JP2015068664A - Evaluation method and evaluation device of electrode material - Google Patents

Evaluation method and evaluation device of electrode material Download PDF

Info

Publication number
JP2015068664A
JP2015068664A JP2013201082A JP2013201082A JP2015068664A JP 2015068664 A JP2015068664 A JP 2015068664A JP 2013201082 A JP2013201082 A JP 2013201082A JP 2013201082 A JP2013201082 A JP 2013201082A JP 2015068664 A JP2015068664 A JP 2015068664A
Authority
JP
Japan
Prior art keywords
sample
probe
electrode
image
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013201082A
Other languages
Japanese (ja)
Inventor
秀夫 猶原
Hideo Naohara
秀夫 猶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2013201082A priority Critical patent/JP2015068664A/en
Publication of JP2015068664A publication Critical patent/JP2015068664A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a distribution of mechanical and electrical characteristics, such as current, elasticity, and absorption power, cannot be imaged or visualized simultaneously with SEI of a sample, conductive assistant, and a shape of binder resin while an electrochemical treatment being performed under desired conditions.SOLUTION: An evaluation method of an electrode material includes: injecting electrolyte liquid into a sample consisting of an anode and performing an electrochemical treatment on the sample; discharging the electrolyte liquid; cleaning, and making a measurement with a scanning probe microscope. These steps are performed in the same equipment to prevent the sample from being exposed to the atmosphere. A constant voltage is applied between the sample and a conductive probe of the scanning probe microscope to measure a current value at any point, and a current image is created on a basis of height information and the current value measured within a certain area where the probe is moved.

Description

本発明は、電極材料の評価方法及び評価装置に関し、特にリチウムイオン二次電池の電極表面皮膜の形成状態、導電助剤やバインダの分散状態の評価方法及び評価装置に関する。   The present invention relates to an electrode material evaluation method and an evaluation apparatus, and more particularly to an evaluation method and an evaluation apparatus for an electrode surface film formation state and a conductive auxiliary agent or binder dispersion state of a lithium ion secondary battery.

リチウムイオン二次電池(LIB:Lithium-Ion secondary Battery)などの二次電池の電極表面皮膜の形成状態、導電助剤やバインダの分散状態の評価を行うためには、走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)などが用いられている。   In order to evaluate the formation state of the electrode surface film of a secondary battery such as a lithium ion secondary battery (LIB) and the dispersion state of a conductive additive or binder, a scanning probe microscope (SPM) is used. Scanning Probe Microscope) is used.

例えば、特許文献1では、走査型プローブ顕微鏡の探針と正極芯材との間に定電圧を印加しつつ、正極合材層の表面に探針を走査させるとともに、探針と正極芯材との間に流れる電流値を測定して電流値マップを作成することが提案されている。特許文献1では、こうして作成した電流値マップから導電パス面積率を求めて、二次電池の正極板に好適な導電パスが形成されているか否かを評価している。   For example, in Patent Document 1, while applying a constant voltage between a probe of a scanning probe microscope and a positive electrode core material, the surface of the positive electrode mixture layer is scanned with the probe, It has been proposed to create a current value map by measuring current values flowing between the two. In Patent Document 1, a conductive path area ratio is obtained from the current value map thus created, and it is evaluated whether or not a suitable conductive path is formed on the positive electrode plate of the secondary battery.

また、特許文献2は二次電池の構成材料中の特定有機物の分散状態の評価方法に関するものである。リチウムイオン二次電池の負極板を切り出して、臭素で染色処理を行った後、電子線マイクロアナライザにより、負極板中の結着剤の分散状態を評価することが記載されている。   Patent Document 2 relates to a method for evaluating a dispersion state of a specific organic substance in a constituent material of a secondary battery. It is described that after the negative electrode plate of a lithium ion secondary battery is cut out and dyed with bromine, the dispersion state of the binder in the negative electrode plate is evaluated by an electron beam microanalyzer.

特開2012−243415号公報JP2012-243415A 特開2003−279508号公報JP 2003-279508 A

In−situ SPMを用いた電池電極表面のSEIの電流像測定にあたり、導電性プローブの先端部分を除いて絶縁被覆した電気化学顕微鏡用プローブを用いる。このとき、探針ホルダー周辺部を含め電解液中でリーク電流を探針−試料間の電流以下に抑える必要がある。試料−探針間の電流を感度良く測定することができない。   In measuring the SEI current image on the surface of the battery electrode using In-situ SPM, a probe for an electrochemical microscope coated with an insulating coating except for the tip of the conductive probe is used. At this time, it is necessary to suppress the leakage current below the current between the probe and the sample in the electrolyte including the periphery of the probe holder. The current between the sample and the probe cannot be measured with high sensitivity.

上述した測定方法には以下のような課題がある。   The measurement method described above has the following problems.

すなわち、第1の問題点は、所望の条件で電気化学的な処理を行いつつ、試料のSEI、導電助剤、バインダ樹脂の形状のほか電流像・弾性像・吸着力等々の機械特性・電気特性の分布を同時にイメージ化・可視化できないことである。ここでSEI(Solid-Electrolyte Interphase)は、負極表面に形成した非水系電解液由来の被膜である。   That is, the first problem is that, while performing electrochemical treatment under desired conditions, the SEI of the sample, the conductive auxiliary agent, the shape of the binder resin, as well as the mechanical characteristics such as current image, elastic image, adsorption force, etc. The distribution of characteristics cannot be visualized or visualized at the same time. Here, SEI (Solid-Electrolyte Interphase) is a coating derived from a non-aqueous electrolyte formed on the surface of the negative electrode.

その理由は、電解液中での電流像測定では探針取り付部周辺の接液部を全て絶縁しつつ、試料−探針間の電流のみを取りだすことが困難だからである。   This is because it is difficult to take out only the current between the sample and the probe while insulating all the wetted parts around the probe mounting part in the current image measurement in the electrolytic solution.

第2の問題点は、リチウムイオン二次電極のような数十ミクロンの粒子からなる電極活物質塗膜は凹凸が大きく、電流測定により電流分布像を得ることが困難であることである。特許文献1では走査型プローブ顕微鏡の測定モードとしていわゆるコンタクトモードを採用しているが、コンタクトモードによるコンダクティブ原子間力顕微鏡測定(コンダクティブAFM測定)では、電流像を得ることが困難だからである。   The second problem is that an electrode active material coating film made of particles of several tens of microns such as a lithium ion secondary electrode has large irregularities, and it is difficult to obtain a current distribution image by current measurement. In Patent Document 1, a so-called contact mode is adopted as a measurement mode of the scanning probe microscope, but it is difficult to obtain a current image in the conductive atomic force microscope measurement (conductive AFM measurement) in the contact mode.

したがって、本発明の目的は、所望の条件で電気化学的な処理を行いつつ試料のSEI、導電助剤、バインダ樹脂の形状のほか電流像・弾性像・吸着力等々の機械特性・電気特性の分布を同時にイメージ化・可視化できず、また電極活性質塗膜の電流分布像を得ることが困難であるという課題を解決できる、電極材料の評価方法及び評価装置を提供することにある。   Therefore, the object of the present invention is to perform the electrochemical treatment under the desired conditions, the SEI of the sample, the conductive auxiliary agent, the shape of the binder resin, as well as the mechanical characteristics and electrical characteristics such as current image, elastic image, and adsorption force. An object of the present invention is to provide an evaluation method and an evaluation apparatus for an electrode material which can solve the problem that the distribution cannot be simultaneously imaged and visualized and it is difficult to obtain a current distribution image of an electrode active coating film.

上述の目的を達成するため、本発明に係る電極材料の評価方法は、負極からなる試料に電解液を注入し上記試料を電気化学処理し、電解液を排出、洗浄後に走査型プローブ顕微鏡により測定し、上記ステップを同一装置内で大気にさらすことなく行い、
上記試料と導電性をもつ上記走査型プローブ顕微鏡の探針との間に定電圧を印加し、任意の地点での電流値を計測し、上記探針を移動して一定領域で測定した高さ情報と上記電流値とから電流像を作成する。
In order to achieve the above-described object, the electrode material evaluation method according to the present invention is such that an electrolytic solution is injected into a negative electrode sample, the sample is subjected to electrochemical treatment, the electrolytic solution is discharged, and measured by a scanning probe microscope after washing. And perform the above steps without exposing to the atmosphere in the same equipment,
Height measured by applying a constant voltage between the sample and the probe of the scanning probe microscope having conductivity, measuring the current value at an arbitrary point, and moving the probe in a certain area A current image is created from the information and the current value.

本発明に係る電極材料の評価装置は、試料が搭載される導電性のプレート、上記プレートとの間に評価対象の試料を挟持するホルダーであって、開口部を有し、上記開口部の内壁に沿って参照極及び対極を兼ねた電極が形成されたホルダー、上記挟持される試料の表面に電解液及びガスを供給する第1流路、上記試料の表面に供給された電解液及びガスを排出する第2流路、及び上記プレートと上記ホルダーとの間に上記試料を挟持した状態で上記プレートと上記ホルダーの間を固定する固定具を有する電気化学セルと、
上記電気化学セルの上方に配置され、上記電気化学セルに挟持された上記試料との間に定電圧が印加され、任意の地点での電流値が計測される走査型プローブ顕微鏡の探針とを有する。
An electrode material evaluation apparatus according to the present invention is a conductive plate on which a sample is mounted, a holder for sandwiching a sample to be evaluated between the plate, an opening, and an inner wall of the opening A holder in which an electrode serving as both a reference electrode and a counter electrode is formed along a first flow path for supplying an electrolyte and gas to the surface of the sandwiched sample, and an electrolyte and gas supplied to the surface of the sample. A second flow path for discharging, and an electrochemical cell having a fixture for fixing between the plate and the holder in a state where the sample is sandwiched between the plate and the holder;
A probe of a scanning probe microscope, which is arranged above the electrochemical cell and to which a constant voltage is applied between the sample and the sample sandwiched between the electrochemical cells and a current value at an arbitrary point is measured. Have.

本発明によれば、探針ホルダー側の特殊な処理なしで、所望の電気化学条件で処理した試料表面の形状・機械特性・電気特性の変化やバインダ樹脂の分布を高い空間分解能と感度で測定でき、電極活性質塗膜の電流分布像を得ることが可能となる。   According to the present invention, without special treatment on the probe holder side, changes in the shape, mechanical properties, and electrical properties of the sample surface treated under desired electrochemical conditions and the distribution of the binder resin are measured with high spatial resolution and sensitivity. It is possible to obtain a current distribution image of the electrode active coating film.

本発明の一実施形態による電極材料の評価方法を説明するためのフローチャートである。It is a flowchart for demonstrating the evaluation method of the electrode material by one Embodiment of this invention. 本発明の一実施形態による電極材料の評価装置を説明するための断面図である。It is sectional drawing for demonstrating the evaluation apparatus of the electrode material by one Embodiment of this invention. 図2の電気化学セルの平面図である。It is a top view of the electrochemical cell of FIG. 電気化学処理前の測定例を示す画像であり、(a)は形状像を、(b)は吸着力像を、(c)は電流像をそれぞれ示す。It is an image which shows the example of a measurement before electrochemical processing, (a) shows a shape image, (b) shows an adsorption power image, (c) shows an electric current image, respectively. 電解液中に添加剤存在下で電位走査後の測定例を示す画像であり、(a)は形状像を、(b)は吸着力像を、(c)は電流像をそれぞれ示す。It is an image which shows the example of a measurement after potential scanning in electrolyte solution presence, (a) shows a shape image, (b) shows an adsorption power image, (c) shows an electric current image, respectively. 電解液中に添加剤存在下で異なる電位走査後の測定例を示す画像であり、(a)は形状像を、(b)は吸着力像を、(c)は電流像をそれぞれ示す。It is an image which shows the example of a measurement after an electric potential scan in the presence of an additive in electrolyte solution, (a) shows a shape image, (b) shows an adsorption power image, (c) shows an electric current image, respectively.

本発明の好ましい実施形態について、図面を参照しながら詳細に説明する。   Preferred embodiments of the present invention will be described in detail with reference to the drawings.

次に、本発明の実施形態による電極材料の評価方法及び評価装置について、図面を参照して詳細に説明する。本実施形態では、電極材料の評価方法として、二次電池の負極を構成する電極材料の評価方法を例にとって、説明する。   Next, an electrode material evaluation method and evaluation apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. In this embodiment, as an electrode material evaluation method, an electrode material evaluation method constituting a negative electrode of a secondary battery will be described as an example.

図1は、本発明の一実施形態による二次電池の評価方法を説明するためのフローチャートである。図2は、本発明の一実施形態による二次電池の評価装置を説明するための断面図である。図3は、図2の評価装置の電気化学セルの平面図である。   FIG. 1 is a flowchart for explaining a method for evaluating a secondary battery according to an embodiment of the present invention. FIG. 2 is a cross-sectional view illustrating a secondary battery evaluation apparatus according to an embodiment of the present invention. FIG. 3 is a plan view of the electrochemical cell of the evaluation apparatus of FIG.

本実施形態による二次電池の評価方法は、図1に示す各工程を順番に、グローブボックス内にて、O、HOフリー条件下で行うものとする。初めに、リチウムイオン二次電池のような二次電池を分解した後、負極を構成する電極を取り出して評価に適したサイズ、例えば1cm×1cmの正方形、にカットし、洗浄する(ステップS1)。次に、図2や図3に示される電気化学セルに試料を固定し、液体・ガスの流路を接続する(ステップS2)。次に、試料を固定した電気化学セルを、走査型プローブ顕微鏡のステージ(SPMステージ)にセットし、ブランク状態のSPM測定を行う(ステップS3)。次に、電解液を電気化学セルに注入する(ステップS4)。次に、ポテンショ/ガルバノ・スタット(P/Gスタット)に接続し、試料に対し、所望の電気化学的処理を施す(ステップS5)。次に、電解液を電気化学セルから排出する(ステップS6)。次に、不活性ガスにて乾燥する(ステップS7)。そして、SPMスキャナを位置合わせして、測定を行う(ステップS8)。 In the secondary battery evaluation method according to the present embodiment, the steps shown in FIG. 1 are sequentially performed in a glove box under O 2 and H 2 O free conditions. First, after disassembling a secondary battery such as a lithium ion secondary battery, the electrode constituting the negative electrode is taken out, cut into a size suitable for evaluation, for example, a square of 1 cm × 1 cm, and washed (step S1). . Next, a sample is fixed to the electrochemical cell shown in FIG. 2 or FIG. 3, and a liquid / gas flow path is connected (step S2). Next, the electrochemical cell on which the sample is fixed is set on the stage (SPM stage) of the scanning probe microscope, and SPM measurement in a blank state is performed (step S3). Next, an electrolytic solution is injected into the electrochemical cell (step S4). Next, the sample is connected to a potentio / galvanostat (P / G stat), and a desired electrochemical treatment is performed on the sample (step S5). Next, the electrolytic solution is discharged from the electrochemical cell (step S6). Next, it dries with an inert gas (step S7). Then, the SPM scanner is aligned and measurement is performed (step S8).

例えば、Bruker社Dimension IconのようなPeak Force Modeを備えるSPMシステムを用いると、試料表面の各点で探針を上下させ、各点での高さ情報とトンネル電流スペクトル・吸着力・弾性等の機械特性や電気特性を同時に記録できる。所望の領域全体で探針を高速(数kHz〜十数kHz)で上下・移動を繰り返し、得られた物性値を画像化できる。背景技術のコンタクトモードによる電流像測定に比べ、数ミクロン径の粒子の集合体であるリチウムイオン二次電池の電極塗膜のような凹凸の大きな試料を高空間分解能かつ高感度に測定することができる。   For example, when using an SPM system equipped with Peak Force Mode such as Bruker Dimension Icon, the probe is moved up and down at each point on the sample surface, and height information at each point and the tunnel current spectrum, adsorption force, elasticity, etc. Record mechanical and electrical properties simultaneously. The probe can be repeatedly moved up and down and moved at high speed (several kHz to several tens of kHz) over the entire desired region, and the obtained physical property values can be imaged. Compared to the current image measurement in the contact mode of the background art, it is possible to measure a sample with large irregularities such as an electrode coating film of a lithium ion secondary battery, which is an aggregate of particles of several microns in diameter, with high spatial resolution and high sensitivity. it can.

このような評価方法に用いる評価装置の具体例について、図1及び図2を参照して説明する。図2に示すように、本実施形態の電気化学セルは、試料の導通を取るために導電性の高い材料からなるプレート3と、プレート3との間に試料を挟持し、化学安定性の高い樹脂材料からなるホルダー2を有する。ホルダー2は、開口部を有し開口部の内壁に沿って参照極及び対極6を兼ねたLi金属電極(リチウム金属電極)が形成されている。さらに、ホルダー2と、ホルダー2を貫通して設けられ、挟持された試料の表面に電解液やガスを供給する第1の流路の一例としての流路7と、ホルダー2を貫通して設けられ、試料の表面に供給された電解液やガスを排出する第2の流路の一例としての流路8を有する。プレート3とホルダー2との間、挟持された試料の表面とホルダー2との間に配置されたOリング5a、5bと、試料を挟持した状態でプレート3とホルダー2の間を圧着固定する締め具9を有する。   A specific example of an evaluation apparatus used for such an evaluation method will be described with reference to FIGS. As shown in FIG. 2, the electrochemical cell of this embodiment has a high chemical stability by sandwiching the sample between the plate 3 made of a highly conductive material and the plate 3 in order to keep the sample conductive. It has a holder 2 made of a resin material. The holder 2 has an opening, and a Li metal electrode (lithium metal electrode) serving as a reference electrode and a counter electrode 6 is formed along the inner wall of the opening. Further, the holder 2 is provided through the holder 2, and is provided through the holder 2 and the flow path 7 as an example of a first flow path for supplying an electrolyte or gas to the surface of the sandwiched sample. And has a flow path 8 as an example of a second flow path for discharging the electrolyte or gas supplied to the surface of the sample. Between the plate 3 and the holder 2, O-rings 5 a and 5 b disposed between the surface of the sandwiched sample and the holder 2, and tightening for fixing the plate 3 and the holder 2 by pressure while the sample is sandwiched It has a tool 9.

本実施形態の電気化学セルは、参照極及び対極6を兼ねた電極と試料による二極セル構成を持つものである。しかしながら本実施形態はこの二極セル構成に限定されるものでなく、参照極、対極と試料による三極セル構成を持つ構成としてもよい。   The electrochemical cell of the present embodiment has a bipolar cell configuration with an electrode serving as a reference electrode and a counter electrode 6 and a sample. However, the present embodiment is not limited to this two-electrode cell configuration, and may have a three-electrode cell configuration including a reference electrode, a counter electrode, and a sample.

プレート3は、板状の導電性の高い材料からなり、例えばステンレス、カーボン、金属酸化物、や導電性樹脂からなる。プレート3は、作用極となる。   The plate 3 is made of a plate-like highly conductive material, and is made of, for example, stainless steel, carbon, metal oxide, or conductive resin. The plate 3 becomes a working electrode.

Oリング5a、5bはいずれも、プレート3と対向する、ホルダー2の下面の溝部に配置されている。Oリング5aは、プレート3とホルダー2の間を締め具9で圧着固定した状態で、試料の外周部を押圧することにより、試料を保持する。さらに、Oリング5aの外側に、プレート3とホルダー2との間にOリング5bを設けて、供給された電解液の漏出に備える方がよい。   All of the O-rings 5 a and 5 b are disposed in the groove on the lower surface of the holder 2 facing the plate 3. The O-ring 5a holds the sample by pressing the outer peripheral portion of the sample in a state where the plate 3 and the holder 2 are crimped and fixed with the fastener 9. Furthermore, it is better to provide an O-ring 5b between the plate 3 and the holder 2 outside the O-ring 5a to prepare for leakage of the supplied electrolyte.

電解液や洗浄液とガスの導入や排出の流路7、8は、ガス用、電解液用、洗浄溶液用としてそれぞれ別々に設置しても良いし、切り替え式にしてガスと液体の流路を兼用することもできる。試料への導入の流路7と排出の流路8は、図2に示すようなそれぞれ1つでもよいし、図3の平面図に示すように複数でもよい。図3では、1つの導入の流路7に対し、3つの排出の流路8を設けた場合を示している。図3では、流路7と流路8とはお互いに電気化学セルの中心に向かって、90度の角度をなすように配置されている。図3は、流路7や流路8の配置や本数の一例を示したものであり、配置や本数はこれに限定されるものではない。   The flow paths 7 and 8 for introducing and discharging the electrolytic solution, the cleaning liquid and the gas may be installed separately for the gas, the electrolytic solution and the cleaning solution. It can also be used. The sample introduction channel 7 and the discharge channel 8 may each be one as shown in FIG. 2, or may be plural as shown in the plan view of FIG. FIG. 3 shows a case where three discharge channels 8 are provided for one introduction channel 7. In FIG. 3, the flow path 7 and the flow path 8 are arranged so as to form an angle of 90 degrees toward the center of the electrochemical cell. FIG. 3 shows an example of the arrangement and the number of the flow paths 7 and the flow paths 8, and the arrangement and the number are not limited thereto.

電解液の入れ替えには、ポンプ、シリンジ等で行うことができる。セル内に電解液が残存しないよう抜き去るには排出口の穴面はホルダー下面を向いている必要があり、かつセルを圧着固定する際に完全に塞がれないようにOリング5aの溝深さを調整する。本実施形態では、参照極及び対極6を兼用したLi金属を液溜めの周辺部に配置し、一端をセル外部へ導出し導通を取る構成とした。セルとLi金属の隙間から液漏れしないようシールテープ或いは熱収縮チューブ等で固定する。途中、銅線等で接続しても良い。Li金属と試料が接触しないようホルダーの液溜め部の下部にリブを設ける。   The replacement of the electrolytic solution can be performed with a pump, a syringe, or the like. In order to remove the electrolyte so that no electrolyte remains in the cell, the hole surface of the discharge port must face the lower surface of the holder, and the groove of the O-ring 5a is not blocked when the cell is crimped and fixed. Adjust the depth. In the present embodiment, Li metal that serves as both the reference electrode and the counter electrode 6 is arranged in the peripheral portion of the liquid reservoir, and one end is led out of the cell to be conductive. Fix with sealing tape or heat-shrinkable tube to prevent liquid leakage from the gap between the cell and Li metal. You may connect with a copper wire etc. in the middle. A rib is provided at the bottom of the liquid reservoir of the holder so that the Li metal does not contact the sample.

本実施形態の測定装置では、このような電気化学セルやSPMスキャナ1は、グローブボックス10内に収納される。SPMスキャナ1の先端には、走査型プローブ顕微鏡の探針が形成されている。そして大気遮断したグローブボックス10内で試料4を電気化学セルに固定後、電解液・洗浄用溶媒(例えばDEC:Diethyl Carbonate)の液溜め、Arガスの配管を接続する。試料、対極/参照極はポテンシオスタットと接続し、開回路としておく。不活性ガス雰囲気中でブランクとなる初期表面SPM測定を行う(図1のステップS3)。この際、走査型プローブ顕微鏡の制御装置から試料と探針間のバイアスを制御する。   In the measurement apparatus of the present embodiment, such an electrochemical cell and the SPM scanner 1 are housed in the glove box 10. A probe for a scanning probe microscope is formed at the tip of the SPM scanner 1. Then, after fixing the sample 4 to the electrochemical cell in the glove box 10 which is shut off to the atmosphere, an electrolytic solution / cleaning solvent (for example, DEC: Diethyl Carbonate) is stored and an Ar gas pipe is connected. The sample and the counter / reference electrode are connected to a potentiostat and set as an open circuit. An initial surface SPM measurement that becomes a blank is performed in an inert gas atmosphere (step S3 in FIG. 1). At this time, the bias between the sample and the probe is controlled from the control device of the scanning probe microscope.

その後、SPMスキャナ1を引き上げて、ゆっくりと電解液をセル液溜め内に注入し、試料4の開回路電圧(OCV:Open Circuit Voltage)を確認する。この際、ポテンショスタットより参照極に対する試料の電位・電流を制御する。   Thereafter, the SPM scanner 1 is pulled up and the electrolyte is slowly injected into the cell reservoir to check the open circuit voltage (OCV) of the sample 4. At this time, the potential / current of the sample with respect to the reference electrode is controlled by the potentiostat.

従って、本実施形態の測定には電気化学用の走査型プローブ顕微鏡のソフトウェアとポテンショスタットが付属した走査型プローブ顕微鏡装置であれば、試料と探針の電位を参照極に対して制御するバイポテンショスタットは必要ない。任意の電気化学的処理(図1のステップS5)を行ったのち、直ちに液溜めから電解液を排出(図1のステップS6)し、洗浄用の溶媒を導入・排出し過剰な電解質を取り除く。その後Arガスを流し、試料表面を乾燥(図1のステップS7)させ、SPM測定を行う(図1のステップS8)。   Therefore, the measurement of the present embodiment is a bi-potentiometer that controls the potential of the sample and the probe with respect to the reference electrode in the case of a scanning probe microscope apparatus with electrochemical scanning probe microscope software and a potentiostat. You don't need a stat. After performing an arbitrary electrochemical treatment (step S5 in FIG. 1), the electrolytic solution is immediately discharged from the liquid reservoir (step S6 in FIG. 1), and a cleaning solvent is introduced and discharged to remove excess electrolyte. Thereafter, Ar gas is flown, the sample surface is dried (step S7 in FIG. 1), and SPM measurement is performed (step S8 in FIG. 1).

本実施形態によれば、グローブボックス10内で、容易かつ一連に電気化学測定から不活性ガス中でのSPM測定を可能とする電気化学セルを用いている。これにより、探針ホルダー側の特殊な処理なしで所望の電気化学条件で処理した試料表面の形状・機械特性・電気特性の変化やバインダ樹脂の分布を高い空間分解能と感度で測定が可能である。   According to the present embodiment, an electrochemical cell that enables SPM measurement in an inert gas from electrochemical measurement in series in the glove box 10 is used. This makes it possible to measure changes in the shape, mechanical and electrical properties of the sample surface treated with the desired electrochemical conditions without special treatment on the probe holder side, and the distribution of the binder resin with high spatial resolution and sensitivity. .

さらに、本実施形態の電気化学セルでは、試料4を締め具9及びOリング5aの作用により上下から固定することにより、測定中の試料ドリフトを最小限に抑えることができる。さらに、測定待ち時間、探針の試料接触によるダメージの減少、測定データの質向上(空間分解能・高感度)が期待できる。また、簡便なシステムのためグローブボックス10内でのハンドリングが容易である。   Furthermore, in the electrochemical cell of this embodiment, the sample drift during measurement can be minimized by fixing the sample 4 from above and below by the action of the fastener 9 and the O-ring 5a. In addition, the measurement waiting time, the damage caused by the probe contacting the sample, and the improvement of the measurement data quality (spatial resolution and high sensitivity) can be expected. Moreover, since it is a simple system, handling in the glove box 10 is easy.

本発明による効果をより具体的に説明するため、実施例について説明する。
(実施例1)
Bruker社Dimension IconのようなPeak Force Modeを備えるSPMシステムを用い、試料表面の各点で探針を上下させ、各点での高さ情報とトンネル電流スペクトル・吸着力・弾性等の機械特性や電気特性を同時に記録する。所望の領域全体で探針を高速(数kHz〜十数kHz)で上下・移動を繰り返し、得られた物性値を画像化する。これにより、背景技術のコンタクトモードによる電流像測定に比べ、数ミクロン径の粒子の集合体であるリチウムイオン二次電池の電極塗膜のような凹凸の大きな試料を高空間分解能かつ高感度に測定することができる。
In order to explain the effects of the present invention more specifically, examples will be described.
Example 1
Using an SPM system with Peak Force Mode such as Bruker's Dimension Icon, the probe is moved up and down at each point on the sample surface, height information at each point, mechanical properties such as tunnel current spectrum, adsorption force, elasticity, etc. Record electrical characteristics at the same time. The probe is moved up and down and moved at high speed (several kHz to several tens of kHz) over the entire desired area, and the obtained physical property values are imaged. This makes it possible to measure samples with large irregularities, such as electrode coatings of lithium ion secondary batteries, which are aggregates of particles with a diameter of several microns, with high spatial resolution and high sensitivity compared to current image measurement using the contact mode of the background art. can do.

図4は、電気化学処理前の測定例を示す(図4(a)は形状像、図4(b)は吸着力像、図4(c)は電流像を示し、試料の15×15μmの領域の画像を示している。)。図4(b)が示す吸着力像より、カーボン負極表面に約300nm径のバインダ粒子が部分的に存在(図の白色部、吸着力:大)していることが理解できる。図4(b)の吸着力像から、バインダ粒子が部分的に存在している箇所では、吸着力が大きいことが理解できる。さらに、その部分は、図4(c)の電流像が白くなっている。すなわち、その部分では電流が小さく、高抵抗となっていることが明らかになった。   FIG. 4 shows a measurement example before electrochemical treatment (FIG. 4A shows a shape image, FIG. 4B shows an adsorption force image, FIG. 4C shows a current image, and the sample is 15 × 15 μm. Region image is shown.) From the adsorption force image shown in FIG. 4B, it can be understood that binder particles having a diameter of about 300 nm partially exist on the surface of the carbon negative electrode (white portion in the figure, adsorption force: large). From the adsorption force image of FIG. 4B, it can be understood that the adsorption force is large at a portion where the binder particles are partially present. Further, the current image in FIG. 4C is white in that portion. That is, it became clear that the current was small and the resistance was high in that portion.

形状像、弾性像ではバインダ粒子の様子は得られていないことから、乾燥時に高さ・弾性の情報が判別不可能な程度までバインダが薄化したものと考えられる。また大部分のミセル粒子は表面で重なることなく単粒子層で表面に存在していることから、乾燥前のペーストの時点でバインダ粒子はカーボン表面に自己組織化して規則的に単層で吸着しており、構造を保ったまま乾燥したと考えられる。一方、僅かに存在する表面の微粒子は、電流値が非常に高いこと、吸着力・弾性はカーボンと変わりないことから導電助剤の塊と推測される。電流値0.2nA以下の領域の割合は51.7%であった。また同様に吸着力像から、バインダ粒子の被覆率を求めることも可能である。
(実施例2)
図5に、電解液中1.6wt%添加剤存在下で開回路電圧(OCV)⇒1.0V(vs.Li)に電位走査後の測定例を示す(図5(a)は形状像、図5(b)は吸着力像、図5(c)は電流像を示し、試料の15×15μmの領域の画像を示している。)。図4に示す電気化学処理前の測定例と比較して、形状像、吸着力像では大きな変化が見られないが、電流像では全面的に高抵抗(白色)となった。電流値0.2nA以下の領域の割合は91.0%であり、電解液の還元が始まらない1.0Vまでの電位走査によって添加剤により初期皮膜を形成したことが明確になった。この時、吸着力像ではバインダ粒子由来のコントラストが得られており、初期SEI形成時のバインダ分布と被膜形成を判別することが可能であることを示している。
(実施例3)
図6に、電解液中1.6wt%の添加剤存在下で開回路電圧(OCV)⇔25mV(vs.Li)間の3サイクル後の測定例を示す(図6(a)は形状像、図6(b)は吸着力像、図6(c)は電流像を示し、試料の15×15μmの領域の画像を示している。)。図4や図5と比較して、電流像では更に全面的に白色の像となっている。これにより、全面的に高抵抗となっていることが理解できる。電流値0.2nA以下の領域の割合は97.1%であり、SEIの形成が進んだこと、導電性助剤は導電性を保ったままであること、バインダ粒子上には初期SEI被膜は形成せず強い吸着力を示したままであることを、感度良く判定できる。
Since the appearance of the binder particles is not obtained in the shape image and the elastic image, it is considered that the binder has been thinned to such an extent that the height / elasticity information cannot be distinguished during drying. In addition, since most micelle particles exist on the surface in a single particle layer without overlapping on the surface, the binder particles self-assemble on the carbon surface at the time of the paste before drying, and are regularly adsorbed in the single layer. It is thought that the structure was kept dry. On the other hand, the fine particles on the surface, which are slightly present, are presumed to be a lump of conductive additive because the current value is very high and the adsorption power and elasticity are the same as carbon. The ratio of the region having a current value of 0.2 nA or less was 51.7%. Similarly, the coverage of the binder particles can be obtained from the adsorption force image.
(Example 2)
FIG. 5 shows a measurement example after potential scanning from open circuit voltage (OCV) to 1.0 V (vs. Li) in the presence of 1.6 wt% additive in the electrolyte (FIG. 5 (a) is a shape image, FIG. 5B shows an adsorption force image, and FIG. 5C shows a current image, showing an image of a 15 × 15 μm region of the sample. Compared with the measurement example before the electrochemical treatment shown in FIG. 4, no significant change was observed in the shape image and the adsorption force image, but the current image was entirely high in resistance (white). The ratio of the region having a current value of 0.2 nA or less was 91.0%, and it became clear that the initial film was formed by the additive by the potential scan up to 1.0 V where the reduction of the electrolyte did not start. At this time, the contrast derived from the binder particles is obtained in the adsorption force image, indicating that it is possible to discriminate the binder distribution and the film formation at the time of initial SEI formation.
(Example 3)
FIG. 6 shows a measurement example after three cycles between an open circuit voltage (OCV) and 25 mV (vs. Li) in the presence of an additive of 1.6 wt% in the electrolytic solution (FIG. 6A shows a shape image, FIG. 6B shows an adsorption force image, and FIG. 6C shows a current image, showing an image of a 15 × 15 μm region of the sample. Compared with FIG. 4 and FIG. 5, the current image is a white image on the entire surface. Thereby, it can be understood that the entire surface has high resistance. The ratio of the region having a current value of 0.2 nA or less is 97.1%, that the formation of SEI has progressed, that the conductive auxiliary agent remains conductive, and that the initial SEI coating is formed on the binder particles. Therefore, it can be determined with high sensitivity that the strong attraction force is still exhibited.

以上、本発明の好ましい実施形態や実施例を説明したが、本発明はこれに限定されるものではない。例えば、電気化学セルの下部のプレート3の裏面に、温度調節装置を設置しても良い。これにより、高温時のSEIの形成状態・安定性・電気特性の分布・変化や、極低温時のLi析出の有無、SEIの形成状態、電気特性の分布を観測・評価することができる。このためには、熱伝導の良い金属製プレート(たとえばステンレス等)が好ましい。   As mentioned above, although preferable embodiment and the Example of this invention were described, this invention is not limited to this. For example, you may install a temperature control apparatus in the back surface of the plate 3 of the lower part of an electrochemical cell. Thereby, it is possible to observe and evaluate the SEI formation state / stability / electric property distribution / change at high temperatures, the presence / absence of Li precipitation at extremely low temperatures, the SEI formation state, and the electrical property distribution. For this purpose, a metal plate (for example, stainless steel or the like) having good thermal conductivity is preferable.

本発明は、電気化学処理した電極表面の電流像測定はもちろん、電解液中での電気化学AFM測定(形状、機械特性)にもそのまま適応できる。参照極及び対極6は、セル液溜め内部に設置するほか、流路を通じてセル外部に設置しても良い。この際、比較的大きな電流が流れる条件では、抵抗が増加する。液溜めのサイズは試料径:スキャナ径との兼ね合いであるが、液量のみ増やしたい場合は、液溜め径を拡大したうえで、溶媒の蒸発を抑えるべくスキャナ径に合わせた蓋を設置することもできる。   The present invention can be directly applied to electrochemical AFM measurement (shape, mechanical properties) in an electrolytic solution as well as current image measurement of an electrochemically treated electrode surface. The reference electrode and the counter electrode 6 may be installed inside the cell liquid reservoir or outside the cell through the flow path. At this time, the resistance increases under conditions where a relatively large current flows. The size of the liquid reservoir is a balance with the sample diameter: scanner diameter, but if you want to increase only the liquid volume, expand the liquid reservoir diameter and install a lid that matches the scanner diameter to prevent solvent evaporation. You can also.

また、本発明は、リチウムイオン二次電池の電極だけでなく、グラフェン、高度配向パイロライトグラファイト(HOPG)等の構造の制御されたモデル試料表面での反応を測定することもできる。   In addition, the present invention can measure not only the electrode of a lithium ion secondary battery but also the reaction on the surface of a model sample with a controlled structure such as graphene or highly oriented pyrolite graphite (HOPG).

さらに、本発明は、リチウムイオン二次電池だけでなく、リチウムイオンキャパシタの電極表面も測定可能である。また、セル下部のプレートをカーボンとし、加湿ガス(水素、酸素、空気)を流すことにより、温度制御した燃料電池の膜/電極接合体の表面(MEA表面)に形状・機械特性・電気特性の分布を測定することもできる。   Furthermore, this invention can measure not only a lithium ion secondary battery but the electrode surface of a lithium ion capacitor. In addition, the plate at the bottom of the cell is made of carbon and a humidified gas (hydrogen, oxygen, air) is allowed to flow, so that the surface of the membrane / electrode assembly (MEA surface) of the temperature-controlled fuel cell has shape, mechanical and electrical characteristics. The distribution can also be measured.

本発明の活用例として、リチウムイオン電池の評価の他、電気二重層キャパシタ、燃料電池の電極材料スクリーニング、工程・組成の良否確認、耐久性・劣化評価法が考えられる。   As examples of utilization of the present invention, in addition to evaluation of lithium ion batteries, screening of electrode materials for electric double layer capacitors and fuel cells, confirmation of quality of processes / compositions, and durability / degradation evaluation methods are conceivable.

1 SPMスキャナ
2 ホルダー
3 プレート
4 試料
5a、5b Oリング
6 参照極及び対極
7、8 流路
9 締め具
10 グローブボックス
DESCRIPTION OF SYMBOLS 1 SPM scanner 2 Holder 3 Plate 4 Sample 5a, 5b O-ring 6 Reference electrode and counter electrode 7, 8 Channel 9 Fastener 10 Glove box

Claims (10)

負極からなる試料に電解液を注入し前記試料を電気化学処理し、電解液を排出、洗浄後に走査型プローブ顕微鏡により測定し、前記ステップを同一装置内で大気にさらすことなく行い、
前記試料と導電性をもつ前記走査型プローブ顕微鏡の探針との間に定電圧を印加し、任意の地点での電流値を計測し、前記探針を移動して一定領域で測定した高さ情報と前記電流値とから電流像を作成する、電極材料の評価方法。
Injecting an electrolyte into a sample composed of a negative electrode, electrochemically processing the sample, discharging the electrolyte, measuring with a scanning probe microscope after washing, and performing the above steps without exposing to the atmosphere in the same apparatus,
A constant voltage is applied between the sample and the probe of the scanning probe microscope having conductivity, the current value at an arbitrary point is measured, and the height measured in a certain region by moving the probe An electrode material evaluation method for creating a current image from information and the current value.
前記電流像から、負極表面に形成した非水系電解液由来の被膜の形成による表面形状と抵抗を同時評価する、請求項1に記載の電極材料の評価方法。   The method for evaluating an electrode material according to claim 1, wherein the surface shape and the resistance due to the formation of a coating derived from the non-aqueous electrolyte formed on the negative electrode surface are simultaneously evaluated from the current image. 前記電流像と、同時測定した前記探針と前記試料間の吸着力像から、負極の構成材料であるバインダ樹脂の分布を同時評価する、請求項1又は請求項2に記載の電極材料の評価方法。   The evaluation of the electrode material according to claim 1 or 2, wherein the distribution of the binder resin, which is a constituent material of the negative electrode, is simultaneously evaluated from the current image and the simultaneously measured adsorption force image between the probe and the sample. Method. 前記電流像と、同時測定した前記探針と前記試料間の吸着力像及び弾性像から、負極の構成材料である導電性助剤の分布を同時評価する、請求項1又は請求項2に記載の電極材料の評価方法。   The distribution of the conductive auxiliary agent, which is a constituent material of the negative electrode, is simultaneously evaluated from the current image, and an adsorption force image and an elastic image between the probe and the sample measured simultaneously. Evaluation method of electrode material. 試料が搭載される導電性のプレート、前記プレートとの間に評価対象の試料を挟持するホルダーであって、開口部を有し、前記開口部の内壁に沿って参照極及び対極を兼ねた電極が形成されたホルダー、前記挟持される試料の表面に電解液及びガスを供給する第1流路、前記試料の表面に供給された電解液及びガスを排出する第2流路、及び前記プレートと前記ホルダーとの間に前記試料を挟持した状態で前記プレートと前記ホルダーの間を固定する固定具を有する電気化学セルと、
前記電気化学セルの上方に配置され、前記電気化学セルに挟持された前記試料との間に定電圧が印加され、任意の地点での電流値が計測される走査型プローブ顕微鏡の探針とを有する電極材料の評価装置。
A conductive plate on which a sample is mounted, a holder for holding the sample to be evaluated between the plate, an electrode having an opening, and serving as a reference electrode and a counter electrode along the inner wall of the opening A first channel for supplying an electrolyte and gas to the surface of the sample to be sandwiched, a second channel for discharging the electrolyte and gas supplied to the surface of the sample, and the plate An electrochemical cell having a fixture for fixing between the plate and the holder in a state where the sample is sandwiched between the holder and the holder;
A probe of a scanning probe microscope, which is arranged above the electrochemical cell, a constant voltage is applied between the sample and the sample sandwiched between the electrochemical cells, and a current value at an arbitrary point is measured. The evaluation apparatus of the electrode material which has.
前記電気化学セルと前記走査型プローブ顕微鏡の探針とが収容されるグローブボックスをさらに有する、請求項5に記載の電極材料の評価装置。   The electrode material evaluation apparatus according to claim 5, further comprising a glove box in which the electrochemical cell and the probe of the scanning probe microscope are accommodated. 前記試料と前記走査型プローブ顕微鏡の前記探針との間に定電圧を印加し、任意の地点での電流値を計測し、前記探針を移動して一定領域で測定した高さ情報と前記電流値とから電流像を作成する、請求項5又は請求項6に記載の電極材料の評価装置。   Applying a constant voltage between the sample and the probe of the scanning probe microscope, measuring a current value at an arbitrary point, moving the probe and measuring height information measured in a certain region The electrode material evaluation apparatus according to claim 5 or 6, wherein a current image is created from the current value. 前記電流像から、負極表面に形成した非水系電解液由来の被膜の形成による表面形状と抵抗を同時評価する、請求項7に記載の電極材料の評価装置。   The apparatus for evaluating an electrode material according to claim 7, wherein the surface shape and the resistance due to the formation of a coating derived from the non-aqueous electrolyte formed on the negative electrode surface are simultaneously evaluated from the current image. 前記電流像と、同時測定した前記探針と前記試料間の吸着力像から、負極の構成材料であるバインダ樹脂の分布を同時評価する、請求項7又は請求項8に記載の電極材料の評価装置。   The evaluation of the electrode material according to claim 7 or 8, wherein the distribution of the binder resin, which is a constituent material of the negative electrode, is simultaneously evaluated from the current image and the simultaneously measured adsorption force image between the probe and the sample. apparatus. 前記電流像と、同時測定した前記探針と前記試料間の吸着力像及び弾性像から、負極の構成材料である導電性助剤の分布を同時評価する、請求項7又は請求項8に記載の電極材料の評価装置。   The distribution of the conductive auxiliary agent, which is a constituent material of the negative electrode, is simultaneously evaluated from the current image and the simultaneously measured adsorption force image and elasticity image between the probe and the sample. Evaluation equipment for electrode materials.
JP2013201082A 2013-09-27 2013-09-27 Evaluation method and evaluation device of electrode material Pending JP2015068664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201082A JP2015068664A (en) 2013-09-27 2013-09-27 Evaluation method and evaluation device of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201082A JP2015068664A (en) 2013-09-27 2013-09-27 Evaluation method and evaluation device of electrode material

Publications (1)

Publication Number Publication Date
JP2015068664A true JP2015068664A (en) 2015-04-13

Family

ID=52835483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201082A Pending JP2015068664A (en) 2013-09-27 2013-09-27 Evaluation method and evaluation device of electrode material

Country Status (1)

Country Link
JP (1) JP2015068664A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061830A1 (en) * 2015-10-08 2017-04-13 주식회사 엘지화학 Method for measuring distribution of binder in electrode
KR20190100863A (en) * 2018-02-21 2019-08-29 주식회사 엘지화학 Evaluation method for dispersibility of carbon nanotube in electrode
WO2019164235A1 (en) * 2018-02-21 2019-08-29 주식회사 엘지화학 Method for evaluating dispersion of carbon nanotubes in electrode
CN112611777A (en) * 2020-06-12 2021-04-06 中国科学院宁波材料技术与工程研究所 Sample stage and test system for in-situ electrochemical scanning electron microscope observation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061830A1 (en) * 2015-10-08 2017-04-13 주식회사 엘지화학 Method for measuring distribution of binder in electrode
US10663528B2 (en) 2015-10-08 2020-05-26 Lg Chem, Ltd. Method of measuring distribution of binder in electrode
KR20190100863A (en) * 2018-02-21 2019-08-29 주식회사 엘지화학 Evaluation method for dispersibility of carbon nanotube in electrode
WO2019164235A1 (en) * 2018-02-21 2019-08-29 주식회사 엘지화학 Method for evaluating dispersion of carbon nanotubes in electrode
KR102197898B1 (en) 2018-02-21 2021-01-04 주식회사 엘지화학 Evaluation method for dispersibility of carbon nanotube in electrode
CN112611777A (en) * 2020-06-12 2021-04-06 中国科学院宁波材料技术与工程研究所 Sample stage and test system for in-situ electrochemical scanning electron microscope observation

Similar Documents

Publication Publication Date Title
Wu et al. Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery
Xiong et al. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries
Takahashi et al. Nanoscale visualization of redox activity at lithium-ion battery cathodes
Chen et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries
Gordon et al. Original implementation of Electrochemical Impedance Spectroscopy (EIS) in symmetric cells: Evaluation of post-mortem protocols applied to characterize electrode materials for Li-ion batteries
Wang et al. Direct visualization of solid electrolyte interphase on Li 4 Ti 5 O 12 by in situ AFM
JP5661901B1 (en) Measurement cell and electrode evaluation method using the measurement cell
Lin et al. Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated by in situ AFM and ex situ characterizations
Jagger et al. Solid electrolyte interphases in lithium metal batteries
Hammad Fawey et al. In situ TEM studies of micron‐sized all‐solid‐state fluoride ion batteries: Preparation, prospects, and challenges
JP2015068664A (en) Evaluation method and evaluation device of electrode material
Martín‐Yerga et al. Scanning electrochemical cell microscopy in a glovebox: structure‐activity correlations in the early stages of solid‐electrolyte interphase formation on graphite
Kang et al. High resolution visualization of the redox activity of Li 2 O 2 in non-aqueous media: conformal layer vs. toroid structure
Daboss et al. The potential of scanning electrochemical probe microscopy and scanning droplet cells in battery research
Gossage et al. Coordinated mapping of Li+ flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode
KR20130122281A (en) Device of analysing film on surface of electrode for rechargeable lithium battery and method of analysing film on surface of electrode for rechargeable lithium battery using the same
Xu et al. Interfacial Chemistry Effects in the Electrochemical Performance of Silicon Electrodes under Lithium‐Ion Battery Conditions
Osaka et al. In situ observation and evaluation of electrodeposited lithium by means of optical microscopy with alternating current impedance spectroscopy
Vermesan et al. Effect of barium sulfate and strontium sulfate on charging and discharging of the negative electrode in a lead–acid battery
Wheatcroft et al. Towards in-situ TEM for Li-ion Battery Research
He et al. Basics of the scanning electrochemical microscope and its application in the characterization of lithium-ion batteries: a brief review
Bläubaum et al. The Effects of Gas Saturation of Electrolytes on the Performance and Durability of Lithium‐Ion Batteries
Carbonari et al. 3D-printed testing plate for the optimization of high C-rates cycling performance of lithium-ion cells
Muñoz-Torrero et al. The redox mediated–scanning droplet cell system for evaluation of the solid electrolyte interphase in Li-ion batteries
Yuan et al. EIS diagnosis for PEM fuel cell performance