 are arranged horizontally are shared by a common support member 16 in the horizontal direction ( (Left and right directions), and are configured to be covered and protected by the protective cover 17.
[0021]
That is, the spring member 13 of the dynamic vibration absorber 11 is installed so as to be perpendicular to the column portion 12a of the pole body 12 that easily vibrates in the horizontal direction, and the arm portion 12b of the pole body 12 that easily vibrates in the vertical direction. Is installed such that the spring member 13 of the dynamic vibration absorber 11 is horizontal.
[0022]
According to the third embodiment, when the pole body 12 resonates due to wind, traffic vibration, or the like, it is possible to appropriately control the horizontal and vertical vibrations. Further, the dynamic vibration absorber 11 can be attached to the outside of the pole, so that it can be easily attached and detached, and can be easily attached to existing road lights to perform vibration suppression. Further, the dynamic vibration absorber 11 is covered and protected by the protective cover 17, so that deterioration can be prevented.
[0023]
Next, a fourth embodiment of the present invention will be described. FIG. 5 is an explanatory view of a pole structure according to a fourth embodiment of the present invention. FIG. 5 (a) is a plan view of the dynamic vibration absorber 11 and FIG. 5 (b) is a side view. In the fourth embodiment, the four dynamic vibration absorbers 11 of the first embodiment shown in FIG. 1 or the second embodiment shown in FIG. The four dynamic vibration absorbers 11 are connected, and the spring member 13 of the dynamic vibration absorber 11 is attached to a position perpendicular to the support 12 a of the pole body 12. In addition, illustration of the adjustment tool 15 is omitted in FIG.
[0024]
As shown in FIG. 5A, four dynamic vibration absorbers 11 each composed of a spring member 13 using a vibration damping material and a weight 14 are combined in a cross by one common support member 16. These are attached to the column 12a of the pole body 12. In this case, the spring member 13 of the dynamic vibration absorber 11 is attached to a position perpendicular to the column 12 a of the pole body 12.
[0025]
When the pole body 12 generates not only horizontal and vertical vibrations but also torsional vibrations due to wind, traffic vibrations, and the like, the four dynamic vibration absorbers 11 are moved in the circumferential direction of the column 12 a of the pole body 12. The vibration is transmitted. Moments act on the four dynamic vibration absorbers 11 in the circumferential direction, and the vibrations can be absorbed, so that the torsional vibration of the pole body 12 can also be suppressed.
[0026]
Also, any number of dynamic vibration absorbers 11 may be used instead of four. That is, the plurality of dynamic vibration absorbers are radially arranged on the same horizontal plane such that the weight 14 at one end of the spring member 13 faces outward, and the other ends of the plurality of spring members 13 are radially centered. They are connected by a support member 16. Then, these are attached so that the spring member 13 of the dynamic vibration absorber 11 is perpendicular to the support 12 a of the pole body 12.
[0027]
According to the fourth embodiment, even when the pole body 12 generates not only horizontal and vertical vibrations but also torsional vibration resonance due to wind, traffic vibration, or the like, the pole body 12 Twelve torsional vibrations can be suppressed. Further, as shown in the third embodiment, when the dynamic vibration absorber 11 is covered and protected by the protective cover 17, the deterioration of the dynamic vibration absorber 11 can be prevented.
[0028]
Next, a fifth embodiment of the present invention will be described. 6A and 6B are explanatory views of a pole structure according to a fifth embodiment of the present invention. FIG. 6A is a side view, and FIG. 6B is an enlarged internal view of a portion A in FIG. It is. In the fifth embodiment, a plurality of dynamic vibration absorbers 11 are provided inside a support portion 12a of a pole body 12 to form a pole structure.
[0029]
As shown in FIG. 6B, four dynamic vibration absorbers 11 are mounted as a pair with a common support member 16 and attached to the inner wall of the column 12 a of the pole body 12. Each of the four dynamic vibration absorbers 11 has a spring member 13 having a circular cross section using a vibration damping material, and a weight 14 is attached to one end of the spring member by an adjuster 15. The two dynamic vibration absorbers 11 form a set and are attached to the inner wall of the support 12 a of the pole body 12 by a common support member 16.
[0030]
According to the fifth embodiment, since the dynamic vibration absorber 11 is provided inside the support portion 12a of the pole body 12, vibration can be suppressed without damaging the landscape.
[0031]
Next, a sixth embodiment of the present invention will be described. FIG. 7 is an explanatory view of a pole structure according to a sixth embodiment of the present invention. FIG. 7 (a) is a side view, and FIG. 7 (b) is a partial cutaway of a portion B in FIG. 7 (a). FIG. 7 (c) is a horizontal sectional view of a portion B in FIG. 7 (a). The sixth embodiment differs from the fifth embodiment shown in FIG. 6 in that the cross-sectional shape of the spring member 13 of the dynamic vibration absorber 11 is rectangular instead of circular. The same elements as those shown in FIG. 6 are denoted by the same reference numerals, and redundant description will be omitted.
[0032]
As shown in FIG. 7B, two dynamic vibration absorbers 11 each having a rectangular cross-sectional shape of a spring member 13 are attached to the inner wall of a pole portion 12 a of a pole body 12 by a support member 16. . As shown in FIG. 7C, each of the two dynamic vibration absorbers 11 has a spring member 13 having a rectangular cross section using a damping material, and a weight 14 is attached to one end of the spring member. . The weight 14 is formed in a clip-like shape, and is attached to the spring member 13 with the spring member 13 interposed therebetween. Therefore, the weight 14 can be easily adjusted in position and attached to the spring member 13.
[0033]
According to the sixth embodiment, it is possible to perform vibration suppression in a specific direction by using the spring member 13 having a rectangular cross section. In addition, by appropriately selecting the length of the spring member 13 and the position or mass of the weight 14, the present invention can be easily applied to the pole body 12 having a different natural frequency.
[0034]
Next, a seventh embodiment of the present invention will be described. FIG. 8 is an explanatory view of a pole structure according to a seventh embodiment of the present invention. FIG. 8 (a) is a side view of a state where the pole structure is attached to a pole body 12, and FIG. 8 (b) is FIG. 8) is a partially cut-away vertical sectional view of a portion C, and FIG. 8 (c) is a horizontal sectional view of the portion C of FIG. 8 (a). In the seventh embodiment, the weights 14 of the plurality of dynamic vibration absorbers 11 are arranged in an annular shape, and the adjacent weights 14 arranged in an annular shape are connected by a viscoelastic body 18, and each of the weights 14 The attached spring members 13 are respectively attached to one support member 16 disposed above the weight 14 so as to surround the pole body 12 and constitute a pole structure.
[0035]
As shown in FIG. 8C, the weights 14 of the four dynamic vibration absorbers 11 are formed in an arc shape and arranged in an annular shape. Then, the adjacent arc-shaped weights 14 arranged in an annular shape are joined by the viscoelastic body 18. One end of the spring member 13 is attached to a substantially central portion of each of the weights 14 formed in an arc shape, and as shown in FIG. It is attached to a common support member 16. One support member 16 is attached so as to surround the column 12 a of the pole body 12. As the viscoelastic body 18, for example, a material such as resin or rubber is used.
[0036]
Here, since the arc-shaped weight 14 is suspended by the spring member 13, if the spring member 13 is damaged, the arc-shaped weight 14 may fall off. You may make it connect. In this case, the falling-off prevention member is attached so as not to affect the function of the spring member 13. For example, the fiber member or the chain is slackened to suspend the arc-shaped weight 14. Similarly, a detachment preventing member for preventing detachment of the viscoelastic body 18 provided between adjacent arc-shaped weights 14 arranged in an annular shape may be provided. For example, the arc-shaped weight 14 and the viscoelastic body 18 are covered with a resin, and a coating or a film is wound integrally to form a cover. Also in this case, the function of the viscoelastic body 18 is not affected. Further, as shown in the third embodiment, a plurality of dynamic vibration absorbers 11 may be covered with a protective cover 17 for protection.
[0037]
According to the seventh embodiment, when the pole body 12 resonates due to some external force, even if the vibration vibrates in any direction in the horizontal plane, the dynamic vibration absorber in each vibration direction vibrates. Or the plurality of dynamic vibration absorbers vibrate in a coordinated manner, thereby suppressing the vibration of the pole body 12 in a plurality of vibration modes. In addition, since the four weights 14 are connected in an annular shape by the viscoelastic body 18, when each weight vibrates separately, damping occurs according to the relative speed between the weights. The effect increases. If the viscoelastic body 18 does not require a damping function, a soft material having low damping ability may be used. In the above description, the pole structure is constituted by the four dynamic vibration absorbers 11, but an arbitrary number of dynamic vibration absorbers 11 may be used.
[0038]
Next, an eighth embodiment of the present invention will be described. FIG. 9 is an explanatory view of a pole structure according to an eighth embodiment of the present invention. FIG. 9 (a) is a side view of a state where the pole structure is attached to a pole body 12, and FIG. 9 (b) is FIG. 9) is a partially cutaway vertical cross-sectional view of the D portion, and FIG. 9 (c) is a horizontal cross-sectional view of the D portion of FIG. 9 (a). In the eighth embodiment, the weights 14 of the plurality of dynamic vibration absorbers 11 are arranged in an annular shape, and the adjacent weights 14 arranged in an annular shape are connected by a viscoelastic body 18, and each weight 14 is The attached spring members 13 are attached to two support members 16 disposed above and below the weight 14 so as to surround the periphery of the pole body 12.
[0039]
As shown in FIG. 9C, the eight weights 14 are formed in a clip shape, and commonly hold one end of the two spring members 13. The clip-shaped weights 14 are arranged in an annular shape, and adjacent clip-shaped weights 14 arranged in an annular shape are joined by a viscoelastic body 18. Then, as shown in FIG. 9B, the other ends of the respective spring members 13 are attached to two common support members 16 inclining upward and downward. The two support members 16 are attached so as to surround the column 12 a of the pole body 12.
[0040]
In the above description, eight weights 14 are used, but an arbitrary number of weights 14 may be used. Further, similarly to the seventh embodiment, a falling-off preventing member may be provided alongside the spring member 13, or a separating-preventing member for preventing the viscoelastic body 18 from separating may be provided. good. Further, as shown in the third embodiment, a plurality of dynamic vibration absorbers 11 may be covered with a protective cover 17 for protection.
[0041]
According to the eighth embodiment, when the pole body 12 resonates due to some external force, even if the column portion 12a of the pole body 12 vibrates in any direction in the horizontal plane, the dynamic vibration absorption in the vibration direction The device 11 or the plurality of dynamic vibration absorbers 11 vibrate in a coordinated manner. Therefore, vibration of the plurality of vibration modes of the pole body 12 can be suppressed. Since the spring member 13 of the dynamic vibration absorber 11 is supported by the upper and lower support members 16, it is effective in preventing the dynamic vibration absorber 11 from dropping.
[0042]
Next, a ninth embodiment of the present invention will be described. FIG. 10 is an explanatory view of a pole structure according to a ninth embodiment of the present invention. FIG. 10 (a) is a side view of a state where the pole structure is attached to a pole body 12, and FIG. 10 (b) is FIG. 10) is a partially cut-away vertical sectional view of a portion E, and FIG. 10 (c) is a horizontal sectional view of the portion E of FIG. 10 (a). The ninth embodiment is different from the seventh embodiment shown in FIG. 8 in that a spherical weight 14 is used instead of the arc-shaped weight 14, and the number of the weights is n. The same elements as those of the seventh embodiment shown in FIG. 8 are denoted by the same reference numerals, and duplicate description will be omitted.
[0043]
As shown in FIG. 10C, the n weights 14 are formed in a spherical shape and are arranged in an annular shape. Then, the adjacent arc-shaped weights 14 arranged in an annular shape are joined by the viscoelastic body 18. One end of the spring member 13 is attached to each of the spherical weights 14, and as shown in FIG. 10B, the other end of each spring member 13 is inclined upward to form one common support. It is attached to the member 16. One support member 16 is attached so as to surround the column 12 a of the pole body 12.
[0044]
Also in the case of the ninth embodiment, similarly to the seventh embodiment, a falling-off preventing member may be provided alongside the spring member 13, and a detachment for preventing the detachment of the viscoelastic body 18. A prevention member may be provided. Further, as shown in the third embodiment, a plurality of dynamic vibration absorbers 11 may be covered with a protective cover 17 for protection.
[0045]
According to the ninth embodiment, when the pole body 12 resonates due to some external force, even if the support portion 12a of the pole body 12 vibrates in an arbitrary direction in a horizontal plane, the movement in the vibration direction is By vibrating the vibration absorber 11 or the plurality of dynamic vibration absorbers 11 in a coordinated manner, the vibration of the plurality of vibration modes of the pole body 12 can be suppressed. Further, the n weights 14 allow the n dynamic vibration absorbers 11 to vibrate in the circumferential direction even when torsional vibration occurs in the pole body 12. Therefore, it also has a vibration damping effect on torsional vibration.
[0046]
The pole structure of the present invention is a pole attached to a road or a railroad, for example, a support pole or a telephone pole such as a lighting lamp, a signal lightning display panel, a sign, a camera, a speed measuring device, and the like. The pole structure in is also an object. For example, the present invention can be applied to a pole antenna such as a mobile phone relay antenna installed on the roof of a building or an antenna in a wireless station premises.
[0047]
【The invention's effect】
As described above, according to the present invention, the structure is simple, the natural frequency of the dynamic vibration absorber can be easily adjusted, and has a vibration damping effect for a plurality of vibration modes and arbitrary vibration directions. A pole structure having a dynamic vibration absorber that can be easily installed on various types of existing poles can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a pole structure according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of adjustment of the rotational inertia of the dynamic vibration absorber according to the first embodiment of the present invention.
FIG. 3 is an explanatory diagram of a pole structure according to a second embodiment of the present invention.
FIG. 4 is an explanatory view of a pole structure according to a third embodiment of the present invention.
FIG. 5 is an explanatory view of a pole structure according to a fourth embodiment of the present invention.
FIG. 6 is an explanatory view of a pole structure according to a fifth embodiment of the present invention.
FIG. 7 is an explanatory view of a pole structure according to a sixth embodiment of the present invention.
FIG. 8 is an explanatory view of a pole structure according to a seventh embodiment of the present invention.
FIG. 9 is an explanatory view of a pole structure according to an eighth embodiment of the present invention.
FIG. 10 is an explanatory view of a pole structure according to a ninth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Dynamic vibration absorber, 12 ... Pole main body, 12a ... Prop part, 12b ... Arm part, 13 ... Spring member, 14 ... Weight, 15 ... Adjustment tool, 16 ... Support member, 17 ... Protective cover, 18 ... Viscoelastic body

Claims (11)

道路や鉄道などに併設されるポール本体と、振動を吸振する能力が減衰比で1%以上の高減衰能を有するバネ部材の一方端部に重りが取り付けられた動吸振器と、前記動吸振器のバネ部材の他方端部を前記ポール本体に取り付ける支持部材とを備えたことを特徴とするポール構造物。A pole body attached to a road, a railway, or the like, a dynamic vibration absorber in which a weight is attached to one end of a spring member having a high damping ability with a damping ratio of 1% or more in vibration damping; And a support member for attaching the other end of the spring member of the container to the pole body. 前記動吸振器において、前記重りと前記支持部材との取り付け位置を変化させて前記バネ部材の長さを調整し自己の固有振動数を調節する調整具を備えたことを特徴とする請求項1記載のポール構造物。2. The dynamic vibration absorber according to claim 1, further comprising an adjusting tool that adjusts a length of the spring member by changing a mounting position of the weight and the support member to adjust its own natural frequency. The pole structure as described. 前記動吸振器において、前記重りの質量または回転慣性を変化させて自己の固有振動数を調節することを特徴とする請求項1記載のポール構造物。2. The pole structure according to claim 1, wherein the dynamic vibration absorber adjusts its own natural frequency by changing a mass or a rotational inertia of the weight. 3. 前記動吸振器において、前記バネ部材の断面形状によって振動方向の異なる複数の振動モードに同調させることを特徴とする請求項1記載のポール構造物。The pole structure according to claim 1, wherein the dynamic vibration absorber is tuned to a plurality of vibration modes having different vibration directions depending on a cross-sectional shape of the spring member. 前記動吸振器は、前記ポール本体の支柱部外側またはアーム部外側に1個または複数個取り付けたことを特徴とする請求項1乃至請求項4のいずれか1項記載のポール構造物。The pole structure according to any one of claims 1 to 4, wherein one or a plurality of the dynamic vibration absorbers are attached to a pole portion outside or an arm portion outside of the pole body. 前記動吸振器のバネ部材の一方端の重りがポール本体の外側あるいは内側に向くように放射状に複数個を配置し、放射状の中心側あるいは外周側で複数個のバネ部材の他方端を支持部材で結合し、これら各々の動吸振器のバネ部材が前記ポール本体の支柱部に取り付けたことを特徴とする請求項1乃至請求項4のいずれか1項記載のポール構造物。A plurality of spring members of the dynamic vibration absorber are radially arranged such that a weight at one end faces the outside or inside of the pole body, and the other end of the plurality of spring members is supported at a radial center side or an outer peripheral side. The pole structure according to any one of claims 1 to 4, wherein a spring member of each of the dynamic vibration absorbers is attached to a column of the pole body. 前記動吸振器をポール本体の内部に設けたことを特徴とする請求項1乃至請求項6のいずれか1項記載のポール構造物。The pole structure according to any one of claims 1 to 6, wherein the dynamic vibration absorber is provided inside a pole body. 前記動吸振器の重りが円環状に位置するように複数個の前記動吸振器を配置し、円環状に配置された隣り合う重りを粘弾性体で結合し、各々の重りに取り付けられたバネ部材は、前記ポール本体の周囲を包囲して前記ポール本体に取り付けられた1個ないし複数個の支持部材にそれぞれ取り付けられことを特徴とする請求項1乃至請求項4のいずれか1項記載のポール構造物。A plurality of the dynamic vibration absorbers are arranged so that the weights of the dynamic vibration absorbers are located in an annular shape, adjacent weights arranged in an annular shape are connected by a viscoelastic body, and a spring attached to each weight is provided. The member according to any one of claims 1 to 4, wherein the member surrounds the periphery of the pole body and is attached to one or more support members attached to the pole body. Pole structure. 前記動吸振器の重りが円環状に位置するように複数個の前記動吸振器を配置し、円環状に配置された隣り合う重りを前記バネ部材より柔な部材で結合したことを特徴とする請求項8記載のポール構造物。A plurality of the dynamic vibration absorbers are arranged so that the weight of the dynamic vibration absorber is located in an annular shape, and adjacent weights arranged in an annular shape are connected by a member softer than the spring member. The pole structure according to claim 8. 前記動吸振器の重りは円弧状に形成され、円弧状あるいは球状に形成した複数個の動吸振器の重りを円環状に配置したことを特徴とする請求項8または請求項9記載のポール構造物。10. The pole structure according to claim 8, wherein the weight of the dynamic vibration absorber is formed in an arc shape, and the weights of a plurality of dynamic vibration absorbers formed in an arc shape or a spherical shape are arranged in an annular shape. object. 前記動吸振器において、前記バネ部材よりバネ定数の低い柔な部材を用いて前記バネ部材と共に前記重りをポール本体側に連結したことを特徴とする請求項8または請求項9記載のポール構造物。10. The pole structure according to claim 8, wherein in the dynamic vibration absorber, the weight is connected to the pole body together with the spring member using a soft member having a lower spring constant than the spring member. .
JP2002358897A 2002-12-11 2002-12-11 Pole structure Expired - Fee Related JP3923888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358897A JP3923888B2 (en) 2002-12-11 2002-12-11 Pole structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358897A JP3923888B2 (en) 2002-12-11 2002-12-11 Pole structure

Publications (2)

Publication Number Publication Date
JP2004190314A true JP2004190314A (en) 2004-07-08
JP3923888B2 JP3923888B2 (en) 2007-06-06

Family

ID=32758452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358897A Expired - Fee Related JP3923888B2 (en) 2002-12-11 2002-12-11 Pole structure

Country Status (1)

Country Link
JP (1) JP3923888B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285897A (en) * 2007-05-17 2008-11-27 Jfe Steel Kk Vibration control method and vibration control device for towering structure
JP2010071307A (en) * 2008-09-16 2010-04-02 Oiles Ind Co Ltd Dynamic vibration absorber
BE1018193A3 (en) * 2008-06-20 2010-07-06 Waumans Julien Maria J DEVICE FOR DAMPING THE VIBRATIONS OF A MAST.
JP2015158154A (en) * 2014-02-24 2015-09-03 マツダ株式会社 Engine piston structure
JP2016505778A (en) * 2012-12-04 2016-02-25 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Wind turbine generator with damping module or device, structural segment for structure, and damping module
KR101937636B1 (en) * 2018-08-28 2019-04-09 주식회사 태평양 Pillar decreased vibration
JP7122488B1 (en) * 2022-06-26 2022-08-19 山崎 明美 Pole damping device
ES2955376A1 (en) * 2022-04-26 2023-11-30 Setga S L U AUXILIARY DEVICE TO INCREASE DAMPING IN LIGHT MASTS (Machine-translation by Google Translate, not legally binding)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242654U (en) * 1985-08-30 1987-03-14
JPS6249038U (en) * 1985-09-12 1987-03-26
JPH04151042A (en) * 1990-10-15 1992-05-25 Nkk Corp Vibrationproof type street lamp
JP2002129775A (en) * 2000-10-24 2002-05-09 Matsushita Electric Works Ltd Pole-shaped structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242654U (en) * 1985-08-30 1987-03-14
JPS6249038U (en) * 1985-09-12 1987-03-26
JPH04151042A (en) * 1990-10-15 1992-05-25 Nkk Corp Vibrationproof type street lamp
JP2002129775A (en) * 2000-10-24 2002-05-09 Matsushita Electric Works Ltd Pole-shaped structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285897A (en) * 2007-05-17 2008-11-27 Jfe Steel Kk Vibration control method and vibration control device for towering structure
BE1018193A3 (en) * 2008-06-20 2010-07-06 Waumans Julien Maria J DEVICE FOR DAMPING THE VIBRATIONS OF A MAST.
JP2010071307A (en) * 2008-09-16 2010-04-02 Oiles Ind Co Ltd Dynamic vibration absorber
JP2016505778A (en) * 2012-12-04 2016-02-25 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Wind turbine generator with damping module or device, structural segment for structure, and damping module
JP2015158154A (en) * 2014-02-24 2015-09-03 マツダ株式会社 Engine piston structure
KR101937636B1 (en) * 2018-08-28 2019-04-09 주식회사 태평양 Pillar decreased vibration
ES2955376A1 (en) * 2022-04-26 2023-11-30 Setga S L U AUXILIARY DEVICE TO INCREASE DAMPING IN LIGHT MASTS (Machine-translation by Google Translate, not legally binding)
JP7122488B1 (en) * 2022-06-26 2022-08-19 山崎 明美 Pole damping device

Also Published As

Publication number Publication date
JP3923888B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
CN101709567B (en) Mass damping device of rigid connection space lever of stay cable
US7165870B2 (en) Vibration dampening device for light fixtures
KR101518810B1 (en) Switch gear having a earthquake resistant device
JP2004190314A (en) Pole structure
JP5130785B2 (en) Damping method and apparatus for tower structure
JP2001349094A (en) Synchronous pendulum type vibration control device
CN111130040B (en) Composite spacing ring-nutation damper for controlling integral galloping of lead
JP5544380B2 (en) Vibration control device for column and column
JP2003227540A (en) Vibration isolating device
JP2006250177A (en) Vibration control device
CN106677053B (en) A kind of girder for steel box girder bridge
JPH0228021B2 (en) SHINDOKYUSHUSOCHI
KR200242581Y1 (en) A shock absorbing supporter in truss type bridges with steel structure
JP3544756B2 (en) Elasto-plastic damper device
JP2003166365A (en) Building damper
JPS61256036A (en) Dynamic vibration absorber
JP2503356Y2 (en) Vibration control device for structures
JPH07243473A (en) Vibration damping device
JPH09317237A (en) Device and method for isolating vibration of structure
JPH1182613A (en) Vibration damping device for pendant luminaire
JP2000130496A (en) Vibration dumping device for spherical tank
JPH09310428A (en) Damping device for pole
JPH1025141A (en) Aggregate and damping concrete
JP2002129775A (en) Pole-shaped structure
JP2003201772A (en) Vibration absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

LAPS Cancellation because of no payment of annual fees