JP4883740B2 - Vibration control device - Google Patents

Vibration control device Download PDF

Info

Publication number
JP4883740B2
JP4883740B2 JP2001227989A JP2001227989A JP4883740B2 JP 4883740 B2 JP4883740 B2 JP 4883740B2 JP 2001227989 A JP2001227989 A JP 2001227989A JP 2001227989 A JP2001227989 A JP 2001227989A JP 4883740 B2 JP4883740 B2 JP 4883740B2
Authority
JP
Japan
Prior art keywords
cable
vibration
rubber damper
flange
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001227989A
Other languages
Japanese (ja)
Other versions
JP2003041513A (en
Inventor
達治 松本
一裕 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001227989A priority Critical patent/JP4883740B2/en
Publication of JP2003041513A publication Critical patent/JP2003041513A/en
Application granted granted Critical
Publication of JP4883740B2 publication Critical patent/JP4883740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Road Signs Or Road Markings (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、斜張橋ケーブル、並行ケーブル、吊り橋ケーブル、ポール、支柱、街灯、道路灯、信号機、避雷針、煙突、その他の構造物における制振装置に関するものである。
【0002】
【従来の技術】
以下、斜張橋に用いる斜張橋ケーブルを被制振部材とするケーブルの制振装置を例に従来技術を説明する。図11(a)は斜張橋の概略を示したものであって、同図で1は橋桁、2は支塔、3は斜張橋ケーブル、4はケーブル制振装置である。ケーブル制振装置4は、風や走行車両などの影響による斜張橋ケーブル3の振動を減衰させ、斜張橋ケーブル3に掛かる負荷を緩和して、斜張橋ケーブル3の破損を防止するものである。
【0003】
このケーブル制振装置4は、図11(b)(c)に示すように、橋桁1に取り付けたケーブル定着部11の近傍において、粘弾性体の一種である減衰性を有するゴムからなるゴムダンパー12を斜張橋ケーブル3の周囲に複数個等配状態で配設し、ゴムダンパー12の一端をケーブル定着部11側に取り付け、他端を斜張橋ケーブル3側に固定したもので、雨水や紫外線を遮蔽するためカバー13で覆ってある。ゴムダンパー12の取り付けは、図11(d)に示すように、ゴムダンパー12の一端に接着した鋼板製の取付板14を、ケーブル定着部11の上端の固定リング15に固着したフランジ16に取り付け、ゴムダンパー12の他端に接着した鋼板製の取付板17を斜張橋ケーブル3にクランプリング18で固定したホルダ19に取り付けている。
【0004】
このケーブル制振装置4によれば、風などの影響により振動する斜張橋ケーブル3の振動エネルギーを受けてゴムダンパー12がせん断方向に弾性変形し、そのせん断方向の反力で振動を減衰させて斜張橋ケーブル3の振動を抑制する仕組みになっている。
【0005】
上記の制振装置は、振動のエネルギーを受けてせん断方向に変形するゴムダンパー12のせん断方向の反力により振動を減衰させるものである。一般に同一材料で作られた同一断面積のゴム体の場合、引張方向の弾性係数である縦弾性係数E(σ/ε)と、せん断方向の弾性係数である横弾性係数G(τ/γ)との比(E:G)は、約3:1の関係にある。このことから、一般のゴム体は、同じ値の応力を引張(圧縮)方向に与えた場合とせん断方向に与えた場合とでは、せん断方向に応力を与えた場合の方がより大きく変形する性質がある。換言すれば、一般のゴム体は引張(圧縮)方向によりもせん断方向の方が軟らかい性質がある。
【0006】
このため、上記の制振装置4のように、斜張橋ケーブル3の半径方向の変位に対してゴムダンパー12がせん断方向に弾性変形するようにゴムダンパー12を配設している。
【0007】
しかし、ゴムダンパー12のせん断歪と、せん断歪を受けたときの反力との関係は、図12に示すように、ゴムダンパー12が破断するまでほぼ線形関係にあるので、例えば、設計時に想定した力よりも異常に大きな力が斜張橋ケーブル3に掛かった場合に、せん断歪に伴う反力を十分に発揮し得ないまま、ゴムダンパー12が弾性変形域を越えて破損してしまう可能性がある。
【0008】
【発明が解決しようとする課題】
そこで、本出願人は、制振部材の形状について種々検討した結果、先に、ケーブルの軸線に沿った縦断面形状が、頂部から上下に一対の二股状に延びる斜辺部を有するV字状の制振部材、円弧状の頂部から一対の対称形状の円弧状部が延び、かつそれら円弧状部の端部を結合する平坦部を有するアルファベットのD字状の制振部材、頂部から一対の円弧状部が延び、かつそれら円弧状部の他端部が結合された底部を有し、外形が太鼓状で内部にラグビーボール状の孔を有する制振部材などを用いる制振装置を提案した。
【0009】
本出願人の提案に係る上記の制振装置は、従来の断面形状が円形状のゴムダンパーを用いる制振装置に比較して、初期反力が高く、圧縮変形に対する余裕が大きく、優れた制振性能を有するものであるが、強いて難点を挙げれば、低歪領域において非線形性が強いため、ばね定数の予測性に弱点があった。また、制振部材の圧縮方向に方向性があるため、圧縮方向により制振特性が異なるという問題点があった。
【0010】
そこで、本発明は、制振性が高いことはもちろんのこと、従来よりも大きい圧縮(引張)応力に対して減衰域を有し、かつ、低歪領域から広い歪領域で一定のばね定数を有する制振部材を備え、設計・取り扱いが容易な制振装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項1に記載の制振装置は、被制振部材の外周に、振動のエネルギーを受けてせん断方向に弾性変形し、そのせん断方向の反力で振動を減衰させるゴムダンパーを配置し、該ゴムダンパーを内包して支持するダンパーハウジングを備える制振装置において、前記ゴムダンパーと前記被制振部材とによって囲まれる空間部を有し、前記ゴムダンパーは前記被制振部材とダンパーハウジング間に延在する方向に形状中心軸を有して、該中心軸に対して回転対称の形状を有すると共に、前記ゴムダンパーの内面は連続した曲面部を有することを特徴とするものである。
【0012】
ここで、上記の「空間部」は、制振部材の変形を容易にするもので、その断面形状は、円弧形状が好ましいそのような形状によれば、圧縮歪を受ける制振部材の側と反対側に配置された制振部材に働く引張力に対して変形の余裕が大きくなり、変形の自由度が高い間は、圧縮応力対歪特性の直線性も高い。上記の制振装置によれば、広い範囲で略一定なばね定数が得られ、応力に対する制振部材の変形の直線性が高くなり、被制振部材の振動を効果的に抑制することができる。
【0013】
上記の制振装置によれば、ゴムダンパーの形状が応力を受けたときに空間部によって弾性的に変形するとともに、前記被制振部材とダンパーハウジング間に延在する方向に形状中心軸を有して、該中心軸に対して回転対称の形状を有するように構成されていることによって、比較的小さい応力負荷時から大きな応力負荷時にわたる広い領域で、ゴムダンパーのばね定数が線形に近くなり、応力に対する変形量が一定となり、安定した取り付け施行が可能になるという、取り付け上の優位性も大きくなる。
【0014】
請求項2に記載の制振装置は、前記ゴムダンパーが、周方向に連続した円錐台形筒状で、かつ、平面状の頂部を有することを特徴とするものである。
【0015】
上記の制振装置によれば、ゴムダンパーが周方向に連続した円錐台形筒状であるので、従来の横断面形状が矩形状のゴムダンパーに比較して、被制振部材に対するいずれの方向(軸線に垂直な面内の角度)からの応力に対しても、一定の制振特性が得られる。
【0018】
【発明の実施の形態】
以下、斜張橋ケーブルを被制振部材とする本発明の実施形態に係る制振装置30を図面に基づいて説明する。
【0019】
図1は、被制振部材としての斜張橋ケーブル3に取り付けられた制振装置30の軸線方向の縦断面図であり、図2(a)は、図1における軸線方向に垂直なA−A線に沿った横断面図である。図1および図2(a)において、31は斜張橋ケーブル3に固定されたケーブルフランジ、32は制振部材としてのゴムダンパー、33は内周面33aがケーブルフランジ31の外周面31aに対向するように配設した多角筒形状のダンパーハウジング、34はダンパーハウジング33の変形を防ぐためにダンパーハウジング33の外周面に装着した拘束リング、35は調心フランジ、36は定着フランジ、37は定着フランジ36を橋桁1に締結するアンカーボルト、38は橋桁1に斜張橋ケーブル3を相通させるためのケーブル挿通管である。
【0020】
前記ケーブルフランジ31は、斜張橋ケーブル3に固定したフランジ部材である。ダンパーハウジング33は、内周面33aがケーブルフランジ31の外周面31aに対向するように配置した有底多角筒状(図示例は8角形)の部材で、ダンパーハウジング33の底部には、斜張橋ケーブル3が挿通する穴33bが形成してある。
【0021】
前記調心フランジ35と定着フランジ36は、半径方向および周方向に位置を調整してダンパ−ハウジング33を橋桁1に取り付けるものであり、斜張橋ケーブル3の取り付けを容易にするとともに、初期状態で斜張橋ケーブル3に掛かる負荷を低減させるものである。
【0022】
定着フランジ36は、図3(a)〜図3(c)に示すように、直径に沿って半分に分断した一組の円筒形状の部材であって、軸方向の両端にフランジ板36a,36bを備えるものである。橋桁1側のフランジ板36aは、周方向に長穴36cが形成され、この長穴36cを橋桁1に取り付けたアンカーボルト37に挿通して締結するものであり、ダンパーハウジング33の取り付け位置を橋桁1に対して周方向に調節するものである。この定着フランジ36の調心フランジ35側のフランジ板36bは、外形に対して偏心した位置aを中心として穴36dが形成してあり、この穴36dに沿うように所定の位置に植設した複数個の調心フランジ取付用のスタッドボルト36eを備えている。
【0023】
定着フランジ36は、図3(c)の二点鎖線3`で示すように、斜張橋ケーブル3がケーブル挿通管38の中心の位置からずれた位置にある場合、橋桁1側の周方向に長穴36cが形成してあることにより、定着フランジ36を所定量回転させて調心フランジ35側のフランジ板36bに形成した穴36dの中心を斜張橋ケーブル3の偏心の向きに合わせてアンカーボルト37で橋桁1に締結する。
【0024】
調心フランジ35は、図4(a)、図4(b)に示すように、直径に沿って半分に分割した一組の円板状の部材で、斜張橋ケーブル3を充分な余裕を持って遊嵌させることができる穴35aと、前記定着フランジ36のスタッドボルト36eをスライド可能に嵌める長穴35bとを有する。この長穴35bは定着フランジ36の穴36dの偏心方向に整列させて形成したものである。調心フランジ35は、その長穴35dに定着フランジ36のスタッドボルト36eを挿通し、斜張橋ケーブル3が調心フランジ35の中心となるように位置を合わせてナットで締結する。
【0025】
前記ゴムダンパー32は、(例えば、損失係数tanδが0.30よりも大きな)高減衰性を有する高分子弾性材からなるゴム製の制振部材であって、図5(a)、図5(b)に示すように、全体として円錐台形筒状体で、小傾斜円錘状部32aと、それに続く大傾斜円錐状部32bと、平面状の頂部32cと、大傾斜円錐状部32bの下端から外方に延びるフランジ部32dと、このフランジ部32dの上面の円周方向等間隔位置に鋼板製の取付板32gを収容するための複数個の凹部32eと、このフランジ部32dをケーブルフランジ31の外周面31aに取付ボルトで取り付けるための取付孔32fとを有する。前記取付板32gにも、フランジ部32dの凹部32eの取付孔32fと一致する位置に取付孔32hを有する。
【0026】
詳しくは、ゴムダンパー32の断面形状は、図5(b)に示すように、大傾斜円錐筒状部32bおよび平面状の頂部32cの内面において、連続した曲面部32iを有する空間部32jを有している。
【0027】
図示例のゴムダンパー32は、フランジ部32dの上面側(円錐筒状部32a,32b側)の凹部32eに取付板32gを収納して、取付板32gの上からボルトでフランジ部32dをケーブルフランジ31の外周面31aに取り付けるようにしたものである。このため、ケーブルフランジ31の外周面31aは、図2(a)に示すように、四角形状または多角形状の平面部を有するように形成することが望ましい。
【0028】
ゴムダンパー32の反対側、すなわち、平面状の頂部32c側は、ダンパーハウジング33の内周面33aに直接当接するか接着剤により固定接続してある。このため、ダンパーハウジング33の内周面33aは、図2(a)に示すように、多角形状の平面部を有するように形成することが望ましい。
【0029】
これにより、このゴムダンパー32は、図6(a)に示す無負荷状態から、図6(b)に示すように、斜張橋ケーブル3が半径方向に振動して圧縮される場合、斜張橋ケーブル3の振動エネルギーとダンパーハウジング33の反力を受けて、円錐筒状部32bが弾性変形して外側に膨らむようになる。このゴムダンパー32は、図6(c)に示すように、円錐筒状部32bに囲まれた空間32jがほとんど無くなる程度まで円錐筒状部32bの弾性変形が進むから、斜張橋ケーブル3の半径方向において約60%の圧縮歪に相当する圧縮変形にも十分に耐えることができ、斜張橋ケーブル3のより大きな変位を吸収することができる。
【0030】
図7は、斜張橋ケーブル3の半径方向の圧縮量とその反力との関係を示す。従来の断面形状がV字状のゴムダンパーが、図7の鎖線Bで示すように、約50%の圧縮変形が限界で,かつ、圧縮量が0〜10%の狭い範囲内で直線性を有するのに対して、このゴムダンパー32においては、図7の実線Aで示すように、約60%の圧縮変形が可能で、かつ、圧縮量が0〜35%の広い範囲で直線性を有し、優れた直線性を有する。
【0031】
すなわち、このゴムダンパー32は、斜張橋ケーブル3の振動によって0〜20%程度圧縮歪が生じるが、ゴムの減衰能力内で十分に斜張橋ケーブル3の振動エネルギーを吸収することができる。また、弾性圧縮変形可能領域においても優れおり、優れた制振作用を発揮することができる。
【0032】
すなわち、この制振装置30は、ゴムダンパー32が通常の斜張橋ケーブル3の振動を変形におけるその減衰域内で吸収して十分な耐久性と優れた制振機能を発揮することができるとともに、斜張橋ケーブル3に異常に大きな変位が生じた場合でも、半径方向の圧縮変形に対する許容量が大きく、構造的に破損する可能性が低く、かつ、斜張橋ケーブル3の異常な変位に対してはより大きな反力を発揮して斜張橋ケーブル3を拘束するように作用することができる。
【0033】
また、上記のゴムダンパー32は、円錐台形筒状であるため回転対称形状であり、ケーブルフランジ31およびダンパーハウジング33に対して取り付ける際に、従来の矩形状ダンパーのように、その取り付け方向を考慮しなくてもよくなり、取り付け作業性が著しく向上する。
【0034】
しかも、上記のゴムダンパー32は、前述のとおり、円錐台形筒状であるため回転対称形状であり、その中心軸に垂直な方向であれば、図8に示すように、どの方向からの圧縮力に対しても、同様の変形をするので、圧縮に対する方向性がなくなる。
【0035】
以上、本発明の一実施形態を説明したが、上記の実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態では、ゴムダンパー32は、フランジ部32dの上面側(円錐筒状部32a,32b側)に鋼板製の取付板32gを配置する場合について説明したが、フランジ部32dの下面側(円錐筒状部32a,32b側と反対側)に取付板32gを配置するようにしてもよい。
【0036】
また、図9に示すゴムダンパー40のように、フランジ部40d内に取付板40gを埋め込むようにしてもよい。このようにすれば、ゴムダンパー40を取り付ける場合に、ゴムダンパー40と取付板40gが分離することがないので、取付作業性が一層向上する。
【0037】
さらにまた、上記の上記実施形態では、平面状の頂部32c(40c)を設けるとともに、ゴムダンパー32(40)の内面を円弧状の曲面部32j(40j)に形成する場合について説明したが、図10に示すゴムダンパー41のように、頂部41cに開口部を有するとともに、内面を円筒状部41kおよび円錐状部41mとによる多角形状に形成してもよい。このようなゴムダンパー41において、円環状の頂部41cに鋼板製の取付板41nを取り付けまたは埋め込むようにしてもよい。
【0038】
また、上記図1および図2(a)に示す実施形態の場合は、ゴムダンパー32を、そのフランジ部32dをケーブルフランジ31側の外周面31a側に、その平面状の頂部32cをダンパーハウジング33の内周面33a側に配置する場合について説明したが、上記と逆に、図2(b)に示すように、そのフランジ部32d側をダンパーハウジング33の内周面33a側に、その平板状の頂部32c側をケーブルフランジ31の外周面31a側に配置するようにしてもよい。
【0039】
また、上記実施形態では、ゴムダンパー32(40,41)を斜張橋ケーブル3の周囲に4個配置する場合について説明したが、その配置数は、それ以外の複数個であってもよい。ただし、斜張橋ケーブル3の直径方向の両側に、ゴムダンパーが配置されるようにする。そのようにすることによって、一方側のゴムダンパーが圧縮応力を受けると、他方側のゴムダンパーが引張応力を受けて、バランスがとれた制振作用を営む。
【0040】
さらに、上記の実施形態では、斜張橋ケーブルの制振装置について説明したが、斜張橋ケーブルに限定されず、吊り橋ケーブル、並列ケーブル、ポール、支柱、街灯、道路灯、信号機、避雷針、煙突、その他の振動を伴う構造物の制振装置として広く適用することができる。
【0041】
【発明の効果】
本発明の制振装置は、被制振部材の外周に、振動のエネルギーを受けてせん断方向に弾性変形し、そのせん断方向の反力で振動を減衰させるゴムダンパーを配置し、該ゴムダンパーを内包して支持するダンパーハウジングを備える制振装置において、前記ゴムダンパーと前記被制振部材とによって囲まれる空間部を有し、前記ゴムダンパーは前記被制振部材とダンパーハウジング間に延在する方向に形状中心軸を有して、該中心軸に対して回転対称の形状を有すると共に、前記ゴムダンパーの内面は連続した曲面部を有するものであるから、従来の制振装置に比較して、圧縮量に対する反力の直線性が改善されて、低歪領域から広い歪領域で、ばね定数が一定で、制振装置の設計・取り扱いが容易になる。また、その取り付けの際の方向性がなくなるので、取付作業性が著しく向上する。さらに、いずれの方向からの応力に対しても同一の変形をする。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る制振装置の軸線に沿った縦断面図、
【図2】(a)は図1の制振装置における軸線に垂直なA−A線に沿った横断面図、
(b)は本発明の他の実施形態に係る制振装置の軸線に垂直な横断面図である。
【図3】(a)は本発明の定着フランジの底面図、
(b)は定着フランジの側面図、
(c)は定着フランジの平面図である。
【図4】(a)は本発明の調心フランジの側面図、
(b)は調心フランジの平面図である。
【図5】(a)は本発明の一実施形態に係る制振装置における制振部材の拡大斜視図、
(b)は(a)の制振部材の拡大縦断面図である。
【図6】(a)は本発明の一実施形態に係る制振装置の制振部材が圧縮されていない状態を示す拡大縦断面図、
(b)は制振部材が途中まで圧縮された状態を示す拡大縦断面図、
(c)は制振部材が略完全に圧縮された状態を示す拡大縦断面図である。
【図7】本発明の一実施形態に係る制振装置の圧縮量と反力の関係を、従来の制振装置とともに示す図である。
【図8】本発明の一実施形態に係る制振装置の制振部材に対する応力の方向性がないことを示す制振部材の平面図である。
【図9】本発明の他の実施形態に係る制振部材の拡大縦断面図である。
【図10】本発明のさらに他の実施形態に係る制振部材の拡大縦断面図である。
【図11】(a)は一般的な斜張橋ケーブルの概略図、
(b)は従来の斜張橋ケーブルの制振装置の側断面図、
(c)は(b)の制振装置の横断面図、
(d)は制振部材部分の拡大縦断面図である。
【図12】従来の制振部材のせん断歪と反力との関係を示す図である。
【符号の説明】
3 斜張橋ケーブル
30 制振装置
31 ケーブルフランジ
32,40,41 制振部材(ゴムダンパー)
32a,40a,41a 小傾斜円錐状部
32b,40b,41b 大傾斜円錐状部
32c,40b,41c 頂部
32d,40d,41d フランジ部
32g,40g,41g,41n 取付板
32i,40i 曲面部
32j,40j,41j 空間部
33 ダンパーハウジング
34 拘束リング
35 調心フランジ
36 定着フランジ
41k 円筒状部
41m 円錐状部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration control device for cable-stayed bridge cables, parallel cables, suspension bridge cables, poles, columns, street lights, road lights, traffic lights, lightning rods, chimneys, and other structures.
[0002]
[Prior art]
Hereinafter, the prior art will be described by taking as an example a cable damping device using a cable-stayed bridge cable used for a cable-stayed bridge as a damping member. FIG. 11A shows an outline of a cable-stayed bridge, in which 1 is a bridge girder, 2 is a tower, 3 is a cable-stayed bridge cable, and 4 is a cable damping device. The cable damping device 4 attenuates the vibration of the cable-stayed bridge cable 3 due to the influence of wind, traveling vehicles, etc., reduces the load applied to the cable-stayed bridge cable 3, and prevents the cable-stayed bridge cable 3 from being damaged. It is.
[0003]
As shown in FIGS. 11 (b) and 11 (c), the cable damping device 4 is a rubber damper made of rubber having a damping property, which is a kind of viscoelastic body, in the vicinity of the cable fixing portion 11 attached to the bridge girder 1. 12 is arranged around the cable stayed bridge cable 3 in a uniform manner, one end of the rubber damper 12 is attached to the cable fixing unit 11 side, and the other end is fixed to the cable stayed bridge cable 3 side. And is covered with a cover 13 to shield ultraviolet rays. As shown in FIG. 11 (d), the rubber damper 12 is attached by attaching a steel plate attachment plate 14 bonded to one end of the rubber damper 12 to a flange 16 fixed to the fixing ring 15 at the upper end of the cable fixing portion 11. A steel plate attachment plate 17 bonded to the other end of the rubber damper 12 is attached to a holder 19 fixed to the cable-stayed bridge cable 3 with a clamp ring 18.
[0004]
According to this cable damping device 4, the rubber damper 12 is elastically deformed in the shear direction by receiving the vibration energy of the cable-stayed bridge cable 3 that vibrates due to the influence of wind and the like, and the vibration is attenuated by the reaction force in the shear direction. Thus, the vibration of the cable stayed bridge cable 3 is suppressed.
[0005]
The above vibration damping device attenuates vibrations by the reaction force in the shearing direction of the rubber damper 12 that receives vibration energy and deforms in the shearing direction. In general, in the case of a rubber body made of the same material and having the same cross-sectional area, the longitudinal elastic modulus E (σ / ε) that is the elastic modulus in the tensile direction and the transverse elastic modulus G (τ / γ) that is the elastic modulus in the shear direction. The ratio (E: G) is approximately 3: 1. From this, general rubber bodies are more deformed when the same value of stress is applied in the tension (compression) direction and when the stress is applied in the shear direction. There is. In other words, a general rubber body has a property that the shear direction is softer than the tension (compression) direction.
[0006]
For this reason, the rubber damper 12 is disposed so that the rubber damper 12 is elastically deformed in the shearing direction with respect to the radial displacement of the cable-stayed bridge cable 3 as in the vibration damping device 4 described above.
[0007]
However, since the relationship between the shear strain of the rubber damper 12 and the reaction force when subjected to the shear strain is almost linear until the rubber damper 12 breaks, as shown in FIG. When an abnormally large force is applied to the cable-stayed bridge cable 3, the rubber damper 12 may be damaged beyond the elastic deformation region without sufficiently exerting the reaction force accompanying the shear strain. There is sex.
[0008]
[Problems to be solved by the invention]
Therefore, as a result of various studies on the shape of the vibration damping member, the present applicant has previously found that the vertical cross-sectional shape along the axis of the cable has a V-shape having a hypotenuse that extends vertically from the top to a pair of two forks. A damping member, an alphabetic D-shaped damping member having a flat portion that extends from the arcuate top to a pair of symmetrical arcuate parts and that joins the ends of the arcuate parts, a pair of circles from the apex Proposed a damping device using a damping member having an arc-shaped portion extending, a bottom portion to which the other end portions of the arc-shaped portions are coupled, a drum-shaped outer shape, and a rugby ball-shaped hole inside.
[0009]
The above-described vibration damping device proposed by the present applicant has an excellent initial reaction force and a large margin for compressive deformation as compared with a conventional vibration damping device using a rubber damper having a circular cross section. Although it has vibration performance, if it is difficult to give a strong point, the non-linearity is strong in the low strain region, so there is a weak point in the predictability of the spring constant. In addition, since the direction of compression of the damping member is directional, there is a problem that the damping characteristic varies depending on the compression direction.
[0010]
Therefore, the present invention not only has high vibration damping properties, but also has a damping region for compressive (tensile) stress that is larger than the conventional one, and a constant spring constant in a wide strain region from a low strain region. An object of the present invention is to provide a vibration damping device that includes a vibration damping member and that is easy to design and handle.
[0011]
[Means for Solving the Problems]
The vibration damping device according to claim 1 is provided with a rubber damper that receives vibration energy and elastically deforms in a shear direction on the outer periphery of the vibration-damped member, and attenuates the vibration by a reaction force in the shear direction. in the vibration damping device comprising a damper housing for supporting the enclosing rubber damper, a space portion surrounded by said rubber damper and the object to be vibration damping member, the rubber damper, between the object vibration damper and the damper housing have the shape central axis in a direction extending, which has a rotationally symmetric shape with respect to the central axis, an inner surface of the rubber damper is characterized in that have a continuous curved surface portion.
[0012]
Here, the above-mentioned “space part” facilitates the deformation of the damping member, and the cross-sectional shape thereof is preferably an arc shape . According to such a shape, there is a large deformation margin with respect to the tensile force acting on the vibration damping member disposed on the side opposite to the vibration damping member that receives compressive strain, and while the degree of freedom of deformation is high, The linearity of compressive stress versus strain characteristics is also high. According to the above damping device, a substantially constant spring constant can be obtained over a wide range, the linearity of deformation of the damping member with respect to stress is increased, and vibration of the damping member can be effectively suppressed. .
[0013]
According to the above vibration damping device, the shape of the rubber damper is elastically deformed by the space when stress is applied, and has a shape central axis in a direction extending between the vibration-damped member and the damper housing. In addition, by being configured to have a rotationally symmetric shape with respect to the central axis, the rubber damper spring constant becomes nearly linear in a wide range from a relatively small stress load to a large stress load. The amount of deformation with respect to the stress is constant, and the mounting superiority that enables stable mounting can be increased.
[0014]
The vibration damping device according to a second aspect is characterized in that the rubber damper has a truncated cone shape continuous in the circumferential direction and has a flat top portion.
[0015]
According to the above vibration damping device, since the rubber damper is in the shape of a truncated cone that is continuous in the circumferential direction, any direction relative to the vibration- damped member (as compared to a rubber damper having a rectangular cross-sectional shape in the past) A certain damping characteristic can be obtained even with respect to stress from an angle in a plane perpendicular to the axis.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a vibration damping device 30 according to an embodiment of the present invention using a cable-stayed bridge cable as a vibration-damped member will be described with reference to the drawings.
[0019]
FIG. 1 is a longitudinal sectional view in the axial direction of a vibration damping device 30 attached to a cable-stayed bridge cable 3 as a vibration-damped member, and FIG. 2A is a cross-sectional view taken along line A- perpendicular to the axial direction in FIG. It is a cross-sectional view along the A line. 1 and 2A, 31 is a cable flange fixed to the cable-stayed bridge cable 3, 32 is a rubber damper as a damping member, and 33 is an inner peripheral surface 33a opposite to the outer peripheral surface 31a of the cable flange 31. A damper housing 34 having a polygonal cylinder shape arranged so as to prevent deformation of the damper housing 33, a restraining ring mounted on the outer peripheral surface of the damper housing 33, 35 a centering flange, 36 a fixing flange, and 37 a fixing flange An anchor bolt for fastening 36 to the bridge girder 1 and a cable insertion pipe 38 for allowing the cable stay 1 to pass the cable-stayed bridge cable 3 to each other.
[0020]
The cable flange 31 is a flange member fixed to the cable-stayed bridge cable 3. The damper housing 33 is a bottomed polygonal cylindrical member (octagonal in the illustrated example) disposed so that the inner peripheral surface 33 a faces the outer peripheral surface 31 a of the cable flange 31. A hole 33b through which the bridge cable 3 is inserted is formed.
[0021]
The aligning flange 35 and the fixing flange 36 are for adjusting the positions in the radial direction and the circumferential direction to attach the damper housing 33 to the bridge girder 1. The load applied to the cable-stayed bridge cable 3 is reduced.
[0022]
As shown in FIGS. 3A to 3C, the fixing flange 36 is a set of cylindrical members divided in half along the diameter, and flange plates 36a and 36b are provided at both ends in the axial direction. Is provided. The flange plate 36a on the bridge girder 1 side is formed with a long hole 36c in the circumferential direction, and the long hole 36c is inserted and fastened to an anchor bolt 37 attached to the bridge girder 1. The mounting position of the damper housing 33 is set as the bridge girder. 1 is adjusted in the circumferential direction. A flange plate 36b on the alignment flange 35 side of the fixing flange 36 is formed with a hole 36d centering on a position a decentered with respect to the outer shape, and a plurality of them are planted at predetermined positions along the hole 36d. A stud bolt 36e for mounting the centering flange is provided.
[0023]
Fixing flange 36, as indicated by the two-dot chain line 3 'in FIG. 3 (c), when in the position in which stayed bridge cable 3 is shifted from the position of the center of the cable insertion tube 38, in the circumferential direction of the bridge girder 1 side Since the elongated hole 36c is formed, the fixing flange 36 is rotated by a predetermined amount, and the center of the hole 36d formed in the flange plate 36b on the aligning flange 35 side is aligned with the eccentric direction of the cable-stayed bridge cable 3 to be anchored. Fasten to bridge girder 1 with bolts 37.
[0024]
As shown in FIGS. 4A and 4B, the aligning flange 35 is a set of disk-shaped members divided in half along the diameter, and allows the cable-stayed bridge cable 3 to have a sufficient margin. It has a hole 35a that can be loosely fitted and a long hole 35b in which the stud bolt 36e of the fixing flange 36 is slidably fitted. The elongated hole 35b is formed by aligning in the eccentric direction of the hole 36d of the fixing flange 36. The aligning flange 35 is inserted with the stud bolt 36e of the fixing flange 36 into the elongated hole 35d, and is positioned and fastened with a nut so that the cable-stayed bridge cable 3 becomes the center of the aligning flange 35.
[0025]
The rubber damper 32 is a rubber damping member made of a polymer elastic material having a high damping property (for example, the loss coefficient tan δ is larger than 0.30). As shown in b), the whole is a truncated cone-shaped cylindrical body having a small inclined conical portion 32a, a large inclined conical portion 32b, a planar top portion 32c, and a lower end of the large inclined conical portion 32b. A flange 32d extending outward from the flange 32d, a plurality of recesses 32e for accommodating steel plate mounting plates 32g at equal circumferential positions on the upper surface of the flange 32d, and the flange 32d connected to the cable flange 31. A mounting hole 32f for mounting with a mounting bolt on the outer peripheral surface 31a. The mounting plate 32g also has a mounting hole 32h at a position coinciding with the mounting hole 32f of the recess 32e of the flange portion 32d.
[0026]
Specifically, as shown in FIG. 5B, the cross-sectional shape of the rubber damper 32 has a space portion 32j having a continuous curved surface portion 32i on the inner surfaces of the large inclined conical cylindrical portion 32b and the flat top portion 32c. is doing.
[0027]
In the illustrated rubber damper 32, the mounting plate 32g is accommodated in the recess 32e on the upper surface side (conical cylindrical portions 32a, 32b side) of the flange portion 32d, and the flange portion 32d is cable flanged with bolts from above the mounting plate 32g. 31 is attached to the outer peripheral surface 31a. For this reason, it is desirable to form the outer peripheral surface 31a of the cable flange 31 so as to have a rectangular or polygonal flat portion as shown in FIG.
[0028]
The opposite side of the rubber damper 32, that is, the flat top portion 32c side, is in direct contact with the inner peripheral surface 33a of the damper housing 33 or fixedly connected with an adhesive. For this reason, it is desirable to form the inner peripheral surface 33a of the damper housing 33 so as to have a polygonal plane portion as shown in FIG.
[0029]
As a result, the rubber damper 32 can be used in the case where the cable stayed bridge cable 3 is compressed by vibration in the radial direction as shown in FIG. 6B from the no-load state shown in FIG. Under the vibration energy of the bridge cable 3 and the reaction force of the damper housing 33, the conical cylindrical portion 32b is elastically deformed and bulges outward. As shown in FIG. 6C, the rubber damper 32 is elastically deformed to the extent that the space 32j surrounded by the conical tubular portion 32b is almost eliminated. It can sufficiently withstand a compressive deformation corresponding to a compressive strain of about 60% in the radial direction, and can absorb a larger displacement of the cable-stayed bridge cable 3.
[0030]
FIG. 7 shows the relationship between the amount of compression of the cable-stayed bridge cable 3 in the radial direction and its reaction force. As shown by the chain line B in FIG. 7, the conventional rubber damper having a V-shaped cross-section has a linearity within a narrow range of about 50% compression deformation and a compression amount of 0 to 10%. On the other hand, this rubber damper 32 is capable of compressive deformation of about 60% and linearity in a wide range of 0 to 35% as shown by the solid line A in FIG. And has excellent linearity.
[0031]
That is, the rubber damper 32 is compressed and strained by about 0 to 20% due to the vibration of the cable-stayed bridge cable 3, but can sufficiently absorb the vibration energy of the cable-stayed bridge cable 3 within the rubber damping capacity. Moreover, it is excellent also in the elastic compressible deformation region, and can exhibit an excellent vibration damping effect.
[0032]
That is, in the vibration damping device 30, the rubber damper 32 can absorb the vibration of the ordinary cable-stayed bridge cable 3 within the attenuation region in the deformation and exhibit sufficient durability and an excellent vibration damping function. Even when an abnormally large displacement occurs in the cable-stayed bridge cable 3, the tolerance for radial compression deformation is large, the possibility of structural damage is low, and the cable-stayed bridge cable 3 is not subject to an abnormal displacement. As a result, the cable staying bridge cable 3 can be restrained by exerting a larger reaction force.
[0033]
Further, the rubber damper 32 has a circular truncated cone shape, and thus has a rotationally symmetric shape. When the rubber damper 32 is attached to the cable flange 31 and the damper housing 33, the attachment direction thereof is taken into consideration as in the case of the conventional rectangular damper. It is not necessary to do so, and the mounting workability is remarkably improved.
[0034]
In addition, as described above, the rubber damper 32 has a circular truncated cone shape, and thus has a rotationally symmetric shape. If the direction is perpendicular to the central axis, as shown in FIG. However, since the same deformation occurs, the directionality to compression is lost.
[0035]
As mentioned above, although one Embodiment of this invention was described, it is not limited to said embodiment, A various deformation | transformation is possible. For example, in the above embodiment, the rubber damper 32 has been described with respect to the case where the steel plate mounting plate 32g is disposed on the upper surface side (conical cylindrical portions 32a, 32b side) of the flange portion 32d. The mounting plate 32g may be disposed on the side opposite to the conical cylindrical portions 32a and 32b.
[0036]
Further, like the rubber damper 40 shown in FIG. 9, the mounting plate 40g may be embedded in the flange portion 40d. In this way, when the rubber damper 40 is attached, the rubber damper 40 and the attachment plate 40g are not separated, and the attachment workability is further improved.
[0037]
Furthermore, in the above-described embodiment, the case where the flat top portion 32c (40c) is provided and the inner surface of the rubber damper 32 (40) is formed in the arc-shaped curved surface portion 32j (40j) has been described. Like the rubber damper 41 shown in FIG. 10, while having an opening part in the top part 41c, you may form an inner surface in the polygonal shape by the cylindrical part 41k and the conical part 41m. In such a rubber damper 41, a steel plate attachment plate 41n may be attached or embedded in the annular top portion 41c.
[0038]
Further, in the case of the embodiment shown in FIG. 1 and FIG. 2A, the rubber damper 32 has its flange portion 32d on the outer peripheral surface 31a side on the cable flange 31 side, and its flat top portion 32c on the damper housing 33. Although the case where it arrange | positions to the inner peripheral surface 33a side of this was demonstrated, as shown in FIG.2 (b) contrary to the above, the flange part 32d side is set to the inner peripheral surface 33a side of the damper housing 33, and its flat form The top 32c side of the cable flange 31 may be arranged on the outer peripheral surface 31a side of the cable flange 31.
[0039]
Moreover, although the said embodiment demonstrated the case where four rubber dampers 32 (40, 41) were arrange | positioned around the cable-stayed bridge cable 3, the number of arrangement | positioning other than that may be sufficient. However, rubber dampers are arranged on both sides of the cable stayed bridge cable 3 in the diameter direction. By doing so, when the rubber damper on one side receives a compressive stress, the rubber damper on the other side receives a tensile stress and performs a balanced vibration damping action.
[0040]
Furthermore, in the above-described embodiment, the vibration control device for the cable stayed bridge cable has been described. However, the present invention is not limited to the cable stayed bridge cable, but the suspension bridge cable, the parallel cable, the pole, the column, the streetlight, the street light, the traffic light, the lightning rod, the chimney The present invention can be widely applied as a vibration damping device for structures involving other vibrations.
[0041]
【Effect of the invention】
In the vibration damping device of the present invention, a rubber damper that receives vibration energy and elastically deforms in the shearing direction and attenuates the vibration by a reaction force in the shearing direction is disposed on the outer periphery of the vibration-damped member. in the vibration damping device comprising a damper housing enclosing to support, the rubber damper and the has a space portion surrounded by the target damping member, the rubber damper extending between the object vibration damper and the damper housing It has the shape central axis in a direction, which has a rotationally symmetric shape with respect to the central axis, from the inner surface of the rubber damper is to have a continuous curved surface portion, compared with the conventional vibration control device Thus, the linearity of the reaction force with respect to the compression amount is improved, the spring constant is constant from the low strain region to the wide strain region, and the design and handling of the vibration damping device becomes easy. Moreover, since the directionality at the time of the attachment is lost, the attachment workability is remarkably improved. Furthermore, the same deformation is performed for stress from any direction.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view along an axis of a vibration damping device according to an embodiment of the present invention;
2A is a cross-sectional view along the line AA perpendicular to the axis in the vibration damping device of FIG.
(B) is a cross-sectional view perpendicular to the axis of a vibration damping device according to another embodiment of the present invention.
FIG. 3A is a bottom view of the fixing flange of the present invention,
(B) is a side view of the fixing flange,
(C) is a plan view of the fixing flange.
FIG. 4 (a) is a side view of the alignment flange of the present invention,
(B) is a top view of the alignment flange.
FIG. 5A is an enlarged perspective view of a vibration damping member in the vibration damping device according to the embodiment of the present invention;
(B) is an enlarged longitudinal sectional view of the vibration damping member of (a).
FIG. 6A is an enlarged longitudinal sectional view showing a state in which the vibration damping member of the vibration damping device according to the embodiment of the present invention is not compressed;
(B) is an enlarged longitudinal sectional view showing a state where the vibration damping member is compressed halfway;
(C) is an enlarged longitudinal sectional view showing a state in which the damping member is almost completely compressed.
FIG. 7 is a diagram showing a relationship between a compression amount and a reaction force of a vibration damping device according to an embodiment of the present invention, together with a conventional vibration damping device.
FIG. 8 is a plan view of a vibration damping member showing that there is no directionality of stress with respect to the vibration damping member of the vibration damping device according to the embodiment of the present invention.
FIG. 9 is an enlarged longitudinal sectional view of a vibration damping member according to another embodiment of the present invention.
FIG. 10 is an enlarged longitudinal sectional view of a vibration damping member according to still another embodiment of the present invention.
FIG. 11A is a schematic diagram of a general cable-stayed bridge cable;
(B) is a sectional side view of a conventional cable-stayed bridge cable damping device;
(C) is a cross-sectional view of the vibration damping device of (b),
(D) is an enlarged longitudinal sectional view of a vibration damping member portion.
FIG. 12 is a diagram showing the relationship between shear strain and reaction force of a conventional damping member.
[Explanation of symbols]
3 Cable-stayed bridge cable 30 Damping device 31 Cable flange 32, 40, 41 Damping member (rubber damper)
32a, 40a, 41a Small inclined cone portions 32b, 40b, 41b Large inclined cone portions 32c, 40b, 41c Top portions 32d, 40d, 41d Flange portions 32g, 40g, 41g, 41n Mounting plates 32i, 40i Curved portions 32j, 40j , 41j Space portion 33 Damper housing 34 Restraint ring 35 Alignment flange 36 Fixing flange 41k Cylindrical portion 41m Conical portion

Claims (2)

被制振部材の外周に、振動のエネルギーを受けてせん断方向に弾性変形し、そのせん断方向の反力で振動を減衰させるゴムダンパーを配置し、該ゴムダンパーを内包して支持するダンパーハウジングを備える制振装置において、
前記ゴムダンパーと前記被制振部材とによって囲まれる空間部を有し、前記ゴムダンパーは前記被制振部材とダンパーハウジング間に延在する方向に形状中心軸を有して、該中心軸に対して回転対称の形状を有すると共に、前記ゴムダンパーの内面は連続した曲面部を有することを特徴とする制振装置。
A damper housing that elastically deforms in the shearing direction by receiving vibration energy and dampens vibration by a reaction force in the shearing direction on the outer periphery of the vibration-damped member, and encloses and supports the rubber damper. In the damping device provided,
The rubber damper includes a space surrounded by the rubber damper and the vibration-damping member, and the rubber damper has a central axis in a direction extending between the vibration-damping member and the damper housing. vibration damping device which has a rotationally symmetric shape, the inner surface of the rubber damper, characterized in that have a continuous curved surface portion against.
前記ゴムダンパーが、周方向に連続した円錐台形筒状で、かつ、平面状の頂部を有することを特徴とする請求項1に記載の制振装置。  2. The vibration damping device according to claim 1, wherein the rubber damper has a truncated cone shape continuous in a circumferential direction and has a flat top portion.
JP2001227989A 2001-07-27 2001-07-27 Vibration control device Expired - Fee Related JP4883740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227989A JP4883740B2 (en) 2001-07-27 2001-07-27 Vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227989A JP4883740B2 (en) 2001-07-27 2001-07-27 Vibration control device

Publications (2)

Publication Number Publication Date
JP2003041513A JP2003041513A (en) 2003-02-13
JP4883740B2 true JP4883740B2 (en) 2012-02-22

Family

ID=19060562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227989A Expired - Fee Related JP4883740B2 (en) 2001-07-27 2001-07-27 Vibration control device

Country Status (1)

Country Link
JP (1) JP4883740B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452573B2 (en) * 2011-12-02 2014-03-26 住友ゴム工業株式会社 Support column and vibration control device for support column
CN111305103B (en) * 2020-02-27 2021-09-14 中建科工集团有限公司 Rapid construction method of ETC portal frame

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203107A (en) * 1990-11-30 1992-07-23 Fudo Constr Co Ltd Coupling device for floating body
JPH04333704A (en) * 1991-05-10 1992-11-20 Sajima Mariina Kk Connecting structure of floating landing pier
JPH0658369A (en) * 1992-08-11 1994-03-01 Mitsubishi Heavy Ind Ltd Vibration control device for cable
JPH06193015A (en) * 1992-12-25 1994-07-12 Nippon Mentetsuku Kk Damping method of cable and device thereof
JPH06280936A (en) * 1993-03-23 1994-10-07 Mitsubishi Heavy Ind Ltd Damper device for cable
JP3467536B2 (en) * 1994-07-29 2003-11-17 独立行政法人土木研究所 Method and apparatus for controlling parallel cables in cable-stayed bridge
JPH08334140A (en) * 1995-06-08 1996-12-17 Alpine Electron Inc Elastic support device for vehecular loading equipment
JP3885416B2 (en) * 1999-06-16 2007-02-21 東海ゴム工業株式会社 Vibration isolator
JP2002236005A (en) * 2001-02-08 2002-08-23 Bridgestone Corp Method and apparatus for measuring strain of rubber- like elastic body

Also Published As

Publication number Publication date
JP2003041513A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
US4744547A (en) Elastic engine mount
US8438795B2 (en) Multi-directional torsional hysteretic damper (MTHD)
US7165870B2 (en) Vibration dampening device for light fixtures
JP2010526973A (en) Yield fuse member of cast structure
JPH05106684A (en) Isolation body
JPH04131539A (en) Earthquake bearing
KR100829489B1 (en) Module Type Tuned Mass Damper
EP0825301B1 (en) Cable damping device
JP4623696B2 (en) Damping device for parallel cable
JP4718206B2 (en) Damping column base structure and damping structure using the same
JP4883740B2 (en) Vibration control device
JP2001220923A (en) Seismic control support structure for ground-based installation
JP2002101541A (en) Damper for aerial wire
RU2362064C1 (en) Dish-shaped equifrequent element
JP2005048791A (en) Vibration control device
JPH1096337A (en) Cylinder type disc lead damper
US20090072458A1 (en) Self-constrained dynamic damper
CN211665930U (en) Steel structure stiffening device with damping effect
JPWO2002029277A1 (en) Damping device
ES2393489T3 (en) Vibration isolator
JP2002181130A (en) Damping device
JP2004353304A (en) Bridge fall preventing device
JP2008050800A (en) Base-isolating device
JP6306910B2 (en) Anti-sway structure using anti-sway tool of suspension support device
RU2050483C1 (en) Shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees