JP3922064B2 - Method for evaluating the dispersion state of the binder in the battery electrode plate - Google Patents

Method for evaluating the dispersion state of the binder in the battery electrode plate Download PDF

Info

Publication number
JP3922064B2
JP3922064B2 JP2002082634A JP2002082634A JP3922064B2 JP 3922064 B2 JP3922064 B2 JP 3922064B2 JP 2002082634 A JP2002082634 A JP 2002082634A JP 2002082634 A JP2002082634 A JP 2002082634A JP 3922064 B2 JP3922064 B2 JP 3922064B2
Authority
JP
Japan
Prior art keywords
bromine
electrode plate
binder
dispersion state
dyeing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002082634A
Other languages
Japanese (ja)
Other versions
JP2003279508A (en
Inventor
貴弘 吉村
肇 三宅
秀明 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002082634A priority Critical patent/JP3922064B2/en
Publication of JP2003279508A publication Critical patent/JP2003279508A/en
Application granted granted Critical
Publication of JP3922064B2 publication Critical patent/JP3922064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池構成材料中の特定有機物の分散状態の評価方法に関するものである。
【0002】
【従来の技術】
近年、モバイル機器が急速に普及し、その電源として用いられる二次電池の需要が急速に広がっている。さらに高性能な機器が開発されるのに伴い、使用する電池に対してもさらなる高容量化・高性能化が求められている。
【0003】
これらの二次電池の特性向上のポイントの一つとして、構成材料である極板の評価が重要である。中でも、極板中の結着剤の分散状態を評価することが、電池の開発を進める上で重要である。通常、結着剤の材料である有機材料の分析を行うには赤外分光分析などの有機分析法を用いるのが一般的であるが、これらの手法では十分な空間分散能が得られず、極板中の結着剤の分布分析のようなμmオーダーの分析には適していない。そのため、従来では走査電子顕微鏡(以下SEMと記す)で極板断面の活物質の分散状態を確認することで、結着剤の分散状態を推測していた。一方、封口部品に用いられる弁体中の特定ゴム種の分散状態を調べることで、弁体の特性が評価できる。このようにゴム材料等をSEM観察で評価する手法として、オスミウムで染色してから観察する測定例が従来にある。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の電池の極板中の結着剤の分散状態をSEM観察で評価する方法では大まかな分散性しか評価できず、十分な評価方法ではない。また、オスミウムで染色したものを電子線マイクロアナライザ(以下EPMAと記す)で測定する手法は、弁体のようなゴム材料には有効であるがオスミウムの反応性が弱いため、電池極板中の結着剤のように含有量の少ないものには十分な感度が得られず、その分散状態が十分評価できない。さらに、オスミウム染色自体に時間がかかるため、簡易に測定できないという課題を有していた。
【0005】
本発明は、電池構成部品中の特定有機材料を高感度でかつ簡易に、その分散状態を評価することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため本発明は、電池極板中の結着剤を臭素で染色を行うことにより、結着剤中に臭素を付加させたものを、その分散状態を固体材料の空間的な元素分析が可能な分析方法により評価する方法であり、高感度で短時間に測定することを特徴とし、電池の極板や電池の評価を行う手法である。
【0007】
【発明の実施の形態】
本発明は、電池極板中で元素による識別が困難である主にH、O、Cの三元素で構成された結着剤について、臭素で染色処理を行うことにより、固体材料の空間的元素分析測定を可能とし、結着剤の分散状態を評価する方法である。
【0008】
本発明の空間的元素分析測定としては、EPMA、オージェ電子分光法(以下AES)、走査プローブ顕微鏡(以下SPM)で測定するのが好ましい。
【0009】
EPMAは細く絞った電子線を試料に照射し、そこから発生する特性X線を検出して元素の定性・定量分析を行う装置である。また、AESも電子線を試料に照射し、そこから発生するオージェ電子を検出して元素の定性・定量分析を行う装置である。SPMは、小さなプローブを試料表面に近接させて走査して、試料表面の状態を観察する装置である。いずれの測定方法もμmオーダー以下の微小部分析において空間分解能の点で優れているものである。
【0010】
本発明において、臭素を用いた染色の方法として、一般的に臭素雰囲気中で気相反応させる方法が考えられるが、臭素は気化が激しく扱いにくいため、臭素の量や反応時間の制御が困難である。このため、希釈した臭素溶液を用いて浸漬させる方法が扱いやすく、好ましい。
【0011】
また、本発明において、臭素染色を行った極板については、極板内に未反応の臭素溶液が残ったまま乾燥させると、染色箇所以外の部分に臭素が残存し、正しい結果が得にくくなくなるので、水洗により除去することが好ましい。水洗後は、室温で自然乾燥または真空乾燥させる。
【0012】
本発明において用いる臭素溶液は1%以下と濃度が低いと未反応部分が生じ、また10%以上と濃度が高すぎると臭素が激しく気化するので作業上扱い辛いため、1〜10%が望ましい。
【0013】
染色(浸漬)時間は、10秒以下と短すぎると試料内部に臭素溶液が十分にいきわたらず、未反応部分が生じる。また、120秒以上と時間が長すぎると臭素の偏析が生じるため、10〜120秒間浸漬するのが望ましい。
【0014】
本発明において、臭素はC=C結合に対し選択的に付加反応するため、電池極板中のC=C結合を有する結着剤を染色する元素として好ましい。また、EPMAで臭素の分布分析を行うことにより、電池極板中のC=C結合を有する結着剤の分散状態を評価することができる。
【0015】
【実施例】
(実施例1)
本実施例において、リチウムイオン二次電池の負極板中の結着剤の分散状態を評価した。
【0016】
図1は、本実施例で用いた負極板の構成を示した図である。負極板1は炭素材料にスチレン−ブタジエンゴムの水性ディスパージョンを重量比で100:3.5の割合で混合し、これにカルボキシメチルセルロースの水溶液に懸濁させてペースト状にしたものを銅箔2の両面に塗着し、乾燥して合剤部を形成した。その後圧延し所定の大きさに切り出し、負極板とした。上記方法で作成した負極板の評価方法を以下に示す。
【0017】
負極板1に用いられている銅箔2は臭素と反応し、結着剤の分散状態の評価を妨げるため、HNO3(1N)に浸漬して、予め銅箔2のみを剥離した。銅箔2を剥離した後の合剤部3を純水に浸漬して洗浄し、浸漬水が中性になるまで続けた。以上の処理を行った負極板を臭素水溶液(2%)に30秒間浸漬して染色処理を行った。染色後、未反応の臭素を除去するために、純水に1時間浸漬して水洗を行った。
【0018】
この間、3〜5回純水を交換した。乾燥後、エポキシ樹脂で包埋し、研磨断面を作成し、EPMAにより臭素の面分析を行った。EPMAの測定条件は、試料電流:0.05μA、測定点数:80000点、1点あたりの測定時間:30msecで行った。
【0019】
負極板作成条件の異なる2つの試料A、Bの測定結果を図2、3に示す。
【0020】
図2では、極板全体に結着剤が均一な分散状態になっているのが判る。これに対し図3では、極板表層部に結着剤が偏った分散状態になっているのが判る。
【0021】
これらの極板を従来の方法であるSEMで測定したところ、試料A、Bとも同様の結果になっており、差はなかった。
【0022】
このように本発明の方法を用いることにより、極板中の結着剤の分散状態を明らかにすることができる。
【0023】
さらに、試料A、Bの極板を用いて構成されたLiイオン二次電池のサイクル寿命試験の結果を図4に示す。試料Aを用いて構成した電池は、試料Bを用いて構成した電池よりもサイクル寿命が良いという結果を得た。
【0024】
参考例1
参考例は、図1において、負極板1は炭素材料にポリオレフィン水性ディスパージョンを重量比で100:3.5の割合で混合し、これにカルボキシメチルセルロースの水溶液に懸濁させてペースト状にしたものを銅箔2の両面に塗着し、乾燥して合剤部3を形成した。その後圧延し所定の大きさに切り出し、負極板1とした。上記方法で作成した負極板の評価方法を以下に示す。
【0025】
負極板1に用いられている銅箔2はルテニウムと反応し、結着剤の分散状態の評価を妨げるため、HNO3(1N)に浸漬して、予め銅箔2のみを剥離した。銅箔2を剥離した後の合剤部3を純粋に浸漬して洗浄し、浸漬水が中性になるまで続けた。以上の処理を行った負極板1をルテニウム水溶液(0.5%)を250ml入れた密閉容器内に吊るし、1時間染色処理を行った。
【0026】
染色後、エポキシ樹脂で包埋し、研磨断面を作成し、EPMAによりルテニウムの面分析を行った。EPMAの測定条件は、試料電流:0.05μA、測定点数:80000点、1点あたりの測定時間:30msecで行った。
【0027】
負極板作成条件の異なる2つの試料C、Dの測定結果を図5、6に示す。
【0028】
図5では、極板全体に結着剤が均一な分散状態になっているのが判る。これに対し図6では極板表層部に結着剤が偏った分散状態になっているのが判る。
【0029】
このように本発明の方法を用いることにより、極板中の結着剤の分散状態を明らかにすることができる。
【0030】
(実施例
本実施例において、実施例1の評価方法に使用した臭素染色について、臭素溶液の濃度の検討を行った。染色時間は30秒で行った。
【0031】
その結果を表1に示す。
【0032】
【表1】

Figure 0003922064
表1に示す臭素の相対強度は、実施例1と同様の負極板のある一定面積をEPMAにより臭素の面分析を行い、臭素の検出量の総和を求め、臭素濃度0.1%で染色を行った場合を100として換算したものである。
【0033】
表1から、染色時間30秒において、臭素濃度2%以上で十分染色が行われていることが判った。
【0034】
【発明の効果】
以上のように本発明は、臭素を結着剤に染色することで、EPMAにより極板中のバインダーの分散状態を明らかにすることができ、分散状態の良い極板を用いることで電池特性の優れた電池の開発が実現できるものである。
【図面の簡単な説明】
【図1】Liイオン二次電池の負極断面図
【図2】試料Aの断面における臭素の分布図
【図3】試料Bの断面における臭素の分布図
【図4】試料A、Bで構成した電池のサイクル寿命試験の結果を示す図
【図5】試料Cの断面におけるルテニウムの分布図
【図6】試料Dの断面におけるルテニウムの分布図
【符号の説明】
1 負極板
2 銅箔
3 合剤部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the dispersion state of a specific organic substance in a battery constituent material.
[0002]
[Prior art]
In recent years, mobile devices have spread rapidly, and the demand for secondary batteries used as power sources has been rapidly expanding. As higher performance devices are developed, there is a need for higher capacity and higher performance for the batteries used.
[0003]
As one of the points of improving the characteristics of these secondary batteries, it is important to evaluate the electrode plate which is a constituent material. In particular, it is important to evaluate the dispersion state of the binder in the electrode plate in order to advance the development of the battery. Usually, organic analysis methods such as infrared spectroscopic analysis are generally used to analyze organic materials that are binder materials, but these methods do not provide sufficient spatial dispersion, It is not suitable for analysis on the order of μm such as distribution analysis of the binder in the electrode plate. Therefore, conventionally, the dispersion state of the binder has been estimated by confirming the dispersion state of the active material in the cross section of the electrode plate with a scanning electron microscope (hereinafter referred to as SEM). On the other hand, the characteristics of the valve body can be evaluated by examining the dispersion state of the specific rubber type in the valve body used for the sealing part. Thus, as a method for evaluating rubber materials and the like by SEM observation, there is a conventional measurement example in which observation is performed after staining with osmium.
[0004]
[Problems to be solved by the invention]
However, the conventional method of evaluating the dispersion state of the binder in the electrode plate of the battery by SEM observation can only evaluate the rough dispersibility, and is not a sufficient evaluation method. In addition, the method of measuring what is stained with osmium with an electron beam microanalyzer (hereinafter referred to as EPMA) is effective for a rubber material such as a valve body, but since the reactivity of osmium is weak, Sufficient sensitivity cannot be obtained for a binder with a low content, and the dispersion state cannot be evaluated sufficiently. Furthermore, since osmium staining itself takes time, it has a problem that it cannot be easily measured.
[0005]
An object of the present invention is to evaluate the dispersion state of a specific organic material in a battery component with high sensitivity and ease.
[0006]
[Means for Solving the Problems]
The present invention for solving the above problems, by performing dyeing a binder in the battery plates in a bromine, those obtained by adding a bromine into the binder, the space and the dispersion state solid material This is a method of evaluating by an analytical method capable of performing a fundamental elemental analysis, characterized by measuring in a short time with high sensitivity, and a method of evaluating a battery electrode plate and a battery.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is primarily H is difficult to identify by elemental in battery plates, O, the binder composed of a ternary and C, by performing dyeing with Bromine, spatial solid materials It is a method that enables elemental analysis measurement and evaluates the dispersion state of the binder .
[0008]
The spatial elemental analysis of the present invention is preferably measured by EPMA, Auger electron spectroscopy (hereinafter AES), or scanning probe microscope (hereinafter SPM).
[0009]
EPMA is a device that performs qualitative and quantitative analysis of elements by irradiating a sample with a finely focused electron beam and detecting characteristic X-rays generated therefrom. AES is also a device that performs qualitative and quantitative analysis of elements by irradiating a sample with an electron beam and detecting Auger electrons generated therefrom. SPM is a device that observes the state of a sample surface by scanning a small probe close to the sample surface. Both measurement methods are excellent in terms of spatial resolution in the analysis of a minute portion of the order of μm or less.
[0010]
In the present invention, as a dyeing method using bromine, a gas phase reaction method in a bromine atmosphere is generally considered. However, bromine is difficult to handle because it is hard to vaporize, so it is difficult to control the amount of bromine and the reaction time. is there. For this reason, the method of immersing using the diluted bromine solution is preferable because it is easy to handle.
[0011]
Further, in the present invention, if the electrode plate subjected to bromine dyeing is dried with an unreacted bromine solution remaining in the electrode plate, bromine remains in portions other than the dyed portion, and it is difficult to obtain a correct result. Therefore, it is preferable to remove by washing with water. After washing with water, it is naturally dried or vacuum dried at room temperature.
[0012]
If the concentration of the bromine solution used in the present invention is as low as 1% or less, an unreacted portion is formed. If the concentration is too high as 10% or more, bromine is vigorously vaporized and is difficult to handle in work, so 1 to 10% is desirable.
[0013]
If the dyeing (immersion) time is too short, such as 10 seconds or less, the bromine solution does not sufficiently penetrate inside the sample, and an unreacted portion is generated. Moreover, since segregation of bromine occurs when the time is too long, such as 120 seconds or more, it is desirable to immerse for 10 to 120 seconds.
[0014]
In the present invention, since bromine selectively undergoes an addition reaction with respect to the C═C bond, it is preferable as an element for staining the binder having a C═C bond in the battery electrode plate. Further, by conducting a bromine distribution analysis with EPMA, it is possible to evaluate the dispersion state of the binder having a C═C bond in the battery electrode plate.
[0015]
【Example】
Example 1
In this example, the dispersion state of the binder in the negative electrode plate of the lithium ion secondary battery was evaluated.
[0016]
FIG. 1 is a diagram showing the configuration of the negative electrode plate used in this example. The negative electrode plate 1 was prepared by mixing a carbon material with an aqueous dispersion of styrene-butadiene rubber at a weight ratio of 100: 3.5, and suspending it in an aqueous solution of carboxymethyl cellulose to form a paste. The mixture was coated on both sides and dried to form a mixture part. Thereafter, it was rolled and cut into a predetermined size to obtain a negative electrode plate. The evaluation method of the negative electrode plate prepared by the above method is shown below.
[0017]
Since the copper foil 2 used for the negative electrode plate 1 reacted with bromine and hindered evaluation of the dispersion state of the binder, it was immersed in HNO 3 (1N), and only the copper foil 2 was peeled off in advance. The mixture part 3 after peeling the copper foil 2 was washed by immersing it in pure water and continued until the immersion water became neutral. The negative electrode plate subjected to the above treatment was immersed in an aqueous bromine solution (2%) for 30 seconds for dyeing treatment. After dyeing, in order to remove unreacted bromine, it was immersed in pure water for 1 hour and washed with water.
[0018]
During this time, pure water was exchanged 3 to 5 times. After drying, it was embedded with an epoxy resin, a polished cross section was prepared, and bromine surface analysis was performed by EPMA. The measurement conditions of EPMA were as follows: sample current: 0.05 μA, number of measurement points: 80000 points, measurement time per point: 30 msec.
[0019]
The measurement results of two samples A and B with different negative electrode plate preparation conditions are shown in FIGS.
[0020]
In FIG. 2, it can be seen that the binder is in a uniformly dispersed state throughout the electrode plate. In contrast, in FIG. 3, it can be seen that the binder is in a dispersed state in the surface layer portion of the electrode plate.
[0021]
When these electrode plates were measured by SEM, which is a conventional method, the same results were obtained for samples A and B, and there was no difference.
[0022]
Thus, by using the method of the present invention, it is possible to clarify the dispersion state of the binder in the electrode plate.
[0023]
Furthermore, the result of the cycle life test of the Li ion secondary battery comprised using the electrode plate of sample A and B is shown in FIG. The battery configured using sample A obtained a result that the cycle life was better than the battery configured using sample B.
[0024]
( Reference Example 1 )
In this reference example, in FIG. 1, the negative electrode plate 1 is made by mixing a carbon material with a polyolefin aqueous dispersion at a weight ratio of 100: 3.5 and suspending it in an aqueous solution of carboxymethyl cellulose to make a paste. The material was applied to both sides of the copper foil 2 and dried to form the mixture part 3. Thereafter, it was rolled and cut into a predetermined size to obtain a negative electrode plate 1. The evaluation method of the negative electrode plate prepared by the above method is shown below.
[0025]
Since the copper foil 2 used for the negative electrode plate 1 reacted with ruthenium and hindered evaluation of the dispersion state of the binder, it was immersed in HNO 3 (1N) and only the copper foil 2 was peeled off in advance. The mixture part 3 after peeling the copper foil 2 was purely immersed and washed, and continued until the immersion water became neutral. The negative electrode plate 1 subjected to the above treatment was suspended in an airtight container containing 250 ml of a ruthenium aqueous solution (0.5%), followed by a dyeing treatment for 1 hour.
[0026]
After dyeing, it was embedded with an epoxy resin, a polished cross section was prepared, and ruthenium surface analysis was performed by EPMA. The measurement conditions of EPMA were as follows: sample current: 0.05 μA, number of measurement points: 80000 points, measurement time per point: 30 msec.
[0027]
The measurement results of two samples C and D with different negative electrode plate preparation conditions are shown in FIGS.
[0028]
In FIG. 5, it can be seen that the binder is in a uniformly dispersed state throughout the electrode plate. In contrast, in FIG. 6, it can be seen that the binder is in a dispersed state in the surface layer portion of the electrode plate.
[0029]
Thus, by using the method of the present invention, it is possible to clarify the dispersion state of the binder in the electrode plate.
[0030]
(Example 2 )
In this example, the concentration of the bromine solution was examined for the bromine dyeing used in the evaluation method of Example 1. The dyeing time was 30 seconds.
[0031]
The results are shown in Table 1.
[0032]
[Table 1]
Figure 0003922064
The relative strength of bromine shown in Table 1 is the same as that of Example 1, with a certain area of the negative electrode plate subjected to surface analysis of bromine by EPMA, the total amount of bromine detected is obtained, and dyeing is performed at a bromine concentration of 0.1%. The case where it went is converted as 100.
[0033]
From Table 1, it was found that dyeing was sufficiently performed at a bromine concentration of 2% or more at a dyeing time of 30 seconds.
[0034]
【The invention's effect】
Cell characteristics by the present invention as described above, by staining the odor containing a binder, which can reveal the state of dispersion of the binder in the electrode plate by EPMA, using a good electrode plate of the dispersed state The development of an excellent battery can be realized.
[Brief description of the drawings]
1 is a cross-sectional view of a negative electrode of a Li ion secondary battery. FIG. 2 is a distribution diagram of bromine in a cross section of a sample A. FIG. 3 is a distribution diagram of bromine in a cross section of a sample B. FIG. FIG. 5 is a diagram showing the results of a cycle life test of a battery. FIG. 5 is a distribution diagram of ruthenium in a cross section of a sample C. FIG. 6 is a distribution diagram of ruthenium in a cross section of a sample D.
1 negative electrode plate 2 copper foil 3 mixture part

Claims (4)

電池極板中の主にH、O、Cの三元素で構成されC=C結合を有する結着剤、濃度が1〜10%の臭素水溶液に10〜120秒間浸漬してC=C結合部分に臭素を染色させた後、水洗により未反応の残存臭素を除去し、前記電池極板の空間的臭素分析測定を行うことにより結着剤の分散状態を評価する方法。A C = C bond is formed by immersing a binder having a C = C bond mainly composed of three elements of H, O, and C in a battery plate for 10 to 120 seconds in a bromine aqueous solution having a concentration of 1 to 10%. A method of evaluating the dispersion state of the binder by dyeing bromine in a part, removing unreacted residual bromine by washing with water, and performing spatial bromine analysis measurement of the battery plate . 前記結着剤の分散状態を電子線プローブマイクロアナライザ、オージェ電子分光法、走査プローブ顕微鏡で測定する請求項1に記載の評価する方法。The evaluation method according to claim 1, wherein a dispersion state of the binder is measured by an electron beam probe microanalyzer, Auger electron spectroscopy, or a scanning probe microscope. 前記電池極板は銅箔を用いたリチウムイオン二次電池の負極板であり、予め前記銅箔のみを剥離した後、臭素による染色を行うことを特徴とする、請求項1記載の評価する方法。The method for evaluating according to claim 1, wherein the battery electrode plate is a negative electrode plate of a lithium ion secondary battery using copper foil, and after dyeing only the copper foil in advance, dyeing with bromine is performed. . 前記銅箔を、HNOThe copper foil is HNO 3Three に浸漬して剥離することを特徴とする、請求項3記載の評価する方法。The method for evaluation according to claim 3, wherein the method is dipped in and peeled off.
JP2002082634A 2002-03-25 2002-03-25 Method for evaluating the dispersion state of the binder in the battery electrode plate Expired - Lifetime JP3922064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082634A JP3922064B2 (en) 2002-03-25 2002-03-25 Method for evaluating the dispersion state of the binder in the battery electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082634A JP3922064B2 (en) 2002-03-25 2002-03-25 Method for evaluating the dispersion state of the binder in the battery electrode plate

Publications (2)

Publication Number Publication Date
JP2003279508A JP2003279508A (en) 2003-10-02
JP3922064B2 true JP3922064B2 (en) 2007-05-30

Family

ID=29230748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082634A Expired - Lifetime JP3922064B2 (en) 2002-03-25 2002-03-25 Method for evaluating the dispersion state of the binder in the battery electrode plate

Country Status (1)

Country Link
JP (1) JP3922064B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200027693A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Method for performance analysis of secondary battery electrode

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112971A (en) * 2004-10-15 2006-04-27 Tdk Corp Evaluating method of internal defect of sample
WO2011104843A1 (en) * 2010-02-25 2011-09-01 トヨタ自動車株式会社 Method for producing anode plate for non-aqueous secondary battery and method for producing non-aqueous secondary battery
CN104849410B (en) * 2015-05-28 2017-10-03 龙蟒佰利联集团股份有限公司 A kind of dispersed quick determination method of titanium dioxide in oil paint
JP6900781B2 (en) * 2017-05-18 2021-07-07 住友ゴム工業株式会社 Sample observation method
JP6860129B2 (en) * 2017-05-29 2021-04-14 エルジー・ケム・リミテッド Method for measuring pore distribution of electrodes for secondary batteries
CN111141773B (en) * 2019-12-31 2023-02-10 湖北亿纬动力有限公司 Negative plate binder distribution detection method and dyeing device
CN113466278A (en) * 2021-06-29 2021-10-01 合肥国轩高科动力能源有限公司 Method for detecting distribution uniformity of SBR (styrene butadiene rubber) binder of graphite cathode of lithium battery in pole piece

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972040A (en) * 1982-10-18 1984-04-23 Toray Ind Inc Preparation of high polymer sample for electron- microscopic observation
JPH0495753A (en) * 1990-08-08 1992-03-27 Sumitomo Chem Co Ltd Method for preparing sample for microscope
JPH0772036A (en) * 1993-09-03 1995-03-17 Asahi Glass Co Ltd Observation of diffraction grating for hologram
JP3000844B2 (en) * 1994-02-16 2000-01-17 信越化学工業株式会社 Electrode composition
JP3232910B2 (en) * 1994-08-30 2001-11-26 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3339267B2 (en) * 1995-08-18 2002-10-28 株式会社豊田中央研究所 X-ray analysis method and X-ray analyzer
JPH10132802A (en) * 1996-11-01 1998-05-22 Kao Corp Surface functional group detecting method
JPH11108866A (en) * 1997-10-06 1999-04-23 Nof Corp Method for measuring unsaturated bond quantity
JP3796025B2 (en) * 1997-10-21 2006-07-12 三菱化学株式会社 Sample pretreatment method
JP2000214113A (en) * 1999-01-25 2000-08-04 Hitachi Ltd Measuring method for inside temperature of substance in chemical reaction
JP4356294B2 (en) * 2001-09-03 2009-11-04 日本ゼオン株式会社 Electrode binder composition, electrode slurry, electrode, and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200027693A (en) * 2018-09-05 2020-03-13 주식회사 엘지화학 Method for performance analysis of secondary battery electrode
KR102606425B1 (en) 2018-09-05 2023-11-27 주식회사 엘지에너지솔루션 Method for performance analysis of secondary battery electrode

Also Published As

Publication number Publication date
JP2003279508A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
Lin et al. Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
Wang et al. In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging
Guetaz et al. Catalyst-layer ionomer imaging of fuel cells
Landa-Medrano et al. In situ monitoring of discharge/charge processes in Li–O2 batteries by electrochemical impedance spectroscopy
JP3922064B2 (en) Method for evaluating the dispersion state of the binder in the battery electrode plate
Kawaguchi et al. Surface-layer formation by reductive decomposition of LiPF6 at relatively high potentials on negative electrodes in lithium ion batteries and its suppression
Thakar et al. Multifunctional carbon nanoelectrodes fabricated by focused ion beam milling
Feng et al. In situ synthesis and in operando NMR studies of a high-performance Ni 5 P 4-nanosheet anode
Young et al. Role of binders in solid electrolyte interphase formation in lithium ion batteries studied with hard X-ray photoelectron spectroscopy
Takahara et al. Depth profiling of graphite electrode in lithium ion battery using glow discharge optical emission spectroscopy with small quantities of hydrogen or oxygen addition to argon
Sahadeo et al. Investigation of the water-stimulated Mg 2+ insertion mechanism in an electrodeposited MnO 2 cathode using X-ray photoelectron spectroscopy
Takei et al. An X-ray photoelectron spectroscopy study on the surface film on carbon black anode in lithium secondary cells
CN110987711B (en) Component testing and analyzing method for lithium ion battery anode material
Wu et al. Redox mechanism in Na-ion battery cathodes probed by advanced soft X-ray spectroscopy
JP2020507889A (en) Method for measuring pore distribution of secondary battery electrode
Hoffmann et al. Challenges for lithium species identification in complementary Auger and X-ray photoelectron spectroscopy
Saito et al. Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells IV: An approach to the power fading mechanism by depth profile analysis of electrodes using glow discharge optical emission spectroscopy
Krasnodębska‐Ostręga et al. Determination of lead and cadmium at silver electrode by subtractive anodic stripping voltammetry in plant materials containing Tl
Asheim et al. Improved electrochemical performance and solid electrolyte interphase properties of electrolytes based on lithium bis (fluorosulfonyl) imide for high content silicon anodes
Huey et al. Multi-modal characterization methods of solid-electrolyte interphase in silicon-graphite composite electrodes
JP2015068664A (en) Evaluation method and evaluation device of electrode material
CN111307870A (en) Method and device for evaluating uniformity of lithium ion battery slurry
Budiman et al. Evaluation of electrochemical properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ porous electrode with sulfur poisoning
You et al. Investigation of aluminum current collector degradation in lithium-ion batteries using glow discharge optical emission spectrometry
CN111141773A (en) Negative plate binder distribution detection method and dyeing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6